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ABSTRACT 
A dislocation theory of fracture criterion for the mixed dislocation emission 

and cleavage process in an anisotropic solid is developed in this paper. The com- 
plicated cases involving mixed-mode loading are considered here. The explicit 
formula for dislocations interaction with a semi-infinite crack is obtained. The 
governing equation for the critical condition of crack cleavage in an anisotropic 
solid after a number dislocation emissions is established. The effects of elastic 
anisotropy, crack geometry and load phase angle on the critical energy release 
rate and the total number of the emitted dislocations at the onset of cleavage are 
analysed in detail. The analyses revealed that the critical energy release rates can 
increase to one or two magnitudes larger than the surface energy because of the 
dislocation emission. It is also found elastic anisotropy and crystal orientation 
have significant effects on the critical energy release rates. The anisotropic values 
can be several times the isotropic value in one crack orientation. The values may 
be as much as 40% less than the isotropic value in another crack orientation and 
another anisotropy parameter. Then the theory is applied to a fcc single crystal. 
An edge dislocation can emit from the crack tip along the most highly shear 
stressed slip plane. Crack cleavage can occur along the most highly stressed slip 
plane after a number of dislocation emissions. Calculation is carried out step by 
step. Each step we should judge by which slip system is the most highly shear 
stressed slip system and which slip system has the largest energy release rate. The 
calculation clearly shows that the crack orientation and the load phase angle have 
significant effects on the crystal brittlductile behaviours. 

5 1. INTRODUCTION 
A dislocation theory of crack propagation in an anisotropic solid due to dislo- 

cation emission and cleavage is proposed in this paper. The concepts adopted here 
have been developed by Rice and Thomson (1974), Ohr (1985) and Lin and Thomson 
(1986). The well known dislocation emission model proposed by Rice and Thomson 
(1974) gave a quantitative criterion for ductile as against brittle behaviour. Beltz and 
Rice (1991), Schoeck (1991), Rice (1992), Rice et al. (1992), Wang (1995) have 
reanalysed the Rice-Thomson model on the basis of the Peierls framework, in 
which the fully emitted dislocation is considered as a continuous distribution of 
infinitesimal continuum dislocations. For the mode I1 case, Rice (1992) presented 
an exact solution for the critical loading at that nucleation instability was developed 
and identified a solid-state parameter, the unstable stacking energy ?;s, which 
characterizes the resistance to dislocation nucleation. 

The analyses have also been generalized to anisotropic solids by Sun and Beltz 
(1994). They found the anisotropic critical crack extension force for dislocation emis- 
sion may be greater or less than its isotropic counterpart. For bcc a-Fe, the anisotropic 
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32 T. C. Wang 

values can be 2.4 times larger than the isotropic values in one crack orientation; in 
another crack orientation, the values are as much as 40% less than the isotropic values. 

The brittle cleavage of a crack in metal is usually accompanied by a considerable 
number of dislocation emissions. A fracture criterion accounting for the effects of 
the dislocation emission was proposed by Sinclair and Finnis (1983) with a simple 
analysis for a pure mode I crack. Their model was constrained to cleavage on one 
plane and crack branching was ruled out. A general theory for crack propagation in 
the situation of combined cleavage and dislocation emission was developed by Lin 
and Thomson (1986). Their model is also constrained to cleavage on one plane and 
crack branching was not permitted. 

From numerous observations, Ohr ( 1  985) pointed out that crack propagation 
was a mixed-mode process in which the dislocation emission and the cleavage could 
proceed in the same plane. 

A general theory for crack propagation due to combined dislocation emission 
and cleavage for isotropic solid was proposed by Wang (1996) based on Ohr's model. 
This analysis is generalized to take into account elastic anisotropy in this paper. The 
explicit formula is obtained for the critical condition of crack cleavage propagation 
in an anisotropic solid after a number of dislocation emissions. The effects of the 
elastic anisotropy, the crack geometry and the load phase angle on the critical energy 
release rates and the total number of the emitted dislocations at  the onset of cleavage 
are analysed in detail. The analyses revealed that the critical energy release rates can 
increase to one or two magnitudes larger than the surface energy owing to the dislo- 
cation emission. i t  is also found that elastic anisotropy and crystal orientation have a 
significant effect on the critical energy release rates. The anisotropic values can be 
several times the isotropic value in one crack orientation. The values may be as 
much as 40% less than the isotropic value in another crack orientation and another 
anisotropy parameter. Then the general theory is applied to the fcc single crystal. 12 
possible slip systems reduce to three effective slip systems for the plane-strain problem. 
An edge dislocation can be emitted from the crack tip along the most highly shear 
stressed slip plane. Crack cleavage can occur along the most highly stressed slip 
plane, in which the energy release rate reaches the maximum value, after a number 
of dislocation emissions. The calculation clearly shows that the crack orientation and 
the load phase angle have significant effects on the crystal brittleeductile behaviours. 

4 2. REPRESENTATION A N D  FORMULAE 
A complex-variable formulation that represents the stress and displacements in 

an anisotropic solid was developed by Esheby et a/. (1953), Stroh (1958) and 
Lekhnitskii (1963). A brief review of this presentation was given by Suo (1989). 

The representation for displacements and stresses is 

u2; = 2 Re (2 Lj i@,(z , ) )  . 
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Dislocation theory of fracture criterion for anisotropic solids 33 

Fig. 1 

&* x, 

Geometry of the crack plane and the most shear stressed slip plane. 

where A and L are the matrices which are determined by elastic constants, zj = 
xI + pjx2, p j ( j  = 1,2,3) are the characteristic numbers. We only consider plane 
problem. Two-dimensional theory is proposed here. The coordinate system is as 
follows: the x1 axis is the crack elongation direction, x2 the normal to the crack 
plane and x3 along the crack front. Assume that the xi-x2 plane is a mirror plane for 
the anisotropic solid, so that the in-plane field quantities are decoupled from anti- 
plane quantities. 

Suppose that the crack front is contained within one slip plane which is most 
highly stressed in an anisotropic crystal. As shown in fig. 1, the slip plane makes an 
inclined angle with respect to the crack plane. 

For a crack propagating in the x1 direction in an anisotropic solid, the energy 
release rate has been given by Stroh (1958) and Sih et al. (1965): 

kT(B + B)k 
4 l  

G =  

where k = [kl, k2, k3IT = [kII, k ~ ,  kIIIIT is the stress intensity factor, B is the Hermitian 
matrix: 

B = iAL-’. (3) 

The overbar denotes the complex conjugation. The singular stress fields can be 
expressed by the complex potential (Sih et al. 1965, Suo 1989, 1990) 

ki 
3 

Q j ( Z )  = c L,i’ 
j =  1 2(27t2)”2. 

Substituting eqn. (4) into eqn. (l), one obtains 

Along the xi direction, we have zj = xi ( j  = 1,2,3); hence we get 

k; 

(4) 
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34 T. C. Wang 

* * *. Introducing a new coordinate iystem o.xIx~.x~. the .Y: axis is the slip plane, x; normal 
to the slip plane and x; coincident with s3. Now we have an in-plane coordinate 
rotation [ co;"' ":] (7) 

R = -~lnBo coseo 

where 6, is the angle measured from the zcl axis to the -x: axis. Under such an in- 
plane rotation, B transforms as a second-order tensor and each column of A and L 
transforms as a vector, that is 

A* = RA, 

L* = RL, (8) 

B* = RBRT 
The traction p, which acts on the slip plane, can be represented as 

p i  = u p ,  = -oil sin Bo + ui2 cos Bo = 2 Re L&, sin Bo + cos B0)@,(zj) 
,=I 

= 2Re ~L ,W,@, (Z , )  . 
( j : ,  ) 

Substituting eqn. (4) into eqn. (9), one obtains 

(9) 

where 
LJ. = cos Bo + p j  sin do.  

Transforming to the new coordinate system O X ~ . Y ~ . X ~ ,  the traction component p' 
becomes 

I 

* * *  

With respect to the coordinate system O.KTX;-X: one can define the stress intensity 
factor K = [ K , ,  K 2 ,  K3]' = [KII. K I ,  KII1]' as follows: 

112 * K,  = lim [(2rrr) p , ]  
r-0 

Hence we obtain 
3 3 3  3 

RvLjm~y2L; :k l )  = c j =  I J;,k,, 
;=I m=1 / = I  

where the coefficients h, are 
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Dislocation theory of fracture criterion f o r  anisotropic solids 3s 

The problem of an edge dislocation interacting with a crack in anisotropic solid was 
solved by Atkinson (1996), Asaro (1975) and Suo (1989). The formulae adopted here 
were given by Suo (1 989), Wang et af. (1 992) and Wang (1 994). 

The complex potential for an edge dislocation at point (xo,yo) interacting with an 
semi-infinite crack can be expressed as 

where si = x,, + pi yo, vector d and matrix C are 

1 - 1  

c = L-IL, 

d = - L (B + B)-’b, 2n (‘4) 

where b is the Burgers vector of the edge dislocation. 
Equation (13) can be rewritten as follows: 

The traction pd, produced by the edge dislocation and acting in the slip plane, is 

where ro is the distance from the crack tip to the edge dislocation. 
Transforming to the coordinate system o x ~ x ~ x ~ ,  one obtains 

j= 1 

The stress intensity factors contributed by the edge dislocation in the coordinate 
system ox7x:xT can be defined as 

Equation (17) can be represented as follows: 
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where 

T. C. Wang 

3 3 3 3  
qi = 2x Re (k RULimdm + RsLimCmrdk%) . (19) 

j = l  m=l ;=I k=I m=l wk 

The local stress intensity factors are given by 

The physical meaning of eqn. (20) is clear. The local stress intensity factors are less 
than the applied stress intensity factors. This decrease in local stress intensity factor 
is caused by the dislocation shielding. 

When an edge dislocation is emitted from the crack tip along the slip plane, the 
emission condition has been proposed by Lin and Thomson (1986) and Rice (1992) 
as follows: 

K? = KIIe, (21) 

where KIIe is the critical stress intensity factor for the dislocation emission along the 
slip plane. According to Rice (1992), 

where T~~ is the unstable stacking energy of the slip plane, peff is the effective shear 
modulus and ueff is the effective Poisson ratio. 

The cleavage criterion for the crack branching into slip plane is given by 

where GI, is the fracture toughness for a crack propagating along the slip plan. We 
discuss only the in-plane problem here. Equation (23) can be expanded as 

a l ~ ( K : ' ~ ) ~  + 2a12Ktp + a22(K:p)2 = GI,, (24) 

where aij = ( B  + B);/4. Meanwhile at the onset of cleavage branching, the local 
mode I1 stress intensity factor Kip is given by 

K? = 7 7 ~ I I e ,  o G 7 G 1. (25) 

Suppose that the cleavage criterion (23) is met after N edge dislocations were 
emitted. Then the local stress intensity factors are given by 
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Dislocation theory of fracture criterion fo r  anisotropic solids 37 

where ri ( i  = 1,2, . . . , N )  is the distance from the crack tip of the ith emitted dis- 
location. Introduce several parameters as follows: 

Equation (26) now becomes 

Substituting eqn. (28) into eqn. (24), one obtains 

N2co - 2Nb0 ~ K2 + a. (4) 2= a22f 2 K 1 

KIIe 
where 

.J, defines the stress intensity ratio and p K  characterizes the ratio of the fracture 
toughness to the critical stress intensity factor for dislocation emission from the 
crack tip along the slip plane. If we know the total number N of the emitted dis- 
locations, one can easily obtained the critical value K2/KIIe from eqn. (31). 

As shown in fig. 2, when the applied load is increased, the stress intensity 
factors K1 and K2 will simultaneously increase along the straight line OC. At 
point Ao, the mode I1 stress intensity factor reaches the critical value KIIe.  The 
first dislocation is fully nucleated at  the crack tip, then emitted from the crack tip 
along the slip plane and finally stopped at distance rl  . The local stress intensity factor 
K? and K Y  are decreased from point A. to point BI along the straight line AoBI. 
The slope of the straight line AoBl is determined by eqn. (17). As the applied load 
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38 T. C. Wang 

Fig. 2 

1.5 . . . . , . . . . , . . . , , . . . .  

E 
I 

0.5 1 
-1 . *  
1.5 

K;/K Ile 

Effects of applied load and dislocation shielding on the local stress intensity factors. 

increases again, the local stress intensity factors KYp and K:'p increase along a 
straight line B I A I ,  which is parallel to the straight line OC. Af point A l ,  the local 
mode I1 stress intensity factor reaches the critical value Klle again, the second dis- 
location is fully nucleated at the crack tip, then emitted along the slip plane and 
finally stopped at distance r z .  The local stress intensity factors decrease from point 
A l  to B2 owing to the second dislocation shielding. As the sequence was repeated, 
at the critical point A;, the radius OA; is equal the radius OC after the Nth 
dislocation was emitted. The fracture criterion (31) is met and cleavage branching 
occurs. 

9 3. RESULTS FOR ORTHOTROPIC SOLIDS 
In this section we survey only the anisotropic effects on the critical energy release 

rates for crack cleavage extension after a number dislocation emissions. The crystal- 
lographic structure is not introduced in this section. The calculation was carried out 
for orthotropic solids. 

For a given orthotropic solid, only four elastic constants s1 I, sZ2, s12 and s66 enter 
the plane problem formulae. Introduce two non-dimensional parameters (Suo 1989) 

In an isotropic solid, Young's modulus along any direction would be the same but, 
for an anisotropic solid, different directions have different Young's moduli. The 
parameter X measures the anisotropy in the elastic Young's moduli in the x1 direc- 
tion and x2 direction. The parameter p measures the anisotropy in the shear modulus 
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Dislocation theory of fracture criterion for anisotropic solids 39 

for the x I - x ~  plane. For isotropic solids, X = p = 1. The characteristic equation is 

(36) 1/2 2 + 1 = O  

Hence the characteristic numbers depend on X and p only. The characteristic num- 
bers are 

pl = i ~ - ' / ~ ( n  + rn), 
pl =  in + rn), 

p2 = i ~ - ' / ~ ( n  - rn), 

p2 =  in in- rn), 
1 < p < m, 

(37) 
-1  6 p < I .  

The matrices L and B for an orthotropic solid with the x-y plane as a mirror plane, 
are 

-PI -P2 0 

(38) 

The stress intensity factors kl  and k2 are taken as external loads. The load phase 
angle Qo is defined as tan $0 = kl lk2 .  

The calculation is carried out for the plane strain. The parameter qo is chosen as 

Figure 3 shows the critical energy release rates for crack cleavage against load 
phase angle for different values of X when 0, = 0, pK = 2.0 and p = 0.999 99. It is 
clear that the critical energy release rate is markedly increased as the load phase 
angle Go increases. On the other hand, the critical energy release rate is also increased 
as the anisotropic parameter X increases. Since Oo = 0, the slip plane is coincident 

40 = 0'0.54. 

Fig. 3 

- u 
t 

- h=0.5 - 3.0 

0 15 30 45 60 75  ! 

The non-dimensional critical energy release rate G,/G,,  against load phase angle $Q for 
different values of X with Bo = 0, pK = 2.0 and p = 0.999 99. 
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40 T. C .  Wang 

Fig. 4 

10 , t 

- X=0.5 - 1.0 - 3.0 

3 

The non-dimensional critical energy release rate G,/GI, against load phase angle $o for 
different values of X with 6'" = 0, pK = 5.0 and p = 0.99999. 

with the crack plane. The crack extension is along .x1 direction. Suppose Young's 
modulus El  is fixed. The parameter X increase implies an increase in Young's 
modulus E2, which results in an increase in the critical energy release rate. 

The critical energy release rate against load phase angle q!Io is plotted in fig. 4 for 
different values of X for do = 0,  pK = 5.0 and p = 0.99999. The elastic anisotropy 
effects on the energy release rates become pronounced. For example, at  q!Io = 60", the 
elastic anisotropic value of G,/GI, is about 1-5 times that of the isotropic value. 

If the slip plane is inclined at an angle 0, = 30°, the anisotropy effects on the 
energy release rates become tremendous. A typical example is shown in fig. 5 for 

Fig. 5 

? 

, 
0 10 20 30 40 : 

30 

The relationship between the non-dimensional critical energy release rate G,/GI, and the load 
phase angle di,, for different values of X with 6'0 = 30 , pK = 3.0 and p = 0.999 99. 
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Dislocation theory of fracture criterion for anisotropic solids 41 

Fig. 6 

- 

T 

0 10 20 30 40 L 

I 4 0  

0 

The effect of the anisotropic parameter p on the critical energy release rate G, for 0, = 30°, 
pK = 3.0 and X = 1.0. 

p K  = 3.0 and p = 0.999 99. In this case, the anisotropy parameter p has pronounced 
effects also on the energy release rates as shown in fig. 6 .  

The general trends of the critical energy release rates and the total numbers of the 
emitted dislocations at the onset of cleavage are shown in figs. 7-12. The relation 
between the energy release rates and the load phase angle for different parameters p K  
is plotted in fig. 7 for B0 = 0, X = 3.0 and p = 0.99999. The total number N of 
emitted dislocations at the onset of cleavage is shown in fig. 8. These figures reveal 
that the critical energy release rates can increase to one to two magnitudes larger 

Fig. I 

10- V I  

- 3.0 - 5.0 

0 1  
0 15 30 45 60 75 < 

$0 

3 

The effect of the parameter pK on the critical energy release rate G, for 0, = 0, p = 0.99999 
and X = 3.0. 

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

M
ec

ha
ni

cs
] 

at
 0

0:
00

 1
8 

N
ov

em
be

r 
20

13
 



42 T. C .  Wang 

Fig. 8 

200 -- T 

0 1'5 30 45 60 7 5  0 

The effect of the parameter p K  on the total number of emitted dislocations at onset of crack 
cleavage for Oo = 0, p = 0.99999 and X = 3.0. 

Fig. 9 

10 I 

J 

8 -  - 3.0 
I 3.0 

- pK= 1 5 

: S € + w  9 0 g r  
5 6 1  
\ 
3 

4 -  

2 

0 1  
0 1.5 30 4 5  6 0  75 $ 

VO 

0 

The effect of the parameter pK on the critical energy release rate G,  for Bo = 0, p = 0.5 and 
X = 1.0. 

than the GI, due to the dislocation emissions. The total number N can become 
several hundreds to several thousands when the load phase angle increases. The 
higher the total number N ,  the greater is the value of the critical energy release 
rate. One can see similar features in figs. 9 and 10 for X = 1.0 and ps = 0.5. 

94. RESULTS FOR FCC CRYSTAL 
In this section, we investigate the solutions for fcc crystal. Three specific orienta- 

tions are considered here. For convenience, capital letters are used to label crack 
orientations. A crack on the (010) plane with its tip along [Toll orientation is labelled 
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Dislocation theory of fracture criterion for anisotropic solids 43 

Fig. 10 

0 15 30 45 60 75 0 

* O  

The effect of the parameter p K  on the total number of emitted dislocations at onset of crack 
cleavage for Bo = 0, p = 0.5 and X = 1.0. 

Fig. 11 

0 5 10 15 20 25 30 : 

The non-dimensional critical energy release rate G,/G, ,  against load phase angle for 
different values of pK with Bo = 30", X = 3.0 and p = 0.999 99. 

as case A. A crack on the (1 11) plane with its tip along [iOl] is labelled case B. A 
crack on the plane [TOT]) with its tip along [Toll is labelled case C. 

From a micromechanism point view, dislocation emission from the crack tip in 
fcc materials consists of sequentially emitted partials rather than the full dislocations. 
For simplicity, we consider only the emission of paired partials which are formed in a 
definite order sequences and compose a full dislocation. 

For fcc metal crystal, there are 12 possible slip systems, which consist of four 
{ 11 1) slip planes with three ( I  10) slip directions on each plane. The crack and crystal 
orientation for case A are shown in fig. 13 (a).  The crack and the traces of the slip 
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44 T. C .  Wang 

Fig. 12 

4 

*y 

I I I 
0 5 10 15 20 35 30 35 

$0 

z 

The total number N of emitted dislocations at  the onset of crack cleavage against load phase 
angle & for different values of p K  with 0, = 30", X = 3.0 and p = 0.99999. 

Fig. 13 

t y  

Fcc crystal. (n)  Case A with a crack on (010) plane and its tip along [ IOT] .  (h )  Plane-strain 
problem. The solid lines are the intersection of the slip planes ( 1  11)  and ( 1  11) with the 
x3 = 0 plane. The broken lines are the traces of simultaneous slip on the two planes 
( i f i )  and (iii). 
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Dislocation theory of fracture criterion for anisotropic solids 45 

5 

Fig. 14 

\ I X 2  1 )c x2 1 x. 

(a) Effective slip systems. (b) Rotation from the coordinate system oxlx; to the coordinate 
system oxl x2. 

planes in the xl-x2 plane are depicted in fig. 13(b). The solid lines are the inter- 
sections of the slip planes (1 1 1) and (1 11) with the x3 = 0 plane. Simultaneously slip 
on the two slip systems [lTO](lll) and [011](111) will cause an effective slip on 
the direction which is parallel to the intersection of the slip plane (1 1 1) with the 
x3 = 0 plane. Similarly we have a second effective slip direction, as shown in 
fig. 13(b). Since the plane (010) is a cleavage plane and not a slip plane, the 
(010)[101] is not a permitted slip system for the plane-strain problem. Now we 
only have two effective slip systems for in-plane deformation. If a slip with opposite 
direction is considered as another slip system, then we have four slip systems alto- 
gether. For convenience, each slip system is labelled with a number M (= 1 ] 2,4,5) as 
shown in fig. 14. The crack propagations in direction [loll and direction [Toll on the 
cleavage plane (101) are labelled M = 3 and M = 6 respectively. Of course each slip 
system is also considered as a possible crack propagation system. Then we have six 
crack propagation directions altogether. For a fcc crystal, the crystal principal axes 
are in the x, y and z directions. In these principal axes, the fcc crystal is a transverse 
isotropic material. From the coordinate system oxyz to the coordinate system 
oxi  ~2x3 there is an in-plane coordinate rotation: 

C O S ~  0 sin4 

-sin+ 0 C O S ~  

After some manipulations, one can verify that the stress vector and the strain 

R = [  0 1 O ] ]  (40) 

where + = 45". 

vector transform as 
G = Qo,, E = QE,, (41) 

where cr and E are the stress and strain vectors respectively in the coordinate system 
0~1~2x3 ,  and cr, and E, are the stress and strain vectors respectively in the principal 
coordinate system oxyz: 

(42) 

(43) 

T T = = ~ ~ 1 I t ~ 2 2 1 ~ 3 3 1 ~ 2 3 1 ~ 3 1 1 ~ 1 2 1  I E = ~~11~221~33tY23lY311Y121 I 

C C  = [ax,, ~ y y 1 ~ 2 2 1 ~ z x 1  a x y l  7 Ec = [Exxt  Eyy1 EL-, Yyz172x1 rxy l  I 
T T 
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46 T. C .  Wang 

C O S ’ ~  o sin2@ o cos4sin4 
1 0 0 0 

sin’$ o cos2@ o -cos$sin4 Q = l  0 0 0 C O S 4  0 
-sin(24) 0 sin(24) 0 cos(24) 

L o  0 0 sind 0 

According to the constitutive law, we have 

(Tc = SE,. 

From the above equations, one obtains 

(T = QSQ~(T s = Q S Q ~ ,  

(45) 

(46) 

where s and S are the elastic compliance tensors of the fcc material in the coordinate 
system O X I X ~ X ~  and principal coordinate system o.xyz respectively. For a fcc crystal, 
the compliance tensor S is 

S =  

Substituting eqn. (44) into eqn. (46) and carrying out some manipulation, we obtain 

s l I  = S l l [ l  + 2 ( p -  1)cos2~s in24] .  

SI2 = S I Z !  

~ 1 3 =  s 1 2 - 2 ( p -  1)cos24s in24SI l ,  
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Dislocation theory of fracture criterion for anisotropic solids 47 

Substituting $ = 45" into the above equation, we find that 

s I ~  = ~ 1 5  = ~ 1 6  = 0, ~ 2 4  = ~ 2 5  = ~ 2 6  = 0, 

334 = 335 = s36 = 0, 

s56 = 0. 

s45 = s46 = s54 = 0, 

Hence in the coordinate system oxIx2x3 the fcc crystal is an orthotropic solid. The 
characteristic equation for the characteristic numbers is 

(48) 
1 

; ( I  + p)p4 + 2pp2 fx = 0. 
The solution is 

1/4 * pl = i ~ - ' / ~ ( n *  + m*), 
p =  in* + m*), 

pz = ix- ( n  - m*), 

p2 =  in* - m*), 
1 Q p Q oo, 

(49) -1 Q p Q 1, 

4.1. Calculation procedure 
The calculation is carried out step by step. Each step has only one dislocation 

emission from the crack tip. At each step, we know the stress intensity factors k l  and 
k2? the local stress intensity factors kyP and k y  and the local stress intensity factors 
K?(M)  and K:'p(M), where A4 indicates the corresponding slip system in which the 
stress intensity factors K l ( M )  and K 2 ( M )  are defined. Now we search the load 
increment at which a dislocation will fully nucleate on the most stressed slip system. 

The stress intensity factors k l  and k2 are referred to as the external loads. The 
load phase angle $Io is defined as 

tan = k l / k 2  (50) 
which also describes the mode mixity. 

For a given load phase angle $Io, we have 

k ,  = tanQo k Z 1  A k l  = tan Qo Ak2 (51) 

Suppose that the external loads increase from k l  and k2 to k l  + A k l  and k2 + Ak2.  
For slip system M ,  the increment A K F ( M )  of the local stress intensity factor 
@ ( M )  is given by 

AKIiP(M)  =A1 Akl +h2 Ak2 = (hl tan$o +h2) Ak21 (52)  
where the coefficients f;i depend on the slip system. The increment A k z ( M )  at 
which a dislocation will fully nucleate at the slip system M can be determined as 
follows: 

Obviously the real load increment (Ak2)0 is given by the lowest value min [ A k 2 ( M ) ] ,  
which corresponds to the most highly shear stressed slip system. During this loading 
process, crack cleavage may occur. Hence we need to check carefully whether or not 
the cleavage according to eqn. (24) will occur at a certain stage. We divide this 
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48 T. C .  Wang 

increment step into 100 substeps. At each substep, we calculate the increments 
AKPP ( M )  and AK:iP ( M )  for each slip system: 

Then the local stress intensity factors of the slip system M can be expressed as 

KiiP ( M )  + AKfiP ( M )  and 

Substituting the above values of the local stress intensity factors into eqn. (24), we 
check whether or not this equation i s  met. If eqn. (24) is met for one slip system at a 
certain stage we make sure that K y p ( M )  is positive; then cleavage should occur on 
this slip system before a new dislocation emission. Then the calculation is finished. 
(In order to obtain a more accurate value of the critical load, one can divide the 
substeps, which are around the critical load, into 100 subsubsteps and then calculate 
again.) If in the whole increment loading process, we cannot find any possibility of 
meeting eqn. (24), a new dislocation will be emitted from the crack tip along the most 
shear stressed slip system Mo.  After this dislocation emission, the local stress inten- 
sity factors are shielded by this emitted dislocation. Hence we obtain 

Kip  ( M )  + AKip ( M )  . 

where the first term of the right-hand side of the above equation is the contribution 
due to the external loading, and the second term is the shielding contribution by the 
emitted dislocation. Then we can start the next load increment. As the sequence is 
repeated, the whole calculation is carried out. 

4.2. Calculation results 
All the results given here are for a fcc aluminium crystal. The material para- 

meters are X = 1.0 and p = 0.72 for the plane-strain case (Suo 1989). 

4.2.1. Case A 

16. The other materials parameters are chosen as 
A typical calculation results for a fcc aluminium crystal are shown in figs. 15 and 

Kl , (M)  = KI,, M = 1,2, .  . . , 6 ,  

(56)  
Kue(M)  = &ier = 1,2,4,5,  

The energy release rate G,/G,,  against load phase angle $o is plotted in fig. 15. 
When 1L0 < 11.4" there is no dislocation emission. The crack cleavage propaga- 
tion occurs along the crack plane without any dislocation emission. When 
11.4" < $I,, < 17.4" there is a number of dislocation emissions along the first slip 
system before crack cleavage extension. The critical energy release rate G,  and the 
total number N of emitted dislocations increase rapidly when 15.0" < q0 < 17.4". 

When 17.5" < +,, < 20.5", crack branching occurs along the second slip plane 
after a number of dislocation emissions along the first slip plane. The critical energy 
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Fig. 15 

P 

I 

t 

0 15 30 45 60 

*O 

75 90 

The non-dimensional critical energy release rate Gc/GIc against load phase angle Go for fcc 
single-crystal aluminium (case A) with pK = 2.5. 

Fig. 16 
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The total number N of emitted dislocations at the onset of the crack cleavage against load 
phase angle $o for fcc single-crystal aluminium (case A) with pK = 2.5. 

release rate G, decreases rapidly with increasing q& in this region. The aluminium 
crystal behaves as a perfect brittle material when 20.6" < $,, < 25.4". When 
25.5" < $,, < 48.0", the fourth slip system is active. The crack branches into the 
second slip plane after a number of dislocation emissions along the fourth slip 
plane. The energy release rate G, reaches the second peak at q0 M 49". The crack 
will still branch into the second slip plane in the region 49" < < 90°, but the 
critical energy release rate C;, will decrease with increasing &,. 

The total number N of emitted dislocations before crack propagation is depicted 
in fig. 16. The tendency is consistent with fig. 15. The higher the total number N ,  the 
higher is the critical energy release rate G,. 
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50 T. C. Wang 

Fig. 17 

0 

30 

The non-dimensional critical energy release rate G,/G,, against load phase angle $0 for fcc 
single-crystal aluminium (case B) with pK = 2.5. 

4.2.2. Case B 
There is an additional in-plane rotation from the coordinate system oxix;x$ 

to the coordinate system 0 . ~ 1 ~ 2 ~ 3  as shown in fig. 14(b). The rotation angle do = 
54-74'. The crack plane is parallel to the first slip plane. When 0" < go < 15.0', there 
is crack brittle propagation along the first slip plane without any dislocation emis- 
sion as shown in figs. 17 and 18. 

When 15.0' < go < 30.0', crack extension occurs in the first slip plane after a 
number of dislocation emissions along the second slip plane. When 31-0" < 
go < 34.4", the first slip plane is active. The crack extends along the first slip 

The total number N of emitted dislocations at the onset of crack cleavage against load phase 
angle .1L0 for fcc single-crystal aluminium (case B) with pK = 2.5. 
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Dislocation theory of fracture criterion for anisotropic solids 51 

plane after a number of dislocation emissions along the first slip plane and the 
second slip plane. Where 34" < qbo, the energy release rate and the total number N 
of emitted dislocations increase rapidly. For example, for q ! ~ ~  = 34.4", G,/GI, = 7107 
and N = 6941. 

As pointed by Zhou et al. (1994) and Xu et al. (1995), the ledge generation has a 
significant effect on dislocation nucleation and emission. In order to evaluate the 
ledge generation effect, we can give up the assumption that all KI,,(M) = KIIe, 
M = 1,2,4,5. For example, we can assume that 

Krc(M) = KI,, M = 1,2 , .  . . , 6 .  

KIIe(M) = h e r  M = 194. (57) 

KIIe(M) = 2&,, M = 2,5. 

The corresponding calculation results are also shown in figs. 17 and 18 (solid 
curve with open triangles). When 0" < qbo < 15.0", the results are the same as the 
results with the assumption that all K I I , ( M )  = KIIe, M = 1,2,4,5. However, when 
15.0" < & the results with the assumption (57) are completely different from the 
results with the assumption (56). The materials become much more brittle since the 
second and the fifth slip systems have a high resistance to dislocation emission along 
these slip planes. One cannot find any dislocation emission along these slip planes 
before crack extension along the cleavage plane (010) in the direction [loll when 
17.0" < q0 < 90.0". Crack branching occurs into the cleavage plane (010) in the 
direction [loll after a number of dislocation emissions along the first slip plane 
when 27.0" < $ J ~  < 90.0". 

4.2.3. Case C 
There is an additional in-plane rotation from the coordinate system oxix;xi to 

the coordinate system oxIx2x3  as shown in fig. 14(b). The rotation angle do = 90". 
The energy release rate G,/GI, against load phase angle $0 is plotted in fig. 19. The 

Fig. 19 

\ 5 s 100 150: 

50 oee++c  pK=2.5  

0 I T - '  I I ' i 

0 15 30 45 60 75 ' 3 

The non-dimensional critical energy release rate G,/G,,  against load phase angle d j 0  for fcc 
single-crystal aluminium (case C )  with p K  = 2.5. 
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Fig. 20 

2000 ,  

500 1 a *- p K = 2 . 5  

0 - 
0 15 30 45 60 7 5  5 D 

The total number N of emitted dislocations at the onset of crack cleavage against load phase 
angle $,, for the fcc single-crystal aluminium (case C )  with p K  = 2.5.  

total number N of emitted dislocations before crack extension is shown in fig. 20. 
The crack branches into the first slip plane without any dislocation emission when 
0" < -t,bo < 9.8". When 9.8" < -t,bo < 39.0" there are a number of dislocation emissions 
along the fifth slip plane before crack branching into the first slip plane. The critical 
energy release rate increases rapidly when 35" < qjo.  When 67" < qjo < 90" the cri- 
tical energy release rate decreases rapidly with increasing Go. The crack branches into 
the cleavage plane (010) in the [I0 I] direction after numerous dislocation emissions 
along the second slip plane and the fifth slip plane. For example, when $o = 75.0", 
crack branching occurs along direction [I011 on the cleavage plane (010) after 2554 
dislocation emissions along the second slip plane and 132 dislocation emissions along 
the fifth slip plane. 

9 5. CONCLUSIONS AND DISCUSSION 
From this study we can draw several conclusions. 

(1) A dislocation theory of fracture criterion for a mixed dislocation emission 
and cleavage process in an anisotropic solid is developed in this paper. The 
explicit formula for the critical condition of crack cleavage in an anisotropic 
solid after a number of dislocation emissions is established. The effects of 
elastic anisotropy, crack geometry and load phase angle on the critical 
energy release rates and the total number of the emitted dislocations at 
the onset of cleavage are analysed. 

(2) The critical energy release rates can increase to one or two magnitudes larger 
than the surface energy owing to the dislocation emission. The ledge gen- 
eration has significant effects not only on the dislocation nucleation and 
emission along an inclined slip plane but also on the competition process 
between dislocation emission and crack cleavage. A typical analysis of ledge 
generation effects for case B has clearly shown that the materials become 
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Dislocation theory of fracture criterion fo r  anisotropic solids 53 

much more brittle since the dislocation emission along inclined slip planes 
has a higher resistance. 

(3) The elastic anisotropy and the crystal orientation have significant effects on 
the critical energy release rates. The anisotropic values can be several times 
larger than the isotropic value in one crack orientation. The values may be as 
much as 40% less than the isotropic value in another crack orientation and 
with another anisotropy parameter. 

(4) The present theory is successfully applied to a fcc single crystal. An edge 
dislocation can be emitted from the crack tip along the most shear stressed 
slip plane. Crack cleavage can occur along the slip plane, in which the energy 
release rate reaches the maximum value, after a number of dislocation emis- 
sions. The calculation clearly shows that the crack orientation and the load 
phase angle have significant effects on the crystal brittle-ductile behaviour. 

Many simplified assumptions have been introduced in the present analyses. The 
dislocation emission actually takes place in the three-dimensional geometry by a 
dislocation loop. The present analyses are only concerned the two-dimensional 
description. The effects of thermal activity of the molecules on the dislocation emis- 
sion and the nonlinear interaction between the shear stress and the normal stress in 
the cohesive zone are neglected here. In order to obtain a better understanding of the 
brittle-ductile behaviour of the crystal, further research is needed. 
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