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Abstract A meso material model for polycrystalline metals is proposed, in which the tiny slip systems distributing 
randomly between crystal slices in micro-grains or on grain boundaries are replaced by macro equivalent slip systems de- 
termined by the work-conjugate principle. The elastoplastic constitutive equation of this model is formulated for the ac- 
tive hardening, latent hardening and Bauschinger effect to predict macro elastoplastic stress-strain responses of poly- 
crystalline metals under complex loading conditions. The influence of the material property parameters on size and 
shape of the subsequent yield surfaces is numerically investigated to demonstrate the fundamental features of the pro- 
posed material model. The derived constitutive equation is proved accurate and efficient in numerical analysis. Com- 
pared with the self-consistent theories with crystal grains as their basic components, the present theory is much simpler 
in mathematical treatment. 

Keywords: elastoplastic, poly crystalline, latent hardening. 

With the development of modern microscope-observation and computer techniques in the 
study of mechanical properties of material, plasticity theories based on physical mechanisms have 
made great progress. A systematic survey of the rigorous investigation of an individual crystal 
grain and its macroscopic response as well as the approximate polycrystal models was given by 
~ a v n e r " ] .  Different from the phenomenological ones, the physical plasticity theories are based on 
the microstructure and mechanical property of crystal grains, so neither potential function of plas- 
ticity nor evolution equation of the thermodynamic intrinsic variables is required. They are be- 
lieved to be the most persuasive plasticity theories. 

However, the available physical plasticity theories are not quite satisfactory in practical uses. 
First of all, the hardening rule of the single crystal under complex loading conditions is still open 
and a suitable averaging technique is also required to calculate the macro stress-strain from the 
complicated local stress-strain field in a macro material element including a great number of micro- 
components and unpredictable defects. Secondly, observations with modem scanning and trans- 
parent electronic microscopes show that the actual micro-structures of p~l~crystalline material, es- 
pecially under finite deformation, are far from those of the existing micro-mechanical material 
models. Sliding takes place not only in crystal grains but also on their boundaries. The latter even 
plays a major role in some cases. In crystal grains, active slip planes are usually apart from each 
other at some distance, so the plastic strain is formed by the relative motion of crystal slices. The 
microstructure changes with grain breakage, recrystallization, defect formation, , boundary evolu- 
tion, phase transformation, damage and so on. It will result in tremendous mathematical 
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complexity by taking account of the nonuniformity of the local stress-strain field in polycrystalline 

metals. 

Nevertheless, some of the complicated interactions of the micro ingredients in a macro mate- 

rial element have little effects on its macro mechanical behavior. Using a 3-slip-system model, 

Tokuta et al. ['I successfully predicted the stress-strain responses of metals under complex loading 

conditions. They claimed that either FCC or BCC crystals can be well simulated by such a materi- 

al model. Analogous simplification can be traced back to the 1950s. Batdorf and ~ud iansky '~ ]  pro- 

posed a simple slip model, in which each grain has only one slip system. The well-known experi- 

mental evidence is that the earliest-appearing slip lines in polycrystalline metals are always parallel 

to the plane with the largest shear stress exerted, and the critical resolved shear stress is almost 

the same under different loading conditions. Therefore, in the isotropic polycrystalline aggregate, 

a close approximation to the real behavior can be obtained by assuming that slip can occur along all 

planes in a homogeneously loaded elementt4], and the stress-uniform assumption seems acceptable 

when a material element is sufficiently larger than its constitutional grains. In other words, the 

actual tiny slip systems can be replaced with some equivalent macro slip systems. Once the hard- 

ening rule of the macro slip systems is formulated a constitutive equation can be derived to predict 

the macro stress-strain responses. In this way, Liang and chengLsl proposed a material model for 

metals with strong grain boundaries and at relatively low temperature. In this paper, we will con- 

centrate on active hardening, latent hardening and Bauschinger effects as well as their influence on 

size and shape of the subsequent yield surfaces, but the finite deformation effect will be ignored. 

1 Equivalent slip systems and their sliding rates 

It is widely accepted that the plastic deformation mechanism of polycrystalline metals is slid- 

ing between the crystal slices in micregrains and on grain boundaries. Depending on the sur- 

roundings, each tiny slip plane has an easy sliding direction and forms a micro slip system oriented 

randomly in the 3-D space. When activated, the micro slip systems dissipate plastic work and 

cause plastic deformation. The local stress is actually not uniform in microscopy, but a comparison 

between the theoretical predictions and the experiments demonstrates that the stress-uniform as- 

sumption is reasonable for a material model to simulate macro stress-strain responses. In this case, 

the driving stress on the planes perpendicular to unit normal vector n along a unit vector 

mshould, on the average, equal the resolved shear stress 

r  = m @ n : T  = P : T ,  (1) 
where T is the Cauchy stress and 

is the orientation tensor. For a slip plane with area s and sliding velocity v ,  the sliding work rate 

will be r - s - v .  
Now consider the tiny slip systems with normal vectors within a spherical angle A 0  in direc- 

tion n and sliding directions within a plane angle A Y  in direction m in a material element with a 

volume V  . Let siA12AY denote the sliding area with a sliding velocity v i  . The sliding work rate 

will be 

A& = x v i ( r s i ~ 1 2 ~ ~ )  = ( v i s i ) p :  TAl2AY = V ~ P :  T A O A Y ,  ( 3 )  
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where 

1 v .  Is; j, = ---&.S. = C 2 ' -. 
V , "  , I  V 

Eq. (4 )  reveals the physical meaning of Y .  If a tiny slip plane is taken as the cross-section of a 

prism with a height 1, 1 s, will be the volume of the prism. Let v, denote the relative sliding ve- 

locity of the two end surfaces. vi/ 1 will be the average shear strain rate in the prism and Isi/ V, 

the volume ratio of the prism to the material element. Therefore, j is a statistical average of the 

sliding rate of the micro slip systems with normal vector n and sliding direction m .  Y is also 

work-conjugate with the resolved shear stress on the imaginary macro-slip planes perpendicular to 

n . As equivalent energy-consumers, the imaginary slip systems homogeneously-distributing in the 

3-D space are taken as the basic components of the present material model. 

Thus, the total plastic work rate dissipated in a unit volume is 

Plastic work rate & in eq. ( 5 )  should equal the inner product of the plastic strain rate and the 

stress tensors, DP : T .  Comparing DP : T with eq. ( 5 )  gives 

Dp = ~ n ~ v i ~ d 1 2 d ! P .  

2 Constitutive equation 

A slip system cannot be activated if its resolved shear stress r is between the critical sliding 

strength r , ,, and r - ,, corresponding to its positive sliding direction and the reverse, respectively. 

That is to say, it must be inactive as long as the stress point is within a range bounded by two hy- 

perplanes defined by P : T = r ,, in the stress space. Hence, the internal envelope hypersurface of 

the hyperplanes determined by all of the slip systems will be the yield surface, and we can infer 

the evolution pattern of latent hardening from the measured subsequent yield surfaces if the pro- 

portional limits are taken as the yield points. Experiments demonstrate that r ?,, of a slip system 

change during plastic deformation, regardless of its activation state. This is the latent hardening 

phenomenon. A slip system will be activated if r reaches the critical sliding strength and ; is 

large enough to overcome the latent hardening rate ;I,t,,, . 
Micro-mechanism of the latent hardening is complicated. ih,,,, depends on the orientation, 

sliding history and activation state of the slip systems. When the crystal material is treated as a 

homogenized continuum, however, the overall plastic strain rate DP is a total representative of the 

sliding effect of all activated slip systems on each slip system in the homogeneous strain rate field, 

no mater how it is formed. That is to  say, instead of considering the interactions separately for 

each pair of slip systems, we take latent hardening as an effect of DP on each of the slip systems in 

the present work. 

Experiments of Phillips and  an^[" and others demonstrate that the subsequent yield sur- 

faces possess three main characteristics: ( i )  evident Bauschinger effect-the yield surfaces move 

with their shape deforming during prestress; (ii) little cross-effect- the size of the subsequent 

yield surfaces in the direction perpendicular to the prestress path remains almost unchanged; (iii) 

evident vertex effect-the curvature of the subsequent yield surfaces at the prestress point be- 

comes larger, but the opposite part gets flatter. Lin and  to"] predicted the first and the third 
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characteristics, but the cross-effect was overestimated. 

The orientation tensor P and the plastic strain rate tensor DP are vectors in the 6-D stress- 
strain space. The above-mentioned experiments indicate that latent hardening depends strongly on 

the angle between P and DP .  A reasonable assumption is that rIaren, of a slip system is proportion- 

al to the scalar product of P and DP, i. e. 

t larent = XP : DP , (7)  

Eq. (9)  enables the subsequent surfaces to possess all of the three characteristics mentioned above. 

Compared with Prager's kinematic hardening rule, eq. ( 7 )  means that the latent hardening 
rate can also be calculated from a back-stress rate tensor ?back proportional to the plastic strain rate 

DP,  i .  e. 
( u )  

?back = AD1' and tlstent = P " ' : ? ~ ~ , ~ .  (10) 

Suppose that the finite deformation effect is negligible and the plastic deformation does not affect 

the elastic property of material. Then 
t = P:T (11) 

and 
DP = D - De = D -  ce: . f . ,  (12) 

where D is the overall strain rate tensor and Ce,  the elastic compliance tensor. Denote the 4-order 
unit tensor with I W I and consider eqs. ( 6 ) '  (8) .  ( 11) and (12 ) .  Then 

where X is called the latent hardening modulus. Generally speaking, X varies during plastic de- 

formation. As X increases, the vertex effect weakens. If X = 0,  very sharp vertexes will ap- 
pear[81. 

The resolved shear stress rate of an active slip system should equal the sum of the latent hard- 

ening rate ; ,,,,,, and the active hardening rate ; ,,,,,,, so 

t = taCtive + t l a t e n t  = h~ + XP : DP, (8 )  

where h is the active hardening modulus. Obviously, when h = 0, eq. ( 8 )  becomes the expression 
of Budiansky and Wu's  theory[91. 

An active slip system may slide in m or the reverse direction. If the slip systems comply with 

Prager' s kinematic hardening rule, r ,, - r - ,, remains constant. r + ,, - r .- ,, normally varies 

more or less during deformation, so an attendant Bauschinger coefficient /3 = ( r , ,, - r - ,,)/2rCa, 
is introduced in the present work. Here, r,& is the initial critical resolved shear stress. The acti- 

vation state of a slip system can be described as 

'If r = r+,, and t > tla,,,, then y > 0, t,,, = t = hy + x P : D P  

< 

and t -,, = t ,  ,, - 2prCd; 

If r = r..,,and t < tlate,, then y < 0,  t-,, = t = h~ + x P : D P  

and t,,, = t..,, + 2@rbr,*; 

[ i f  tlaten, 2 0 then t,,, = x P : D P  

and t ,, = t +,, - 21jTCd ; 

I 
otherwise y = 0 ~f tlarent < 0 then t - , ,  = x P : D P  

and t . ,, = t - ,, + 2prcB. 
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Eq. (13) is an explicit expression of the constitutive equation with two kinds of material parame- 

ters h and X .  /3 plays an important role in determining when a slip system will be reactivated in 

the reverse direction after an unloading process. The elastoplastic stiffness or compliance tensor 

can be obtained with eq. (13) .  However, in a new loading step, the current values of h and X are 

not known because they depend on the deformation history and the activation states of slip sys- 

tems. It is not always convenient to use eq. (13)  in numerical analysis. An alternative method to 

calculate the stress-strain responses of material is as follows. 

Substituting eqs. (6 )  and (11) into eq. ( 8 ) ,  we get 

where j. mean that the corresponding variable is a function of the integral variable. The above e- 

quation is a standard Fredholm integral equation with a symmetric integral kernel P :  P = P : P.  
If h > 0, eq. ( 14 ) has one and only one solution'"'! . By dividing half of the spherical angle 2 x  
(orientation range of n )  into N equal parts, and half of the plane angle  orientation range of m )  

into M equal parts, a discrete model with M X N slip systems will be formed. In this case, the 

integration in eqs. ( 6 ) ,  (13) and (14)  will also be replaced by summation. Particularly, eq. (14) 

becomes 

(for all of the active slip systems). (15) 
This is a set of algebraical equations with a symmetric and positive-definite coefficient matrix. It 

is not difficult to find ~ ( j '  from eq. ( 1 5 ) ,  hence the strain rate tensor from equations ( 6 )  and 

(12). 

3 Influence of material property parameters on subsequent yield surfaces 

Since the basic component of the present material model is simply a slip system with only one 

degree of freedom, it is not difficult to formulate the evolution patterns of h ,  X and /3. For a cer- 

tain material, the material constants in the evolution equations can be calibrated through compari- 

son of the theoretical predictions with experimental results'"]. 

The fundamental features of the present material model will be shown using numerical exam- 

ples in which h ,  X and /3 are provided with typical evolution patterns, even constants. 

Two sets of simulated tensile stress-strain curves with h and X being constants are plotted in 

fig. l ( a )  and ( b ) .  Obviously the present material model can well simulate materials with arbi- 

trary strain hardening property. /I does not affect the stress-strain responses of material under 

monotonically proportional loading conditions. 

If X = O  and /I = 1,  the present material model degenerates into the simple slip model pro- 

posed by Batdorf and ~ u d i a n s k ~ ' ~ , ' ~ ~  . When the latent hardening effect is taken into account, i. e. 

X >0,  the activation states of slip systems differ from the prediction given by Batdorf and Budian- 

sky[3.121. The orientation distribution of sliding lines in pol~cr~stal l ine aluminum under tension 

was measured by Johnson and ~ a t d o r f ' ' ~ ' .  Fig. 2 (  a)  shows the comparison of some theoretical 
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Fig. 1 .  (a)  Simulated tensile stress-straln curve:, w1r11 X = 0 .  1 ,  h  = 0.2.E; 2, h = 0 .  1 E ;  3, h  = 0 .  OSE; 4 ,  h  

= 0 . 0 3 E ;  5 ,  h = O . O l E ;  6 ,  h = 0 . 0 0 5 E .  (b)  Simulated tensilestress-straincurves with h = 0 . 0 0 5 E .  1, ~ / h = 4 0 ;  

2 ,  T / h = 3 0 ;  3 ,  X / h = 2 0 ;  4 ,  X / h  = 10;  5 ,  X / h = 6 ;  6 .  X / h = O .  

predictions with the experiments. The stress-strain curve in fig. 2 ( b )  is well simulated by the 

present material model with material constants a, = 4 .  3 ksi, E = 2 150 ksi, h = 60. 63 exp 

( - 3 0 . 5 0 ~ ) + 3 . 8 7 a n d  X = 4 . 0 ( 2  1 y,hi l/C I y,  I ) .  Obviously, thepredictionofthepre- 

sent material model is almost coincident with the experimental results. If the latent hardening ef- 

fect is ignored, the orientation range of activated slip systems will be 15'-75' when .the tensile 

stress raises to twice the initial yield stress. Actually, latent hardening causes the critical resolved 

shear stress of the slip systems to increase during deformation, so the orientation range is reduced 

approximately to 30"-60'. 

Fig. 2 .  (a )  Predicted and measured slipangle distribution ( o/a, = 2 ) .  1 ,  Experiment; 2, present study; 3 ,  single 

slip mode by ref. [3];  4 ,  simple slip mode with FCC by reference[3]. (b)  Simulated tensile stress-strain curve of 2 S 0  
aluminum alloy. 0, Experimental point; -, .simulated curve. 

Figure 3 ( a )  illustrates the effect of X .  ( i )  Curvatrue of the subsequent yield surfaces at a 

prestress point decreases as X increases. It almost remains unchanged when. X is large enough, 

but a sharp comer will appear when X =O. (ii) The size of the subsequent yield surfaces in the di- 

rection perpendicular to the prestress path decreases when X = 0, but it will remain unchanged 

when X is large enough. 
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Figure 3 (b )  illustrates the effect of P .  Size of the subsequent yield surfaces in the direction a- 

long the prestress path reduces as p increases. When = 1, the size remains unchanged. 

I 
( a )  

Fig. 3.  (a )  Vertex and cross effects. ( b )  Bauschinger effect X / h  = 15 

Some of the simulated subsequent yield surfaces are plotted in fig. 4 .  They are favorably 

compared with the experiments[61. The slight 

discrepancy may be further reduced by taking 

the viscosity effect into account. j 
4 Fundamental features of the present materi- 

Loading path 
, , ,  

a1 model 
(0,0)-+(0. 3)- 
(0.2)-+(6.2) (a )  

( 1 ) Different from the phenomenological 
- I plasticity theories, the present material model 

- 2 0 2 4 6 
requires neither plasticity potential functions nor 

a J rcn 
assumed evolution rules of thermodynamic in- 

r . trinsic variables. As long as h ,  X and /-? are 

Loading path 

available, it is capable of predicting the macroe- 

lastoplastic behavior of material under complex 

loading conditions. 

(2)  Basic components of the present mate- 

rial model are the equivalent slip systems, each 

of which has only one deformation degree of 
I 
- 2 o 2 4 6 freedom. The overall stress-strain responses of 

reg material can be obtained by means of compo- 

nent-wise calculation. The present material 

model is efficient for numerical analysis. 

( 3 )  For plane stress problems, it can be 

_ (0.0)-(6,2,0)+(4,0)-(4,3) easily verified that the equivalent stress-strain E T ~ ! )  1 curves of material under radial loading condi- 

tions are exactly identical when the elastic strain 

and hydrostatic stress are ignored. In this case, 

- 1 
the material is actually in pure shear states in re- 

- 2 o 2 4 6 spective principal directions. Because of the ori- 
o,/rM, entation symmetry of the slip systems, the u- 

Fig. 4 .  Evolution of simulated subsequent yield surfaces. niqueness of equivalent stress-strain curves will 
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be naturally guaranteed. In the phenomenological plasticity theory, this uniqueness is only a pos- 

tulateC4'. Numerical results obtained with the present material model indicate that the uniqueness 

postulate is also a good approximation under arbitrary radial loading conditions. 

( 4 )  Theoretically speaking, activation of a slip system means commencement of plastic defor- 
=v , 

Initial state T, 

e l ( . )  (b) After tension 

After torsion 

=ZY , 

(d l  After tension- torsion 

Fig. 5 .  Distribution of r +,, and the corresponding yield surfaces. (a) Initial state; (b)  after tension: ( c )  after torsion; 

( d) after tension-torsion. 
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mation. A macroscopic yield point should be reached if one of the dip systems attains to its critical 

state, i. e. 

P:  T = r+,,.  (16) 

In the 6-D stress space, P is a vector of a constant magnitude and P : T is the projection of T 
on P. Eq. (16) expresses two hyperplanes confining the stress range, in which the slip system re- 

mains statict4]. The internal envelope hypersurface of the hyperplanes corresponding to all of the 

slip systems will be a macro-yield surface. Obviously, the yield surfaces are certainly convex and 

can be determined with r ,, at any time. For convenience, a 2-D material model with both n and 

m in the X-Y plane is taken as 2n example. r , ,, as a function of the angle between m and the X- 
axis is plotted on the left side of fig. 5.  The corresponding yield surfaces are shown in the right 

side. In this sense, r ,, can be regarded as intrinsic variables and eq. (9)  is their evolution rule. 

( 5 )  In eq. (91, r +,, and r -,, are related by the attendant Bauschinger coefficient, so the 

present material model has realized the presage of wang[14', improving the plasticity theory of 

linear loading functions developed by Sanders et al. 'I5]. If the maximum shear stress of slip sys- 

tems is constant, there must exist a limit yield surface, which affords a physical meaning to 

Mroz' s[l6] multi-yield surface theory. 

(6)  As long as the active hardening modulus h >0, the present material model has all of the 

mechanical properties drawn from Drucker's postulate. In this sense, a plasticity potential func- 

tion has been determined by the present material model. A good prediction of subsequent yield 

surfaces will also be reliable evidence of the rationality and accuracy of the present material model. 
2 . 0 [  

0.1 - t ' d i n g  path (c) 

0.0 - (a, r d =  (4.0)+(4.0.5) 

Loading path (d )  

Fig. 6 .  Subsequent yield surfaces, tensile and shear plastic strains during torsion. Lines 1-5 correspond to ~ / h  

= 0.1, 2.5, 5, 15. (a)  Simulated a, - E, curve; ( b )  subsequent yield surfaces; (c )  tensile plastic strain; ( d )  shear 

plastic strain. 



896 SCIENCE IN CHINA (Series A) Vol. 41 

For example, a uniaxial stress-strain curve in fig. 6 (a )  is well simulated with any of the five com- 

binations of h and X ,  but the subsequent yield surfaces shown in fig. 6 (  b) are different. If ~ / h  

=O,  there is a sharp corner at the loading point, as predicted by the simple slip t h e ~ r y ' ~ " ~ ] .  

When ~ / h  is large enough, the shape of the subsequent yield surfaces remains almost unchanged, 

as predicted by Prager's theory. Fig. 6 (b )  implies that when the shear stress is applied with ten- 

sile stress remaining, the strain responses predicted by the present material model depend on X /  
h .  The tensile and the shear plastic strain during torsion are plotted in figs. 6 ( c )  and ( d ) ,  re- 

spectively. These figures indicate that the appropriate ~ / h  of a certain material has to be deter- 

mined through nonradial loading tests. 

The evolution pattern of h ,  X and /3 for commonly-used metals and the material constant cal- 

ibration method are reported elsewhere"'. l'' . 
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