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Direct Numerical Simulation of a Spatially Evolving Supersonic Turbulent
Boundary Layer at Ma =6 *
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Direct numerical simulation is carried out for a spatially evolving supersonic turbulent boundary layer at free-
stream Mach number 6. To overcome numerical instability, the seventh-order WENO scheme is used for the
convection terms of Navier—Stokes equations, and fine mesh is adopted to minimize numerical dissipation. Com-
pressibility effects on the near-wall turbulent kinetic energy budget are studied. The cross-stream extended
self-similarity and scaling exponents including the near-wall region are studied. In high Mach number flows, the
coherence vortex structures are arranged to be smoother and streamwised, and the hair-pin vortices are less likely

to occur.

PACS: 47.27.Eq, 47.27. Nz, 83. 85. pt

Direct numerical simulation (DNS) plays an im-
portant role in the study of turbulence. Until now,
there have been a number of DNS studies on com-
pressible boundary-layer turbulence.l'=6l In Refs. [1-
3], the authors considered temporal DNS, whereas the
authors of Ref. [4—6] studied spatial DNS. Compared
to the temporal evolving one, the spatially evolving
DNS does not need the ‘slow growth’ or ‘extended
temporal’ assumptions, and thus uncertainty or artifi-
cial assumptions!®! can be minimized. Because of the
numerical difficulty, there is still no report on DNS
of spatially evolving turbulent boundary layer at high
Mach number.

In this Letter, DNS of a spatially evolving tur-
bulent boundary layer at free stream Mach number
Ma = 6 is performed, and its statistical characteris-
tics, near wall kinetic energy budget and cross-stream
scaling law is discussed.

The flow parameters and mesh parameters in the
present computation are listed in Table 1. Here Ma .,
is the free stream Mach number; Re., is the free
stream Reynolds number (using one inch as the length
unit); Rep = Pooliood/loo is the Reynolds number
based on the momentum thickness 6 at z = 9.8 and
free-stream velocity. Re, = p,,u0/i,, is the Reynolds
number based on the momentum thickness 6 and the

wall friction velocity u, = \/7Tw/pw at © = 9.8.
Table 1. Computational parameters.
Maoo Reso Tw Reg Rer
6.0 2 x 10° 6.98 1.095 x 10°  265.0

Nex Nyx Nz Ly x Ly x L, Azt x Ayg x Azt
4000 x 90 X 256 10 X 0.59 X 0.2 8.07 x 0.97 x 3.78

The convection terms in the compressible Navier—
Stokes (N-S) equations are approximated by using the
seventh-order WENO scheme,!”! the viscous terms are
approximated by using the eighth-order central differ-

ence scheme, and the third-order TVD type Runge—
Kutta method is used for time stepping.

Figure 1 shows the sketch of computational
meshes. The mesh size in the z direction for uni-
form = < 10.0, whereas progressively coarsening grid
at z > 10.0 is used as a buffer region to exhibit the re-
flection of numerical disturbance at the outlet bound-
ary. Fine mesh is adopted near the wall, and uniform
mesh is used in the spanwised direction. Total number
of computational mesh is 4000 x 90 x 256.
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Fig. 1. Sketch of computational meshes.

A two-dimensional laminar flat-plate boundary
layer including the leading edge is simulated, and
the computed two-dimensional results at © = 4.0 are
used as the inflow conditions for a downstream three-
dimensional computation. Non-reflect boundary con-
ditions are used at the upper boundary and outflow
boundary. Blow and suction disturbance with ampli-
tude A = 0.2 with a base frequency 8 = 0.556 are
imposed at the wall in the interval 4.0 = z, < 2 <
Ty = 4.5.

Figure 2 shows spanwised two-point correlations
at = 9.8 and yT = 21.89. We can see that the cor-
relations decay toward zero with increasing distance
between the two points. This means that the selected
domain is wide enough in the spanwise direction.

Figure 3 shows the skin friction, defined as Cy =
Tw(pT2/2), T = HwOu/OY|w, in the streamwise direc-
tion. It can be seen that the skin friction increases fast
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in the transition region. Figure 4 shows the profiles of
mean streamwised velocity « and the mean van Driest
velocity u,q normalized by the wall-shear velocity at
x = 9.8. Because of the high wall temperature, the
difference between % and w,q is very large. The wall
law and the log law expressed by ut = 2.5Iny™ + 5.9
are found to be well satisfied.

The turbulence intensity profiles normalized by the
local mean velocity at x = 9.8 are shown in Fig. 5, in
which the symbols represent the experimental data for
the corresponding incompressible flat-plate boundary.
Form this figure we can see that the compressible and
incompressible data are in good agreement with those
in the near wall region y™ < 10. The reason is that

in the near wall region, the turbulent Mach number
is low, and the compressibility effects are not consid-
erable. In the region y* > 20, due to compressibility
effects the normalized turbulence intensities are lower
than the incompressible ones.

Figure 6 shows the profile of turbulent Mach num-
ber defined by M; = \/u2,, + v2,, +w?, /¢ at z =
9.8. From this figure we can see that the highest tur-
bulent Mach number is greater than 0.4. This means
that the intrinsic compressible effects are noticeable.

Figure 7 shows the Reynolds averaged and the
Favre averaged temperature profiles at z = 9.8. The
difference between the two profiles implies the intrin-
sic compressibility effects.
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Fig. 5. Near wall normalized rms ve- z=9.8.

locity (Symbols are the experimental
data for impressible turbulent flow).

Figure 8 shows the mean velocity profiles @ = u(y)
at different z locations. We can see that the mean
velocity profiles have inflection points in the transi-
tion region, and then the inflection points disappear
in the final stage of transition. The mean velocity
profiles with inflection points lead to instability, and
accelerate the transition. This agrees with the re-
sults of Ref.[8]. The second difference of mean ve-
locity d?a/dy? is shown in Fig.9, from which it can
be clearly seen that there are inflection points with
d%@/dy? = 0 in the mean velocity profiles at = 5.25
and 5.86. The inflection points disappear at the down-
stream point « = 6.92.
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Fig. 7. Reynolds averaged and Favre
averaged temperature at x = 9.8.

The compressible turbulent kinetic energy equa-
tion reads

0
8t(pK) ~C+P+T+IL;+g+D+ M — ¢,
9 . _ . .
where C = B—(Uij) is the convection term,
Zj

P = —pu] u”(’)uz/@mj is the production term, T =

o -
——(1/2puj/uiuf) is the turbulent transport term,
Zj

Iy = p’'Oul’ /Ox; is the pressure-dilatation term, IT; =
—d(p'u” uff)/0x; is the pressure transport term, M =
u}(86;;/0x; — Op/dx;) is the term associated with
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ug'agj is the viscous dif-

density fluctuations, D =
Z;

fusion term, e = o};0u}/dz; is the viscous dissipation
term. In the above expressions, (;NS = ﬁ/gg is the Favre
average of ¢ and ¢' = ¢ — ¢, ¢ = ¢ — ¢.

Figure 10 shows the turbulence kinetic energy bud-

get at x = 9.8, and all the terms are normalized by
the viscous dissipation term at the wall, i.e. €,,. From
this figure we can see that the turbulent energy pro-
duction term P, the dissipation term e, the turbulent
transport term T and the viscous diffusion term D are
dominant, and the other terms are small.
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Fig. 8. Mean velocity profiles @ at dif-
ferent x locations.

Fig.9. Characteristics of d2a/dy? at
different z locations.

Fig.10. Turbulence kinetic energy
budget (normalized by €,) at = 9.8.
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Fig. 11. Normalized turbulence kinetic energy budget for Ma = 6 (solid)

and Ma = 2.25 (dashed).

Comparisons of the normalized turbulence kinetic
energy budget at Ma = 6 and Ma = 2.25 are shown in
Fig. 11, where the solid lines are the normalized kinetic
energy for Ma = 6 at z = 9.8 and the dashed lines
are the normalized kinetic energy for Ma = 2.25 at
x = 7.8.15 From Fig.11(a) we can see that difference
of the turbulent transport term, T, between the two
Mach number cases is remarkable. Form Fig.11(b)
we see that the term associated with the density fluc-
tuations (M term) for Ma = 6 is much higher than
that for Ma = 2.25, resulting from the difference be-
tween the Reynolds average and Favre average at high
Mach numbers, and the non-negligible term @. Fig-
ure 11(b) shows that the pressure-dilatation term Il
for Ma = 6 is much higher than that for Ma = 2.25,
but it remains small as compared with the total dissi-
pation.

Figure 12 shows the normalized dilatation dissi-
pation for Ma = 2.25 and Ma = 6, where ¢4 =
4/3p(0ul! /0x;)?. Both the dilatation dissipation and
the pressure dilatation are proper measurement of the

Fig. 12. Normalized dilatation dissipation.

compressibility effects. From this figure we can see
that the normalized 4 for Ma = 6 is much larger than
that for Ma = 2.25. However, ¢4 is very small, and in
general is less than 0.4% of the total dissipation.

Extended self-similarity (ESS) is an important de-
velopment in the study of turbulence. According to
ESS, the pth order velocity structure function (Jv(z +
1) — v(z)|?) follows an exponent function of the 3rd
order velocity function. ESS is thought to hold in full-
developed isotropic turbulence, but it is found in this
study that ESS also holds in well turbulence and even
in the near-wall region in the spanwise direction. Fig-
ure 13 shows the pth order cross-stream velocity struc-
ture function S,(k) = (Jw(z + kAz) — w(z)|P) versus
the third-order cross-stream velocity structure func-
tion at vertical location y* = 98.4, and the stream-
wised location is z = 9.8. The lines in Fig. 13 show
the linearity in logarithms between S,(k) and S3(k).
From this figure we can see that the ESS holds true
until £ = 50. This means that the ESS range is
[T =50Az ~ 190.
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Fig. 13. Behaviour of S, (k) as a func-
tion of S3(k) at yt = 98.4, z = 9.8.
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Fig.17. (a) Instantaneous isosurface

of QT = 0.005, Ma = 6. (b) Detail.

Fig. 16. Relative scaling exponents.

Figure 14 shows S, (k) as a function of S3(k) in the
near-wall region y* = 5.2 (the streamwised location
is © = 9.8), with its enlarged picture given in Fig.15.
From Figs. 14 and 15 we can see the linear dependence
region extends to k = 15. This means that ESS holds
in the range [T = 15Az ~ 57, about half the width
of near-wall streaks. Because of the near-wall streak
influence, the ESS range is much narrower in the near
wall region. Figure 16 shows the relative scaling expo-
nents calculated by using the least-square-fit method
from the ESS lines. From this figure, we can see that
the exponents in the near-wall region (y* = 5.2) are
a little lower than those at other locations, and this
agrees with the experiment results of Ref. [9].

Figure 17(a) shows the instantaneous isosurface of
Q" = 0.005, where Q1 = Q/(u,/l*)?, Q is the second
invariant of the velocity gradient tensor, u, and [* are
the wall friction velocity and wall unit at =z = 9.8,
respectively. The partial enlarged figure is given in
Fig.17(b). Figures 18(a) and 18(b) show the instan-
taneous isosurface of QT = 0.005 for the turbulent
boundary layer with Ma = 2.25.1] In comparison with
the case of Ma = 2.25, we can see that the coherence
vortices are arranged to be smoother and streamwised,
and the hair-pin vortices are less occurred in the high
Mach number flow.

Fig. 14. Behaviour of Sp(k) as a func-
tion of S3(k) at yt = 5.2, = 9.8.
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Fig. 15. Detail of Fig. 14.

Fig.18. (a) Instantaneous isosurface

of @t = 0.005, Ma = 2.25. (b) Detail.

In summary, DNS of a spatially evolving super-
sonic turbulent boundary layer at Ma = 6 has been
performed by using the 7th order WENO scheme com-
bined with the 8th order central scheme.
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