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A two-point closure strategy in mapping closure approximation(MCA) approach is developed for the
evolution of the probability density function(PDF) of a scalar advected by stochastic velocity fields. The MCA
approach is based on multipoint statistics. We formulate a MCA modeled system using the one-point PDFs and
two-point correlations. The MCA models can describe both the evolution of the PDF shape and the rate at
which the PDF evolves.
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Scalar turbulence exhibits interplays of coherent struc-
tures and random fluctuations over a broad range of spatial
and temporal scales. This feature necessitates a probabilistic
description of the scalar dynamics, which can be achieved
comprehensively by using probability density functions
(PDFs). Therefore, the challenge is to obtain the scalar PDFs
[1–4]. Generally, the evolution of a scalar is governed by
three dynamical processes: advection, diffusion, and reac-
tion. In a PDF approach[4], the advection and reaction can
be treated exactly but the effect of molecular diffusion has to
be modeled. It has been shown[4] that the effect of molecu-
lar diffusion can be expressed as conditional dissipation rates
or conditional diffusions. The currently used models for the
conditional dissipation rates and conditional diffusions[5]
have resisted deduction from the fundamental equations and
are unable to yield satisfactory results for the basic test cases
of decaying scalars in isotropic turbulence, although they
have achieved some success in a variety of individual cases.
The recently developed mapping closure approach[5–11]
provides a deductive method for conditional dissipation rates
and conditional diffusions, and the models obtained can suc-
cessfully describe the shape relaxation of the scalar PDF
from an initial doubled distribution to a Gaussian one. How-
ever, the mapping closure approach is not able to provide the
rate at which the scalar evolves. The evolution rate has to be
modeled. Therefore, the mapping closure approach is not
closed. In this paper, we will address this problem.

The evolution rate of scalar is a key quantity in modeling
turbulent mixing for both conserved and reactive scalars
[12]. It specifies the characteristic time scale of scalar evo-
lution. It has been shown that the decay rate of scalar de-
pends on the relative length scale ratio of the initial scalar
and velocity fields[13–17], and recently, the asymptotic de-
cay of scalar turbulence has been extensively studied
[18–20]. Nearly all existing models for scalar mixing, rang-
ing from the simple(conditional) moment approaches to the
full PDF approaches, require information on the time scales.
These models are mainly based on the assumption of a direct

proportionality between the scalar time scales and the turbu-
lence time scales[21]. Moreover, they exclude the effects of
chemical reaction on the time scales of scalar evolution. The
mapping closure approach of time-dependent reference fields
[8] can provide the time scale externally, which highlights an
attack line to this problem.

We develop here a mapping closure approximation
(MCA) approach for the time scale of scalar evolution. In the
classic mapping closure approach[5,7], the mapping func-
tion is constructed at the level of one-point PDFs. It is not
able to provide the information on two-point statistics, such
as the time scales. In the MCA approach, the mapping func-
tions are constructed at the levels of multipoint statistics. The
mapping function based on the two-point correlations could
provide the necessary information on time scales.

We consider the simple case of a reactive scalar advected
by a stochastic velocity field

] w

] t
+ u · = w = G¹2w + Qswd, s1d

where the velocity fieldu is incompressible, homogeneous,
and isotropic;G is a molecular diffusivity andQswd mimics a
one-species chemical reaction.

In the MCA approach, a surrogate field is introduced by
the mapping of a known random field

wssx,td = Xfusx,td,tg. s2d

Here, the known random fieldusx ,td is taken as a Gaussian
reference field. Its one-point and two-point joint PDFs are
defined by

g1shd =
1

Î2p
expF−

h2

2
G , s3d

g2sh1,h2,r,td ; g2fh1,h2,rsr,tdg
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rsr,td = kusx,tdusx + r ,tdl, s5d

andr is the magnitude of separation vectorr . The one-point
and two-point PDFs of the surrogate field can be calculated
as follows:

f 1
ssc,td = g1shdF ] Xsh,td

] h
G−1

, s6d

f 2
ssc1,c2,r,td = g2sh1,h2,r,tdF ] Xsh1,td

] h1

] Xsh2,td
] h2

G−1

.

s7d

It is ideal that the surrogate field could represent both
one-point and two-point joint PDFs, f1sc ,td and
f2sc1,c2,r ,td, of the scalar field. However, for the present
purpose on time scales, the surrogate field is only required to
represent the one-point PDF and two-point correlation

f1sc,td = f 1
ssc,td, s8d

E
−`

` E
−`

`

f2sc1,c2,r,tdc1c2dc1dc2

=E
−`

` E
−`

`

f 2
ssc1,c2,r,tdc1c2dc1dc2. s9d

The above constraints will be used to determine the mapping
function X and the correlationr. Therefore, the PDF
f 2

ssc1,c2,r ,td thus obtained is an approximation to the sca-
lar PDF f2sc1,c2,r ,td.

In the classic mapping closure approach[5,7], the map-
ping functionX is only required to represent the one-point
PDF of the scalar via Eqs.(6) and(8). Differentiating Eq.(6)
with respect tot yields

] f 1
s

] t
+

]

] c
F f 1

s] X

] t
G = 0. s10d

Meanwhile, the transport equation for the one-point PDF,
f1sc ,td, can be derived by the test function method[22,23]
as

] f1

] t
+

]

] c
ff1kG¹2w + Qswduclg = 0. s11d

Thus, comparing two Eqs.(10) and(11) with the substitution
of Eqs.(2) and (8), we obtain

] X

] t
= Gk¹2wuw = Xsh,tdl + Qswd. s12d

The conditional moment in Eq.(12) can be evaluated from
the mapping function(2) and the Gaussianity(3) and (4) of
the reference fieldu [24]. As a result, the transport equation
for the mapping function(2) becomes

] X

] t
= − Cr9s0,tdGF ]2X

] h2 − h
] X

] h
G + QsXd. s13d

It is easily shown from the Gaussianity(3) and (4) that
ks¹ud2l=−Cr9s0,td, where C=2 for a two-dimensional

physical space andC=3 for a three-dimensional physical
space. Equation(13) has been obtained in Ref.[7], where
−Cr9s0,td is represented by the varianceks¹ud2l. However,
the correlationrsr ,td in Eq. (13) still remains unknown and
has to be input externally. For example, it is set using the
results from direct numerical simulation in Ref.[7]. There-
fore, Eq.(13) is unclosed.

The two-point correlationrsr ,td cannot be obtained from
the one-point PDFg1shd. Rather, it has to be calculated from
the two-point statistics. Hence, we propose to invoke the
two-point correlation(9), which is not used in the classic
mapping closure approach. By differentiating Eq.(7) with
respect tot, we obtain

] f 2
s

] t
+

]

] c1
F f 2

s] X1

] t
G +

]

] c2
F f 2

s] X2

] t
G =

f 2
s

g2

] g2

] t
. s14d

The transport equation for the two-point joint PDFf2 can be
derived from the test function method[22,23],

] f2

] t
+ ¹r · ff2ksu2 − u1duc1,c2lg

=
]

] c1
ff2kG¹2w1 + Qsw1duc1,c2lg

−
]

] c2
ff2kG¹2w2 + Qsw2duc1,c2lg. s15d

Multiplying the difference of Eqs.(14) and(15) by c1 and
c2 and then taking the integration of the result with respect
to c1 andc2 with substitution of Eq.(9), we obtain

E E S f 2
s

g2

] g2

] t
+ =r · ff 2

sksu2 − u1duc1,c2lg −
]

] c1
ff 2

sH1g

−
]

] c2
ff 2

sH2gDc1c2dc1dc2 = 0, s16d

where Hk=Gk¹2wkuckl−Gk¹2wkuc1,c2l can be also evalu-
ated using the mapping function(2) and the Gaussianity(3)
and (4) of the reference fieldu [24]. Substituting Eqs.(2),
(4), and (7), into Eq. (16), we obtain the transport equation
for rsr ,td as follows:

] rsr,td
] t

+ ¹r · ksu1 − u2dX1X2lK ] X1

] h1

] X2

] h2
L−1

= 2GFr9sr,td +
r8sr,td

r
− Crsr,tdr9s0,td + r82sr,td

3K ]2X1

] h1
2

]2X2

] h2
2LK ] X1

] h1

] X2

] h2
L−1G . s17d

Equations(13) and (17) form a closed system for the
mapping function, where Eq.(13) describes the evolution of
the shape of the mapping function and Eq.(17) specifies the
rate at which the mapping function evolves. In Eq.(17), the
second term on the left-hand side corresponds to advection,
the first three terms on the right-hand side correspond to
diffusion and the last term on the right-hand side corresponds
to the effect of nonlinear mapping. The last term vanishes if
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the mapping function is linear. We note thatrsr ,td is the
correlation function of the reference field and is dependent
on the mapping function.

The u term in Eq.(17) can be treated by the direct inter-
action or the perturbation method. The model obtained is
exact for the conserved scalar advected by a stochastic deco-
rrelated time velocity field. For lack of space, we only give
the result as follows:

¹r · ksu1 − u2dX1X2l = hijsr ,td
]2

] r i ] r j
kXfusx,td,tg

3Xfusx + r ,td,tgl, s18d

where

hijsr ,td = 2E
0

t

kuisx,tdfujsx,td − ujsx + r ,t + sdglds.

s19d

The model for theu term in Eq.(17) can be also obtained
using the scalar-velocity joint PDFs[4].

The realizability condition of Eq.(17) is ursr ,tduø1. For
the pure diffusion processes with the initial Gaussian distri-
butions of positive correlations, the diffusion termr9sr ,td
+r8sr ,td / r and the damping term −Cr9s0,tdrsr ,td decrease
the amplitudes of the correlationrsr ,td, so that the solution
of Eq. (17) is realizable.

The mapping equation(13) is closed using the two-point
statistics constraint(9), from which the correlation equation
(17) is derived. Another possibility for the closure is to use
the constraint of the joint PDF for the scalar and its deriva-
tive [7], which leads to an unclosed equation forrs0,td and
its spatial derivatives. It points to another direction to go
beyond the one-point mapping(2) for different purpose.

The performance of the MCA models(13) and (17) are
evaluated against the direct numerical simulations(DNS) of
the three basic test cases: diffusion equations, diffusion-
reaction equations, and advection-diffusion equations. Equa-
tion (1) and the MCA models(13) and (17) are numerically
solved in a cyclic square of side 2p, using second-order
Adams-Bashforth scheme in time and fourth-order central
finite-difference scheme in space. In all the cases, the nondi-
mensional molecular diffusivityG=0.01. Boundary condi-
tions are periodic in space, except that the ones in the direc-
tion of the reference field are obtained by extrapolation. The
initial fields for (1) are double-d distributions or isotropic
Gaussian distributions with their energy spectraEwskd
~k−17/3. Thus, the initial mapping for Eq.(13) and the initial
correlation for Eq.(17) can be calculated from their defini-
tions. The velocity field is a given homogeneous isotropic
Gaussian process, decorrelated in time[23], with spectrum of
the form Eskd~k−5/3. In order to isolate the effects of the
MCA models on diffusivity and reaction, the advection term
in Eq. (17) are calculated directly from the DNS without
invoking any models.

Figure 1 compares the evolutions of the variance
kw2sx ,tdl and the PDFf1sc ,td obtained from Eq.(1) with
those from the MCA models(13) and (17) for the diffusion
equation:u=0 and Q=0. The initial condition is set as a

double-d distribution. The results illustrate that the MCA
models represent the relaxation of the double-d PDF to the
Gaussian PDF not only in its shape but also at the correct
rate of evolutions.

In Fig. 2, the scalar variance and dissipation rate are plot-
ted for the diffusion-reaction equation:u=0 and Qswd
=−20wuwu, with the initial Gaussian distribution. The scalar
dissipation rate is an important quantity for the mixing mod-
els [4]. The MCA model are also in agreement with the DNS
results. It shows that the MCA models can represent the ef-
fects of both diffusion and reactions.

Further comparisons are made in Fig. 3 for the advection-
diffusion equation with the same initial condition as used in
Fig. 2, where the Péclet number is about 101. Evidently, the
MCA models can predict the scalar decay rates. They can
still make a good approximation for the higher Péclet num-
ber of order 102 attained in our numerical simulations.

FIG. 1. The scalar variance as a function of time for the diffu-
sion equation: the solid line is from the MCA model and the squares
are from DNS. The inset shows the scalar PDFs: the solid, dashed
and dash-dotted lines are from the MCA model att=0.05,0.15, and
0.5, respectively, and the circles, squares, and triangles are from
DNS at the corresponding times.

FIG. 2. The scalar variance and dissipation rate(inset) as the
functions of time for the reaction-diffusion equation: the solid line
is from the MCA model and the squares are from DNS.
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A two-point closure strategy in the MCA approach is de-
veloped for modeling scalar mixing in a stochastic velocity
field. It differs from the classic mapping closure approach in
that the MCA approach makes use of two-point statistics to

determine the time-evolving correlations of the reference
fields and thus the scalar fields. Unlike usual treatments in
the Bogoliubov-Born-Green-Virkwood-Yvon hierarchy[25],
where the representations are specifieda priori, the represen-
tations in the MCA hierarchy are allowed to evolve in coor-
dinate with the dynamics of scalar mixing. Especially, the
MCA models obtained are completely closed for the diffu-
sion equations, the diffusion-reaction equations and the
advection-diffusion equations of stochastic decorrelated ve-
locity fields. The results from the MCA models are in agree-
ment with the DNS results for the above three basic test
cases. The approach is under further development for more
complex situations including multiscalar mixing and inho-
mogeneous scalar fields, using time-evolving Gaussian or
non-Gaussian reference fields.
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FIG. 3. The scalar variance as a function of time for the
advection-diffusion equation: the solid line is from the MCA model
and the squares are from DNS. The inset shows the scalar PDFs: the
solid, dashed, and dash-dotted lines are from the MCA model att
=0,0.05, and 0.3, respectively, and the circles, squares, and tri-
angles are from DNS at the corresponding times.
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