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C r u c i f o r m  Rigid Line  P r o b l e m  in an 
Infinite Plate 

present to show the interaction between rigid branches. In addi- 
tion, some particular features in the rigid line problem are com- 
pared with those in the crack problem. 

Y. Z. Chen I 

1 Introduction 
Recently there has been a resurgence of interest in the rigid 

line problem. Many works in this field were presented by Wang, 
Zhang, and Chou (1985), Hasebe and Takeuchi (1985), Dun- 
ders and Markenscoff (1989), Dunders (1989), Ballarini 
(1990), Chen and Hasebe (1992a), and Markenscoff and Li 
(1996). Characteristics of the stress field near the tip of a rigid 
line inhomogeneity can be found from an earlier investigation 
by England ( 1971 ). England analyzed the singular behavior of 
a wedge with the wedge angle a = 7r when the two edges are 
fixed. The analysis invariably leads to the conclusion that the 
stresses are singular with the asymptotic expression cr U 
0 ( r - 1 / 2 ) ,  where r denotes the distance between the rigid line 
tip and a point in the vicinity of the tip. The stress singularity 
coefficient (abbreviated as SSC) was defined and the leading 
term of stresses was also introduced by Hasebe and Takeuchi 
(1985). 

For the simple reason that the definition used for SSC has the 
same expression with the crack problem, we use the following 
definition: 

Kin -- iK2R = 2 2 ~  Lim ~/z - a~b' (z) ( 1 ) 
z ~ a  

where the rigid line tip is located at the point z = a and ~b'(z) 
is a complex potential defined by Muskhelishvili (1953). 

In this note the cruciform rigid line problem is studied. The 
objective of this paper is to provide the singular integral equa- 
tion approach for the problem. Secondly, numerical results are 
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2 Analysis 

The following analysis depends on the complex variable 
function method in plane elasticity (Muskelishvili, 1953). In 
this method the stresses (~rx, ay, ~rxy), the displacements (u, v), 
and the resultant force function (X, Y) are expressed in terms 
of two complex potentials th(z ), ~b(z) such that 

fix + fly = 4 Re4 ' (z)  

O'y  - -  (27 x "J~ 2iOxy = 2[z-~b"(z) + 0 ' ( z ) ]  (2) 

f = - Y  + i X =  ~ ( z )  + z~'(z)  + O(z) (3) 

2 G ( u  + iv) = Kqb(z) - z t h ' ( z )  - ~b(z) (4) 

where G is the shear modulus of elasticity, K = (3 - u ) / ( 1  + 
u) for the plane stress problem, and u is the Poisson's ratio. In 
addition, the following two derivatives in a specified direction 
are useful (Chert and Hasebe 1992b): 

Ji z, = Lira {(f)z÷z~z - (f)~} 
A~o ~ z  

dz  
= ~ ' ( z )  + ,b ' (z)  + ~z(Z4Y'(z)  + 4J ' (z ) )  

= N + i T  

= 2G Lim --~- {(u + iv)~+z~ - (u  + iv)z} 
az~ Az 

(5) 

m 

dz  4 '  
= K ~ ' ( z )  - O ' ( z )  - ~ z ( Z ~ " ( z )  + ( z ) ) .  (6) 

Physically, the J1 value represents the traction N + iT  applied 
along the interval z, z + Az in Fig. 1. 

In the analysis, the solution of the cruciform rigid line prob- 
lem depends on the potential for a single rigid line problem. 
The appropriate complex potential for the single rigid line prob- 
lem has been obtained previously by Chen and Hasebe (1992a), 
which is as follows: 
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Fig. 1 A single rigid line problem in an infinite plate 

f 1 Log (z - t )h(t)dt  
, ~ ( z ) : - 2 ~  o 

K f'_ 1 f_ th(t)dt 0(Z) = ~ Log (z - t )h( t )dt  - ~ 7 - ~  (7) 
a a 

where h( t ) ,  t E ( - a ,  a) takes the complex value in general. 
Physically, the function h(t) represents the body force density. 
In this note only the normal mode case with the remote stresses 
~r~, cr~ is considered. In this case, the function h(t) is an odd 
one and takes the real value. 

Substituting (7) into (5) and (6),  letting z ~ t~ and z 
tff to E ( - a ,  a)  (Fig. 1), and using some results obtained 
previously (Chen and Hasebe, 1992b) along the line CA we 
can get 

[Jr(to, 1)] + - [J~(to, 1) ] -  = [N(t0) + iT(to)] + 

- [N(to) + iT(to)]- = i(K + 1)h(to),  ]to[ < a  (8) 

[J2(to, 1)1 + = [J2(t0, 1) ] -  = Ja(to, 1) -- 
, t - t o  

Ito[ < a. (9) 

Equation (8) shows that the J1 contribution has a jump when 
a moving point is passing through the line CA in Fig. 1. On the 
contrary, Eq. (9) shows that the -/2 contribution is continuous in 
the same condition. 

The J2 contribution along the interval iso, i(so +dso) in Fig. 
l__can be obtained by simply substituting z = iso, dz = idso, 
dz/dz = - t ,  in (6),  and it can be expressed in the form 

x f _  2isoh(t)dt 1 f'_ 2th(t)dt 
J2 = ~ , t 2 + s~ 27r , ( t  + iso) 2 

(for a point along the y-axis in Fig. 1). (10) 

Since the rigid line is in equilibrium, from Eq. (8) we obtain 
the following constraint equation: 

~ h(t)dt  = (11) 0. 
a 

From Eqs. (2) and (7),  the SSC at the right tip A in Fig. 1 
can be evaluated from 

KiR = - (27r)  1/2 Lim ~Tt - a[h(t).  (12) 
t--a 

The original stress field for the cruciform rigid line problem 
(Fig. 2 (a ) )  can be considered as a superposition of the uniform 
stress field (Fig. 2 (b) )  and the perturbation field (Fig. 2 (c ) ) .  
Clearly, the original stress field has the following solution 
(Muskhelishvili, 1953): 

2G(u + iv) = (K - 1)Fz - F l~  (13) 

where 
oo oo o o  F -~ (O*~ ÷ ay )/4, F1 = (ay - or. )/2. (14) 

Actually, the J2 contribution caused by the uniform stress 

field should be canceled by the J2 contribution caused by the 
perturbation field. Secondly, the cruciform rigid line problem 
is considered as a superposition of two single rigid line prob- 
lems. With this in mind, letting the body force density hi (s~), 
(h2(s2)) be placed along the horizontal portion (the vertical 
portion) of the cruciform configuration, and considering the J2 
contributions as shown by (9) and (10), we obtain the follow- 
ing system of singular integral equations: 

2K ~'~ thl(t)dt 2 r t(s12- t2)h2(t)dt 
7r la o t ~ --- s-~ + - ~r Jo ( 7  + s~) 2 

: ( 1  - - K ) F +  Fi ,  

( 0 < s ~  < a )  (15) 

2t¢ [,b th_j(._t)d.t 2 [" t(s~ - t2)h1(t)dt 
7r !at t 2 - s~ ÷ -Tr Jo ~ 7  + s22)2 = (1 - K)F - F i ,  

( 0 < s z < b ) .  (16) 

In the studied case, since the functions hi (sl) ,  (h2(s2)) are 
odd real functions, the condition like Eq. ( 11 ) is satisfied auto- 
matically. It is of interest to point out that substituting K = - 1 

into Eqs. ( 15 ) and (16) will yield the singular integral equation 
for the cruciform crack problem (Boiko and Karpenko, 1981 ). 

After solving the integral equation, the SSCs at two tips A 
and B (Fig. 2) can be evaluated by 

K1R,A = --(271") 1/2 Lim ] ~  - alhl( t )  
t--~a 

(for the tip A in Fig. 2) (17) 

K~R,A = -- (27r) 1/2 Lim ~ - b[h2(t) 
t a b  

(for the tip B in Fig. 2). (18) 

3 N u m e r i c a l  E x a m p l e  

In the numerical solution, a semi-open quadrature me is most 
suitable to solve the singular integral Eq. (15) and (16). The 
quadrature rule suggested by Boiko and Karpenko (1981) is 
used to solve the singular integral equation. 

In the numerical solution we let 

hi(t) = , [  t Hi( t ) ,  (0-<  t-< a) 
va - - t  

t H2(t), (0-< t-< b). (19) h2(t) = b - t 

Finally, by using (17), (18), and (19) the SSCs at two rigid 
line tips A and B can be evaluated by 

K1R~=-(27ra)l/2Hx(a), KlR,B=-(27rb)l/2H2(b). (20) 

Under the following conditions ( 1 ) the plane stress condition 

Same in magnitude and opposite 
in direction for displacements 

: cr~=er 7 '=0 
' z:~ - ~ . . . . . .  

o A I x °F:.J , 

(a) Co) (c) 

Fig. 2 Utilization of the auperposition principle (a) the original stress 
field, (b) the uniform stress field, (c) the perturbation stress field 
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Fig. 3 Normalized SSCs at two rigid line tips A and B (see Fig. 2 and 
Eqs. (21), (22), (23), (24)) 

and u = 0.3 are assumed, and (b) the remote stresses aT, a~ 
are applied at infinity. The SSCs at two rigid line tips are ex- 
pressed by 

t ¢ + l  
K1R,A : (FA(b/a)crx + G A ( b / a ) o ~ )  ~ ~ a  

(for the tip A in Fig. 2) (21 ) 

t ¢ + l  
KiR,~ = (Fn(b/a)~rT + GB(b/a)~y ) ~ 

(for the tip B in Fig. 2). (22) 

Finally, the calculated FA(b/a), GA(b/a), FR(b/a), GB(b/a) 
values are plotted in Fig. 3. 

In the case of a~ = a~ = p, the SSCs can be expressed by 

K + i  
K1R,A = Ha(b /a )p  T ~a,  HA = Fa + GA 

( fo r  the tip A in Fig. 2)  (23 )  

K1R,B= H B ( b / a ) p - ~  ] ~ ,  HB = FB + GB 

( for  the tip B in Fig. 2) .  (24)  

The calculated results for FA, FB, GA, Gs, HA, HB values are 
listed plotted in Fig. 3. F r o m  Fig. 3 we  see that, in the remote  
stress ~rT case, FA values are dominan t  and I FAI > IF,I ,  In 
the meant ime,  in the remote  stress ~r~ case, GB values are domi-  

nant and I Gn ] > [ GAI. 

4 R e m a r k s  
A comparison has been made between the rigid inclusion 

problem with the cavity problem (Dunders, 1989). Similarly, 
we also make a comparison for two problems. In the cruciform 
crack case with the remote stress aT, the stress intensity factors 
at the tips A and B can be expressed by (Chen, 1993) 

Table 1 Comparison results for the cruciform rigid line 
problem and the cruciform crack problem 

b/a = 

0.1 0.2 1.0 

FA 1.000 1.000 0.985 
FR --0.064 --0.075 --0.235 
fA 0.003 0.001 --0.217 
fo 0.997 0.998 1.081 

BRIEF NOTES 

KiA = fA(b /a )crT~a ,  KiB : f~(b /a)crT, f~ .  (25) 

The calculated FA, FB (for the cruciform rigid line problem) 
and fA, fB (for the cruciform crack problem) values are listed 
in Table 1. From Table 1 we see that in the cruciform rigid line 
case Fa values are dominant and I FAI > I f~l ,  and in the 
cruciform crack case fB values are dominant and [fBI > I/AI. 
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A Modified Element-by-Element 
Preconditioner for Elastostatics 

M. Barboteu 2, P. Alart 2, and F. Lebon 2 

In this paper we present in detail a modified element-by-element 
strategy. This kind of  method is well known to be effective 
for large-scale problems because of its implicit parallelism. 
Numerical experiments described in this paper confirm the effi- 
ciency of this solver. 

1 I n t r o d u c t i o n  

Hughes, Levit, and Wfnget (1983) and also Hughes and 
Winget (1985) have introduced an element-by-element precon- 
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