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General relationship between contact stiffness, contact depth, and
mechanical properties for indentation in linear viscoelastic solids using
axisymmetric indenters of arbitrary profiles
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We derive a relationship between the initial unloading slope, contact depth, and the instantaneous
relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter with an arbitrary
axisymmetric smooth profile. Although the same expression is well known for indentation in elastic
and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids,
provided that the unloading rate is sufficiently fast. Furthermore, the same expression holds true for
both fast loading and unloading. These results should provide a sound basis for using the
relationship for determining properties of viscoelastic solids using indentation techniques. © 2005
American Institute of Physics. �DOI: 10.1063/1.2048820�
Instrumented indentation is playing an increasing role in
the study of small-scale mechanical behavior of “soft” mat-
ters, such as polymers, composites, biomaterials, and food
products. Many of these materials exhibit viscoelastic behav-
ior, especially at elevated temperatures. Modeling of inden-
tation into viscoelastic solids thus forms the basis for analyz-
ing indentation experiments in these materials. Theoretical
studies of contacting linear viscoelastic bodies became active
since the mid 1950s by the work of Lee,1 Radok,2 Lee and
Radok,3 Hunter,4 Graham,5,6 Yang,7 and Ting.8,9 In recent
years, a number of authors have extended the early work to
the analysis of indentation measurements in viscoelastic
solids.10–16

One of the widely used approaches is to obtain the elas-
tic modulus from the initial unloading slope �Fig. 1�, dF /dh,
using the well-known relationship,17–21

dF

dh
=

4G

1 − �
a =

2E
���1 − �2�

�A , �1�

where G is the shear modulus, E=2G / �1+�� is Young’s
modulus, � is Poisson’s ratio, a is the contact radius, and
A=�a2 is the contact area. Equation �1� can be derived from
the theory for elastic contacts between flat surfaces and
spheres,22 flat punches,22 and conical punches.23 More gen-
erally, Sneddon has derived expressions for load, displace-
ment, and contact depth for elastic contacts between a rigid,
axisymmetric punch with an arbitrary smooth profile and an
elastic half space.24 Using Sneddon’s results, Pharr, Oliver,
and Brotzen18 showed that Eq. �1� holds true for rigid indent-
ers of arbitrary smooth profiles indenting elastic solids.
Equation �1� has also been applied to indentation experi-
ments where plastic deformation occurs. Doerner and Nix17

suggested that if the area in contact remains constant during
initial unloading, the elastic behavior might be modeled as
that of a blunt punch indenting an elastic solid. Oliver and
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Pharr19 pointed out that Eq. �1� can be used even when the
contact area between the indenter and the solid changes con-
tinuously as the indenter is withdrawn and the indenter does
not behave like a flat punch. We have recently shown that
Eq. �1� is true for indentation in elastic-plastic solids with or
without work hardening and residual stress.25 On the other
hand, a “nose” �see Fig. 1� is often observed in the unloading
curve when the unloading rate is slow for load-controlled
indentation in viscoelastic solids.20,21 As a result, a nonphysi-
cal, negative Young’s modulus is predicted according to Eq.
�1�. Recently, Lu et al.,26 and Kumar and Narasimhan27 have
suggested that Eq. �1� may not be applicable to indentation in
viscoelastic solids even in the absence of a nose on the un-
loading curves. In this letter, we examine the validity of Eq.
�1� for indentation in viscoelastic solids.

We consider a rigid, smooth, frictionless, axisymmetric
indenter of arbitrary shape, f�r�, �Fig. 2� indenting a vis-
coelastic solid that can be described by the following consti-
tutive relationships28,29 between deviatoric stress and strain,
sij and dij, and between dilatational stress and strain, �ii and
�ii:

FIG. 1. Illustration of load-controlled indentation curves in viscoelastic sol-
ids. When the unloading rate is low, a nose is often observed in the unload-
ing curve, resulting in a negative initial unloading slope. When the unload-

ing rate is high, the initial unloading slope is positive.

© 2005 American Institute of Physics4-1
 AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp

http://dx.doi.org/10.1063/1.2048820
http://dx.doi.org/10.1063/1.2048820
http://dx.doi.org/10.1063/1.2048820
http://dx.doi.org/10.1063/1.2048820


111914-2 Y.-T. Cheng and C.-M. Cheng Appl. Phys. Lett. 87, 111914 �2005�
sij�t� = 2�
0

t

G�t − ��
�dij���

��
d�

�ii�t� = 3�
0

t

K�t − ��
��ii���

��
d� , �2�

where G�t� is the relaxation modulus in shear and K�t� is the
relaxation modulus in dilatation. The time dependent
Young’s modulus and Poisson’s ratio are then given by
E�t�= �9K�t�G�t�� / �3K�t�+G�t�� and ��t�= �E�t� /2G�t��−1,
respectively.

When G�t�, K�t�, and ��t� are time independent, Eq. �2�
reduces to the ones for elastic solids. The corresponding in-
dentation problem has been solved previously, for example,
by Sneddon,24 for the contact depth and indenter displace-
ment relationship

h = �
0

1 f��x�
�1 − x2

dx �3�

and for the load and displacement relationship

F =
4Ga

1 − �
�

0

1 x2f��x�
�1 − x2

dx , �4�

where x=r /a. Using these relationships, Pharr, Oliver, and
Brotzen18 derived Eq. �1� for rigid indenters of arbitrary
smooth profiles indenting purely elastic solids.

Applying the theories developed by Lee and Radok,3

Graham,5 and Ting8 to the problem of indentation in vis-
coelastic solids and assuming time independent Poisson’s ra-

FIG. 2. Illustration of surface deformation by an axisymmetric indenter.
tio, we can write

Downloaded 26 Apr 2009 to 159.226.231.78. Redistribution subject to
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where x=r /a�t�.
Equations �5� and �6� become the familiar equations for

conical indentation in linear viscoelastic solids, where z
= f�x�= �a tan ��x and � is the indenter half angle. Specifi-
cally, the relationship between contact depth, hc�t�, and the
indenter displacement is given by, using Eq. �5�

h�t� =
�

2
a�t�tan � =

�

2
hc�t� �7�

and that between force and displacement is given by, using
Eq. �6�
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4

�
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d� . �8�

Likewise, the equations for spherical indentation in lin-
ear viscoelastic solids, where f�x�=1/2�ax�2 /R and R is the
indenter radius, are given by

h�t� =
a2�t�

R
= 2hc�t� , �9�
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t
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d�
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Equations �7�–�10� are special cases of more general expres-
sions derived by Graham5 and Ting.8 They showed that Eqs.
�7�–�10� are valid when the contact area is a monotonically
increasing function of time. The equations for unloading
where the contact area decreases monotonically have also
been derived,5,8 though they are considerably more compli-
cated. However, we have recently demonstrated that Eqs. �7�
and �8� and Eqs. �9� and �10� can be used to evaluate the
initial unloading slope for conical16,30 and spherical
indentation31 in viscoelastic solids, respectively. In the fol-
lowing, we use Eqs. �5� and �6� to derive the equation for
initial unloading slopes for arbitrary indenter profiles.

Suppose unloading takes place at t= tm with a constant
unloading rate of 	dh�t� /dt	tm+ =−vh, we have, using Eq. �6�

for 0� t� tm+�t and �t→0
F�tm + �t� − F�tm�
�t

=
4

1 − �
�0
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d	
�
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d
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0
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Using Eq. �5�, the derivative in the second term on the right-
hand side becomes

d
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0
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�1 − x2f��x�dx . �12�

We now show that the last three terms on the right-hand side
of Eq. �12� cancel each other. Using x=r /a and dx=dr /a,
and the fundamental theorem of calculus, we obtain

d
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After evaluating the partial derivative in the integrand and
using x=r /a, we have

d
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Substituting Eq. �14� in Eq. �12�
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The initial unloading slope is then given by, using Eq. �11�
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When the unloading rate, vh, is sufficiently fast, the second
term on the right-hand side approaches zero. Once this lim-
iting case is reached, Eq. �1� can be used to determine the
“instantaneous” moduli, G�0� / �1−�� or E�0� / �1−�2�, pro-
vided that the contact depth, hc or area, A, is known as a
function of hm=h�tm�. The latter condition is provided by Eq.
�5� for axisymmetric indenters of arbitrary profiles, which
becomes Eqs. �7� and �9� for conical and spherical indenters,
respectively. Indeed, we have recently demonstrated the va-
lidity of Eqs. �5� and �16� for conical16,30 and spherical31

indentation in linear viscoelastic solids using finite element
calculations.

In summary, we have derived a relationship between ini-

tial unloading slope, contact depth, and instantaneous relax-
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ation modulus for indentation in linear viscoelastic solids by
a rigid indenter with an arbitrary axisymmetric smooth pro-
file. This derivation shows that with increasing unloading
rate, unloading slope converges to a limiting case given by
Eq. �1�. Thus, fast unloading is essential in determining the
instantaneous modulus from the initial unloading slope using
Eq. �1�. Presently, very little attention is paid in the literature
to the unloading rate when viscoelastic properties are mea-
sured using instrumented indentation techniques. This lack of
attention to the unloading rate is believed to be the main
cause for the reported disagreement with Eq. �1�. Finally, it is
evident from the derivation that Eq. �1� holds true for fast
loading as well as for fast unloading since in both cases �i.e.,

vh� the second term in Eq. �16� approaches zero. The in-
stantaneous modulus can thus be obtained by fast jumps dur-
ing either loading or unloading for indentation in linear vis-
coelastic solids using axisymmetric indenters of arbitrary
profiles.
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