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The effectiveness of Oliver & Pharr’s (O&P’s) method, Cheng & Cheng’s (C&C’s)
method, and a new method developed by our group for estimating Young’s modulus
and hardness based on instrumented indentation was evaluated for the case of yield
stress to reduced Young’s modulus ratio (�y/Er) � 4.55 × 10−4 and hardening
coefficient (n) � 0.45. Dimensional theorem and finite element simulations were
applied to produce reference results for this purpose. Both O&P’s and C&C’s methods
overestimated the Young’s modulus under some conditions, whereas the error can be
controlled within ±16% if the formulation was modified with appropriate correction
functions. Similar modification was not introduced to our method for determining
Young’s modulus, while the maximum error of results was around ±13%. The errors
of hardness values obtained from all the three methods could be even larger and were
irreducible with any correction scheme. It is therefore suggested that when hardness
values of different materials are concerned, relative comparison of the data obtained
from a single standard measurement technique would be more practically useful. It is
noted that the ranges of error derived from the analysis could be different if different
ranges of material parameters �y/Er and n are considered.

I. INTRODUCTION

Instrumented indentation was primarily invented for
measuring elastic modulus and hardness of solids.1,2 An
analysis normally starts from recording load and dis-
placement data, from which the loading and unloading
curves are drawn. This step can be accomplished accu-
rately with the use of many commercial instrumented
indentation systems. Obviously, the shape of the curves
should reflect the deformation process, and they are ex-
pected to carry the information on the mechanical prop-
erties of the indented material. However, some key pa-
rameters required for calculating the Young’s modulus
and hardness of the tested material are not directly avail-
able from the raw data. One example is the contact depth

(or contact area) required for calculating the hardness
value based on its primary definition. For this reason, a
theoretical model is usually applied to establish some
analytic formulation to correlate the apparent features of
the loading and unloading curves with those parameters
required. Since a theory is hardly ideal to suit all real
cases, the methods developed from this route of thought
are supposed to have various degrees of uncertainty.
Based on this consideration, we suppose that there is a
need to evaluate the effectiveness of some most popu-
larly used methods in this area of study.

This article reports the evaluation of the effective-
ness of three representative methods, i.e., Oliver &
Pharr’s (O&P’s) method,3–5 Cheng & Cheng’s (C&C’s)
method,6–10 and a method recently developed by our
group.11–13 Section II summarizes the formulations as-
sociated with these approaches. Section III describes
the details of the finite element analysis carried out in
this study for simulating indentation processes made on
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hypothetical materials of different mechanical properties.
In Secs. IV and V, the numerical results obtained from
the finite element analysis are referred to for evaluating
the effectiveness of the three methods. It was found that
the Young’s modulus and hardness values deduced from
the three methods could deviate markedly from the ref-
erence values under some conditions. A remedial scheme
was proposed to diminish the error in estimating Young’s
modulus. Similar observations and discussion were con-
ducted for the investigations of the hardness value.

II. SUMMARY OF REPRESENTATIVE METHODS

According to O&P’s method,3–5 reduced Young’s
modulus Er, and hardness H are expressed as follows

Er =
��

2�

Su

�A�hcm�
, (1)

H = Pm�A�hcm� , (2)

where Pm is the peak load, hcm and Su are the maximum
contact depth and initial unloading stiffness at Pm, A(hcm)
is the projected contact area measured at hcm, and �
an indenter geometry shape factor. Young’s modulus
E of a material is calculated from 1/Er = (1 − �2)/
E + (1 − �i

2)/Ei, where � and �i are the Poisson’s ratios of
the indented material and indenter, and Ei is the elastic
modulus of the indenter.

Depth-sensing indentation does not directly give the
results of hcm and A(hcm), though they are required for
calculating Er and H according to Eqs. (1) and (2). Sned-
don suggested that hcm should be associated with elastic
deformation at the peak load �Pm/Su with � � 0.75 for
paraboloid revolution indenter, such that3,14

hcm = hm − 0.75Pm�Su , (3)

where Su is the initial slope of the unloading curve. The
value of hcm obtained in this way is just an indirect
estimate, whereas any error induced would eventually
propagate to the final results of E and H.

In C&C’s method, the work done associated with the
recovery of elastic deformation during unloading We, and
the total work done during loading W are calculated from
the areas under the unloading and loading curves.6,7 The
ratio We/W is found to correlate with H/Er through a
functional relationship, which can be expressed in an
implicit form of

H�Er = f �We�W� . (4)

The discovery of this new relationship eliminates the
need of knowing hcm as in O&P’s method. A set of
formulation is then established by eliminating A(hcm)

from Eqs. (1) and (2), and combining with Eq. (4) to
solve for Er and H, where A(hcm) does not appear:

Er =
�

4�2 f�We�W�
Su

2

Pm
, (5)

H =
�

4�2 �f�We�W��2
Su

2

Pm
. (6)

In another method recently developed by our group,11–13

a new quantity named “nominal hardness” was intro-
duced, which was defined as Hn ≡ Pm/A(hm). Its defini-
tion is fundamentally different from the conventional
hardness H, since its denominator is the area measured at
hm but not hcm. The distinctive feature accompanying
such a definition is that Hn is an accurately determinable
quantity, since both Pm and hm are accurately measurable
in a standard depth-sensing indentation test. Based on
dimensional analysis and finite element analysis for ide-
ally sharp conical indenter shape, it is found that a func-
tional relationship between Hn/Er and We/W exists, and is
expressible implicitly as

Hn�Er = � �We�W� . (7)

The advantage of this approach is immediately seen, be-
cause Er can now be expressed as

Er = Hn�� �We�W� . (8)

The parameters related to the right hand side (i.e., Pm,
hm, We, and W) are all accurately measurable in a stan-
dard indentation test. Provided that the explicit form of
�(We/W) can be derived by some means, such as preci-
sion finite element simulation, in principle the value of Er

determined from Eq. (8) would more truly reflect the
actual value. Similar comments are also applicable to the
determination of conventional hardness, which expres-
sion is obtained by combining Eqs. (4) and (7):

H = � f�We�W�

� �We�W��Hn . (9)

III. FINITE ELEMENT SIMULATION OF
INSTRUMENTED INDENTATION

Numerical simulations of mechanical response in hy-
pothetical indentation tests were conducted. The purpose
was to produce reference values to be used in evaluating
the effectiveness of the three said methods. A commer-
cial finite element code ABAQUS15 was used. The pack-
age is well-known of its spectacular ability in handling
problems of large deformation and strong nonlinearity.
Calculations were performed within the framework of
continuum mechanics. In particular, in the finite element
simulations, four-node axisymmetric elements are used,
and the size of the elements in contact with the indenter
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is small enough to ensure that at least 30 nodes are in
contact with the indenter. The indenter was assigned to
have an ideally sharp conical shape with a half-included
angle of 70.3°, which gave the same area-to-depth ratio
as that of the ideal Berkovich geometry.

The indented material was assumed to behave as an
isotropic and rate-independent solid, obeying the Von
Mises yield criterion and pure isotropic hardening rule.
The uniaxial stress–strain relation is assumed to be a
combination of linear elasticity and Hollomon’s power
law hardening in the form of

� = �E � , � � �y

�y����y�n , � 	 �y

, (10)

� and � are the true stress and true strain; and �y and
�y � �y/E where the yield stress and yield strain. The
contact interface was assumed to be frictionless.

We first prove an assertion which will be repetitively
used in further analysis. It states that an arbitrary dimen-
sionless quantity related to an indentation test can be
expressed as a function of �y/Er and n, or alternatively as
a function of We/W and n. At present, we designate such
a quantity as Q, which could be used to refer to �y/Er,
We/W, H/Er, Hn/Er, and so on. To prove the assertion, one
acknowledges that any Q must be a function of the elas-
toplastic properties (E, 
, �y, n) of the indented material,
the elastic properties (Ei, 
i) of the indenter and maxi-
mum displacement hm. Therefore, it can be expressed
implicitly as

Q � fQ (E, 
, �y, n, Ei, 
i, hm) . (11)

According to Dao et al.,16 the number of independent
variables can be reduced by introducing Er, which com-
bines all the elasticity effects from the indenter and in-
dented material. As such, Eq. (11) is simplified as:

Q = fQ (�y, n, Er, hm) . (12)

By applying the � theorem of dimensional analysis, two
more independent variables can be removed. Con-
sequently, the implicit expression of Q is further simpli-
fied as

Q � �Q (�y /Er, n) . (13)

Considering that We/W is a dimensionless quantity,
Eq. (13) is also applicable to We/W:

We/W � �W (�y/Er, n) . (14)

Alternatively, �y/Er can be expressed in terms of We/W
and n:

�y/Er � �W1 (We/W, n) . (15)

By substituting Eq. (15) into Eq. (13) to remove �y /Er,
the expression of Q becomes

Q � �Q [�W1 (We/W, n), n] � Q (We/W, n) .
(16)

The above steps only illustrate the existence of the
Eqs. (11)–(16). In practice, explicit relationships are re-
quired in real analysis and must be derived in detail by
some means. The first explicit function required in this
study is the numerical dependence of We/W on �y/Er and
n, namely Eq. (14). Some more will be required and
introduced in subsequent parts of discussions. We ap-
plied finite element simulations to produce the explicit
forms of these functions, with �y/Er and n being the
parameters to vary in broad ranges. Consider the dimen-
sionless ratio �y/Er first. Its value is conveniently varied
by scanning �y over some range with Er fixed at a certain
value. Recalling that 1/Er = (1 − 
2)/E + (1 − 
i

2)/Ei, the
two parameters Ei and 
i can be dropped first by assum-
ing that the indenter is rigid. By setting E � 70 GPa,

 � 0.3, and hm � 1 �m, the value of Er was specified
to be E/(1 − v2) � 76.923 GPa. Thereafter, this value is
denoted as Er

t and is referred to as the “true” reduced
Young’s modulus (more other reference values will be
introduced subsequently for the purpose of comparing
with the corresponding calculated results, and they will
be designated by a superscript t). It is used to compare
with the Er values deduced from Eqs. (1), (5), and (8) to
evaluate the effectiveness of the three methods con-
cerned. The setting of its absolute value would not affect
the conclusion of the evaluation. �y was assigned by one
of the fourteen values of 0.035, 0.140, 0.350, 0.700,
1.400, 2.100, 2.800, 3.500, 4.550, 5.600, 7.000, 10.500,
14.000, and 17.500 GPa. n is assigned by one of the four
values, namely 0, 0.15, 0.3, and 0.45. As such, there were
totally 56 different combinations of the two parameters
in the calculations. The detailed features of the mesh are
described elsewhere.11,17 A sensitivity study proceeded
by reducing the mesh size by one half showed that the
calculated peak load would not deviate from the original
result by more than 0.6%, confirming that the original
mesh size adequately models the hypothetical conical
indentation on semi-infinite solid.

IV. EVALUATION OF THE THREE METHODS
USED FOR ESTIMATING YOUNG’S MODULUS

A. O&P’s method

We first inspect the results of Er deduced from O&P’s
method. For a certain combination of �y and n, a set of
loading and unloading curves was produced from nu-
merical simulation, and hence the values of Pm and Su

were determined. They were used to estimate hcm from
Eq. (3), meanwhile, � was set to be 1.096 according to
Dao et al.’s suggestion.16 The contact area for an ideally
sharp conical indenter with a half-included angle of 70.3°
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was calculated to be A(hcm) � 24.5 hcm
2. The value of

Er was then estimated from Eq. (1). A dimensionless
quantity Q1 ≡ Er/Er

t was thus defined, and according to
Eq. (16), it should be expressible with a function
Q1 (We/W, n)

Q1 = ���

2�

Su

�A�hcm�
��Er

t = Q1 �We�W, n� .

(17)

If O&P’s method works properly for all materials, Q1

should be constantly close to 1 disregarding the variation
in �y and n [or equivalently We/W and n according to
Eq. (14)]. Figure 1 shows how the results of Er/Er

t depend
on different combinations of We/W and n. In the region of
We/W < 0.25, Q1 is obviously larger than 1, except some
points of n � 0.45. This indicates that in low We/W
region, Er tends to be overestimated by O&P’s method.

One possible reason for the overestimation of Er is that
hcm [hence A(hcm)] is underestimated. To elucidate
this possibility, we refer to another dimensionless ratio
Q2 ≡ hcm/hcm

t, where hcm
t is the “true” contact depth

determined from the simulations. According to Eq. (16),
hcm/hcm

t can be expressed by a function Q2 (We/W, n),
where

Q2 = �hm − 0.75Pm�Su��hcm
t = Q2�We�W, n� .

(18)

Figure 2 shows that at low We/W region, Q2 (We/W, n)
are lower than 1, except some data points of n � 0.45.
This observation is consistent with the results of some
previous studies.18–20 Another possible reason for the
overestimation of Er is that the indenter shape factor � in
Eq. (1) is a variable but not a constant. Its value is un-
derestimated in low We/W region. If this conjecture is
correct, the “true” value of � (denoted as �t) can be

attained by replacing hcm and Er with hcm
t and Er

t in
Eq. (1), such that

�t = ���

2

Su

�A�hcm
t�
��Er

t . (19)

Being a dimensionless quantity, Eq. (16) is applicable
to �t, expecting that it is equal to a function like �

(We/W, n)

�t = ���

2

Su

�A�hcm
t�
��Er

t = ��We�W, n� .

(20)

Figure 3 shows the numerical results of �(We/W, n) for
different combinations of We/W and n. As expected, �t

behaves as a variable rather than a constant. It deviates

FIG. 1. Plots of numerical results of Q1 (We/W, n) ≡ Er/Er
t; and Q1C

(We/W, n) ≡ ErC /Er
t obtained from O&P’s method.

FIG. 2. Plot of numerical results of Q2 (We/W, n) ≡ hcm/ hcm
t obtained

from O&P’s method.

FIG. 3. Plot of numerical results of � (We/W, n) ≡ �t.
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more markedly from the preset value 1.096 when
We/W < 0.25.

The error in estimating Er is considered to be suppress-
ible by multiplying the following correction function to
Eq. (1):

Fc(We/W) � (�/1.096) (We/W)0.04 . (21)

The expressions of Er and Q1 are thus modified and
denoted as ErC and Q1C � ErC /Er

t thereafter, which can
be written as:

ErC = ���

2�

Su

�A�hcm�
� � �

1.096� �We�W�0.04

= ���

2.192

Su

�A�hcm�
� �We�W�0.04 , (22)

Q1C = ���

2.192

Su

�A�hcm�
� �We�W�0.04�Er

t

= Q1C�We�W, n� . (23)

We note that other values of � in Eq. (1) may be used by
different authors, but according to our correction scheme,
after multiplying Fc(We/W) to Eq. (1), the factor � is
cancelled and would not appear in Eqs. (22) and (23).
Instead, only a constant factor of 1.096 is seen in the
equations. Figure 1 shows the calculated values
of Q1C, which indicate that the error band is confined
within ±16% after our correction scheme is used.

B. C&C’s method

Applying Eq. (16) again, the dimensionless quantity
H/Er is expressible as a function like H(We/W, n):

H/Er � H (We/W, n) . (24)

Figure 4(a) shows the explicit form of H (We/W, n)
obtained from hypothetical simulations. Details in the
range of We/W � 0.3 are exaggerated and shown in
Fig. 4(b). The presence of a function form between H/Er

and We/W is strongly evident, which is regressed by a
polynomial of

H�Er = f�We�W� = �
i=1

6

ai�We�W�i . (25)

The coefficients of the terms are determined to be a1 =
0.14736, a2 = 0.15960, a3 = −0.23052, a4 = 0.12656,
a5 = 0.18514, and a6 = −0.19733.

Let Q3 ≡ Er/Er
t to be equal to the right side of Eq. (5)

divided by Er
t. It is also dimensionless and so can be

expressed as a function like Q3 (We/W, n):

Q3 = � �

4�2 f�We�W�
Su

2

Pm
��Er

t = Q3�We�W, n� .

(26)

Figure 5 shows the numerical results of Q3 (We/W, n). In
the region of We/W below 0.25, most of the data points
are higher than 1, except those of n � 0.45. This indi-
cates that the deduced Er values are overestimated in this
region. One reason of the overestimation is that the in-
denter shape factor � is assumed to be a constant in the
calculations, but it could actually be a variable increasing
with decreasing We/W. If so, the error would be magni-
fied in the form of �2 as shown in Eq. (26). The ultimate
cause of the error may be based on the fact that the
functional relationship Eq. (25) is just approximately cor-
rect but not reflecting all the features of the real case.

The error in estimating Er with C&C’s method can be

FIG. 4. (a) Functional relationship between H/Er and We/W and
(b) exaggeration in the range of We/W � 0.3 used in C&C’s method.
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suppressed by multiplying a correction function to
Eq. (5), which is suggested to have the form of

Fc(We/W) � (� /1.096)2 (We/W)0.04 . (27)

This procedure modifies Eqs. (5) and (26) to result in the
following formulas:

ErC = � �

4�2 f�We�W�
Su

2

Pm
� � �

1.096�2

�We�W�0.04

= � �

4.8049
f�We�W�

Su
2

Pm
��We�W�0.04 , (28)

Q3C = � �

4.8049
f�We�W�

Su
2

Pm
� �We�W�0.04�Er

t

= Q3C�We�W, n� . (29)

The data points of Q3C are shown in Fig. 5 to compare
with Q3, where the error band of the estimated reduced
Young’s modulus is found to fall within ±16%.

C. Our method

Since Hn/Er is a dimensionless quantity, so that from
Eq. (16), it is ascertained that there must be a function
Hn (We/W, n) such that

Hn/Er � Hn (We/W, n) . (30)

Figure 6(a) shows the numerical results of Hn (We/W, n).
Details in the region of We/W � 0.3 is exaggerated in
Fig. 6(b). From the figure, the functional dependence of
Hn/Er on We/W is strongly evident. The data can be re-
gressed by using a polynomial in the form of

Hn�Er = ��We�W� = �
i=1

6

bi�We�W�i . (31)

The coefficients of the terms are determined to be

FIG. 6. (a) Functional relationship between Hn/Er and We/W and
(b) exaggeration in the range of We/W � 0.3 used in our method.

FIG. 7. Plot of numerical results of Q4 (We/W, n) ≡ Er/Er
t obtained

from our method.

FIG. 5. Plots of numerical results of Q3 (We/W, n) ≡ Er/Er
t; and Q3C

(We/W, n) ≡ ErC /Er
t obtained from C&C’s method.
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b1 � 0.18408, b2 = −0.24835, b3 � 0.50721,
b4 � −0.86118, b5 � 0.75187, and b6 = −0.25388.

We compared the result of a special case of We/W � 1
with that reported by Hay et al.21 This corresponds to

conical indentation made on a linear elastic material.
They interpreted the introduction of factor � in Eq. (1) as
a correction of Sneddon’s solution. Assuming that the
indenter was rigid and from simple geometry, an alter-
native expression of Eq. (1) was given as

Pm = �
2

�

E

1 − 
2 hm
2 tan� ,

which further led to

Hn�Er = �
2

�

tan �

24.5
.

For the case concerned, they gave a � of 1.065, such that
Hn/Er � 0.07729, which was slightly lower than our
result of 0.07975 by not more than 3%.

Dividing the right hand side of Eq. (8) by Er
t, one

obtains a dimensionless ratio Q4 ≡ Er/Er
t, which can be

written as

Q4 = �Hn�� �We�W���Er
t = Q4 �We�W, n� .

(32)

Figure 7 shows the numerical results of Q4 (We/W, n)
for different combinations of We/W and n, where the data
points do not converge towards one in the low We/W

FIG. 8. Plot of numerical results of Q5 (We/W, n) ≡ H/H t obtained
from O&P’s method.

FIG. 9. Numerical results of function Q6 (We/W, n) ≡ H/H t obtained
from C&C’s method.

FIG. 10. Numerical results of function Q7 (We/W, n) ≡ H/H t obtained
from our method.

TABLE I. The Er/Er
t values estimated from the three methods by using the data given in Alkorta et al.22 Poisson’s ratio is set to be 0.2.

n E (MPa) Er (MPa) �y (MPa) �y/Er Er/Er
t (O&P’s) Er/Er

t (C&C’s) Er/Er
t (ours)

0 10160 10583.33 10.16 9.60 × 10−4 1.3718 1.3933 1.1130
0.1 11072.36 11533.71 5.483678 4.7545 × 10−4 1.2465 1.2172 1.0513
0.2 11981.13 12480.34 2.974937 2.3837 × 10−4 1.1805 1.1754 0.9763
0.3 12767.38 13299.36 1.406929 1.0579 × 10−4 1.1138 1.1201 0.9117
0.4 13368.42 13925.44 0.551738 3.9621 × 10−5 1.0237 1.0104 0.8538
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region. We suggest that the functional relationship be-
tween Hn/Er and We/W [Eq. (31)] is still an approximate
one but not accurate enough to reflect the details of all
real cases. Unlike O&P’s and C&C’s methods, no cor-
rection scheme can be suggested to give further modifi-
cation of the effectiveness of our method, while the error
in estimating Young’s modulus can still be controlled
within ±13%.

We made use of the data reported by Alkorta et al.22 to
examine the present results. The finite element results for
estimating the reduced Young’s modulus are given in
Table I of their paper, where the S/hmax data should be
divided by a factor of 109 to convert them in the unit of
MPa. The ratios of Er to the assigned Er

t derived from the
three methods concerned are listed in Table I. We notice
that the only data point obtained from our method falling
outside the predicted error band is for the case of
�y/Er �3.962 × 10−5 and n � 0.4 (i.e., −17%), whereas
such conditions have exceeded far beyond the scope of
the present discussion, i.e., �y/Er � 4.55 × 10−4 and
n � 0.45. As such, the prediction of the error band of the
method may no longer be valid.

V. EVALUATION OF THE THREE METHODS
USED FOR ESTIMATING HARDNESS

Let H t � Pm/A(hcm
t) be the “true” hardness value. Q5,

Q6 and Q7 are obtained by dividing the right sides of
Eqs. (2), (6), and (9) by H t, respectively:

Q5 = �Pm�A�hcm���H t = Q5 �We�W, n� , (33)

Q6 = � �

4�2 �f�We�W��2
Su

2

Pm
��H t = Q6 �We�W, n� ,

(34)

Q7 = �� f�We�W�

� �We�W�� Hn� �Ht = Q7�We�W, n� .

(35)

Figures 8–10 show the numerical results of these func-
tions. The data points are diversified in the range of
We/W < 0.25, where the error bands are much broader
than those of the Er data. Based on this observation, we
decide not to introduce any correction scheme, since the
accuracy of estimating hardness would not be further
improved with this approach. The above results retain the
general viewpoint that “hardness” should be regarded as
a practical indicator rather than a fundamental property
of a solid. However, hardness is so important for reflect-
ing the elastic and plastic behaviors of a substance, so
even though there is no unified measurement standard
at present, but relative comparison of hardness values
of different materials is still highly desired in many prac-
tical circumstances for material selection. One simple

solution to satisfy this need is to refer to one single
measurement method, such as O&P’s, because of its
popularity in this area.

Finally, it should be pointed out that there have been
new attempts in developing techniques for investigating
accurate plastic properties of materials.23,24 One ap-
proach is to use two conical indenters of different half-
included angles to perform depth-sensing indentation
tests. Results may help to extract the yield stress and
hardening behavior of the indented material. Obviously,
understanding overall plastic behaviors should be more
important than merely determining the hardness value.
However, the related techniques are expected to be more
complicated, and the validation of the methodology
would require much more effort.

VI. CONCLUSIONS

In this study, we evaluated the effectiveness of O&P’s
method, C&C’s method, and a method recently devel-
oped by our group in determining Young’s modulus and
hardness based on instrumented indentation tests for the
case of yield stress to reduced Young’s modulus ratio
�4.55 × 10−4 and hardening coefficient �0.45. Dimen-
sional theorem and finite element simulations were con-
ducted to produce standard reference results for this pur-
pose. Results show that both O&P’s method and C&C’s
method tend to overestimate the reduced Young’s modu-
lus in the range of We/W < 0.25. After introducing differ-
ent correction functions in the forms of Eqs. (21) and
(27), errors are suppressed to within ±16%. For our
method, no correction procedure is recommended, while
the error band is narrower, i.e., ±13%. For hardness
measurements, the error bands of results deduced from
all the three methods in the range of We/W < 0.25 are
much broader than those of the Young’s modulus meas-
urements. Since the estimated hardness obtained in this
range deviates so markedly from the “true” value, it ap-
pears to be less meaningful to introduce any artificial
correction scheme for diminishing the errors. It is thus
suggested that relative comparison of hardness data pro-
duced from the same standard technique is more pre-
ferred. O&P’s method is a good choice to serve for this
purpose because of its popularity in this area of applica-
tions. It is finally noted that the ranges of error derived
from the analysis could be different if different ranges of
material parameters �y/Er and n are considered.
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