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Abstract

The dynamic buckling of viscoelastic plates with large de#ection is investigated in this paper by using
chaotic and fractal theory. The material behavior is given in terms of the Boltzmann superposition principle.
In order to obtain accurate computation results, the nonlinear integro-di!erential dynamic equation is
changed into an autonomic four-dimensional dynamical system. The numerical time integrations of equa-
tions are performed by using the fourth-order Runge}Kutta method. And the Lyapunov exponent spectrum,
the fractal dimension of strange attractors and the time evolution of de#ection are obtained. The in#uence
of geometry nonlinearity and viscoelastic parameter on the dynamic buckling of viscoelastic plates is
discussed. ( 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The composite materials developed today are being used increasingly for plate and shell
structures such as aerospace vehicles, rocket engines, turbine blades, nuclear reactors, etc. The
accurate prediction of their instability behavior plays a crucial role in their reliable and lightweight
structural design. Due to the elevated temperatures experienced by these structures, their constitu-
ent materials exhibit a time-dependent properties that could be modeled by a viscoelastic constitut-
ive law. The problem of the dynamical stability of elastic structures was extensively investigated by
Bolotin [1] and further results were given, for example, by Evan-Iwanowski [2,3] in a review paper
and a monograph, respectively. When the structure is made of viscoelastic material, the problem
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Nomenclature

a plate dimension in x direction
A constant in Eq. (3)
b plate dimension in y direction
B constant in Eq. (3)
D plate's cylindrical bending sti!ness
D

0
fractal dimension of the strange attractor

f
mn

displacement amplitude
fM
mn

dimensionless quantities in Eq. (13)
h plate thickness
¸( ) di!erential operator, expressed by Eq. (7)
l dimension of square plate
¸E

i
Lyapunov exponent

N the Euler critical load
N

x
(t) in-plane load

N
xs

static load component
N

xd
dynamic load component

q
1
, q

2
, q

3
constants in Eq. (16)

RH[ ] integral operator, expressed by Eq. (4)
R

1
,R

2
, R

3
, R

4
parameters in Eqs. (27) and (31)

SJF summation in Eq. (29)
Z integration expressed by Eq. (18)
u, v, w displacement in x, y, and z directions
>(t) time-dependent relaxation function
>(0) initial Young's modulus of the material;
>(R) longtime modulus of the material
t
r
"1a relaxation time

Greek Letters
a material coe$cient in Eq. (3)
*t time incremental.
e
x
, e

y
, c

xy
components of strain

p
x
, p

y
, q

xy
components of stress

g the excitation parameter
g
c

critical value of the excitation parameter
h load frequency
j ratio of plate dimension in x direction to dimension in y direction, a/b
k Poisson's ratio
o material density
/ stress function
u natural frequency of lateral vibration of unloaded plates
) natural frequency of lateral vibration of loaded plates
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Fig. 1. Scheme of a plate subjected to in-plane loading.

becomes much more complicated since the equation of motion turns out to be an integro-
di!erential one, rather than an ordinary di!erential equation as in the elastic case.

The dynamic stability of viscoelastic homogeneous plates studied based on the small de#ections
theory and the concept of the Lyapunov exponents was investigated by Aboudi et al. [4] and
Touati et al. [5] . This procedure was used also by Cederbaum et al. [6] to investigate the dynamic
stability of shear deformable viscoelastic laminated plates. The dynamic stability of viscoelastic
column [7], viscoelastic homogeneous plates [8] and viscoelastic orthotropic laminated plates [9]
was investigated by Cederbaum et al. by using the multiple-scales method.

The research activity devoted to stability of viscoelastic plates with large de#ection appears to be
scarce. Badalov et al. [10] investigated dynamic stability of viscoelastic plates subjected to an
in-plane constant rate loading. Zhu Yuanyuan and Cheng Changjun [11] analyzed the stability of
viscoelastic rectangular plates from the point of view of dynamical system with ignoring the inertia
terms. Touati and Cederbaum [12] analyzed the dynamic stability of nonlinear viscoelastic plates.

In the present paper, the dynamic stability of viscoelastic plates with large de#ection is
investigated. We calculate the Lyapunov exponent spectrum, the fractal dimension of strange
attractors and the time evolution of de#ection. The in#uence of geometry nonlinearity and
viscoelastic parameter on the dynamic buckling of viscoelastic plates is discussed.

2. Problem equations

The problem of the simply-supported viscoelastic plates subjected to an in-plane periodic load
(as shown in Fig. 1) is considered.

For the plate with large de#ection, the von Karman nonlinear strain}de#ection relations are
given as [10]

e
x
"

Lu
Lx

#

1
2A

Lw
LxB

2
,

e
y
"

Lv
Ly

#

1
2A

Lw
LyB

2
, (1)

c
xy
"

Lu
Ly

#

Lv
Lx

#

Lw
Lx

Lw
Ly

.
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The physical relations between the stresses in the middle surface p
x
, p

y
, q

xy
and the strains

e
x
, e

y
, c

xy
are given as [10]:

p
x
"

>(0)
1!k2

(1!RH)(e
x
#ke

y
),

p
y
"

>(0)
1!k2

(1!RH)(e
y
#ke

x
), (2)

q
xy
"

>(0)
2(1#k)

(1!RH)c
xy

,

where k is Poisson's ratio that can be assumed to be time independent [13].
>(t) is a time-dependent relaxation function. In this paper, the viscoelastic material is modeled as

the standard linear solid-type material, where the relaxation function is given by

>(t)"A#Be~at (3)

where A,B, a are appropriate parameters.
>(0)"A#B, is the initial Young's modulus of the material; >(R)"A, is the longtime

modulus, t
r
"1/a is the relaxation time and RH is an integral operator having the following

expression:

RH[ f (t)]"a
>(0)!>(R)
>(0) P

t

0

f (q)e~a(t~q)dq. (4)

Inserting Eqs. (1) and (2) into the equilibrium equations (5) and compatibility equation (6) [10]:

Lp
x

Lx
#

Lq
xy

Ly
"0,

Lq
xy

Lx
#

Lp
y

Ly
"0,

(5)

!

D
h

(1!RH)+4w#

L
LxApx

Lw
Lx

#q
xy

Lw
LyB

#

L
LyAqxy

Lw
Lx

#p
y

Lw
LyB!o

L2w
Lt2

"0,

L2e
x

Ly2
#

L2e
y

Lx2
!

L2c
xy

LxLy
"!

1
2
¸(w,w), (6)

where

¸( f
1
, f

2
)"

L2 f
1

Lx2

L2 f
2

Ly2
#

L2 f
1

Ly2

L2 f
2

Lx2
!2

L2 f
1

LxLy
L2 f

2
LxLy

(7)
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and referring to Ref. [14], the following system of equations for determining the de#ection w and
stress function / are obtained [10]:

D
h

(1!RH)+4w"¸(w,/)!o
L2w
Lt2

,

1
>(0)

+4/"!

1
2
(1!RH)¸(w,w), (8)

where, D">(0)h3/12(1!k2) is the plate's cylindrical bending sti!ness and h is the thickness.
The boundary conditions may be expressed as follows:

w"

L2w
Lx2

#k
L2w
Ly2

"0 along x"0, a,

w"

L2w
Ly2

#k
L2w
Lx2

"0 along y"0, b,

L2/
Ly2

"!

N
x
(t)

h
,

L2/
LxLy

"0 along x"0, a,

L2/
Lx2

"0,
L2/
LxLy

"0 along y"0, b.

Considering that the plate is hinged at its boundaries, the solution of Eq. (8), which satis"es the
boundary conditions of the problem, can be expressed as

w(x, y, t)"
=
+

m/1

=
+
n/1

f
mn

(t) sin
mnx
a

sin
nny
b

(9)

Substituting Eq. (9) into the second equation of Eq. (8) at a "xed pair of Mm, nN, we obtain the
stress function

/"

>(0)
32

(1!RH) f 2
mnCA

nj
m B

2
cos

2mnx
a

#A
m
njB

2
cos

2nny
b D!

N
x
(t)y2

2h
, (10)

where

j"
a
b
. (11)

Now inserting Eqs. (9) and (10) into the "rst equation of Eq. (8) and using the Bubnov}Galerkin
method to determine f

mn
, we obtain the following system of nonlinear integro-di!erential equation:

ob4

>(0)h2n2
f$
mn

!A
m
j B

2N
x
(t)

h>(0)A
b
hB

2
f
mn

#

n2

12(1!k2) CA
m
j B

2
#n2D

2
(1!RH) f

mn

#

p2

16h2CA
m
j B

4
#n4D f

mn
(1!RH) f 2

mn
"0, (12)

where the `*a denotes di!erentiation with respect to t.
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Introducing the following dimensionless quantities into Eq. (12)

fM
mn

"

f
mn
h

. (13)

For the sake of concise, `!a and `mna will be omitted later on.
In the following, the main stability region is investigated, for which m and n are simply equal to 1.
Letting a"b"l (a square plate). Then, Eq. (12) is rewritten in the form

f$#)2(1!2g cos ht) f!u2RHf#
3(1!k2)

8
u2f (1!RH) f 2"0, (14)

where

u2"
h2>(0)

3(1!k2)oA
n
l B

4
, N"

n2h3>(0)
3(1!k2)l2

,

)2"u2A1!
N

xs
N B, g"

N
xd

2(N!N
xs

)
.

Here, u and ) represent the natural frequency of lateral vibration of unloaded and loaded plates,
respectively, N is the Euler critical load, g is the excitation parameter.

By using Eq. (4), Eq. (14) is rewritten as

f$#)2(1!2g cos ht) f!q
2
q
3P

t

0

e~a(t~q) fdq#q
1
q
3

f 3!q
1
q
2
q
3

fP
t

0

e~a(t~q) f 2dq"0 (15)

where

q
1
"

3(1!k2)
8

, q
2
"

>(0)!>(R)
>(0)

a, q
3
"u2. (16)

Multiplying Eq. (15) by eat, and then di!erentiating it with respect to t, Eq. (15) can be written as

aeatf$ Q#eatf$#aeat)2(1!2g cos ht) f#2gh)2 sin hteatf

#eat)2(1!2g cos ht) fQ!q
2
q
3
eatf#3q

1
q
3
eatf 2fQ#q

1
q
3
aeatf 3

!q
1
q
2
q
3

fQ Z!q
1
q
2
q
3
eatf 3"0, (17)

where

Z"P
t

0

eaqf 2dq. (18)

For the case of a"0 and neglecting nonlinear terms in Eq. (15), one obtains the well-known
linear Mathieu equation, which was extensively investigated, for example, by McLachlan [15]

d2f
dt2

#)2(1!2g cos ht) f"0. (19)
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When neglecting nonlinear terms in Eq. (15), and aO0, we have the following equation which
describes the motion of a viscoelastic plate with small de#ections:

f$#)2(1!2g cos ht) f!q
2
q
3P

t

0

e~a(t~q) fdq"0. (20)

Multiplying Eq. (20) by eat, and then di!erentiating it with respect to t, Eq. (20) can be rewritten
as

aeatf$#eat fG Q #eat)2(1!2g cos ht) fQ#aeat)2(1!2g cos ht) f

#2gh sin hteat)2f!q
2
q
3
eatf"0. (21)

The stability of this equation was investigated analytically [7,8], where the expression for the
critical (minimum) value of the excitation parameter, g

c
, at which instability may occur, was

obtained. For the case of the standard linear solid model it is

g
c
"

2aB
h(A#B)

"

2a(>(0)!>(R))
h>(0)

(22)

and will be used later on.

3. Lyapunov exponents and dimension

Interest here is in the stability of the unperturbed equilibrium of the viscoelastic plate. To this
end the integro-di!erential equations (17) and (21) are investigated. For the treatment of nonlinear
di!erential equations with time-dependent coe$cients, Lyapunov introduced the concept of
characteristic numbers.

We now de"ne [16,17] the spectrum of Lyapunov exponents in the manner most relevant to the
spectral calculations. Given a continuous dynamical system in an n-dimensional phase space, we
monitor the long-term evolution of an in"nitesimal n-sphere of initial conditions; the sphere will
become an n-ellipsoid due to the locally deforming nature of the #ow. The ith one-dimensional
Lyapunov exponents is then de"ned in terms of the length of the ellipsoidal principal axis p

i
(t):

¸E
i
" lim

t?=

1
t
log

2

p
i
(t)

p
i
(0)

(23)

where the ¸E
i

are ordered from the largest to the smallest. Thus the Lyapunov exponents are
related to the expanding or contracting nature of di!erent directions in phase space.

The sign of Lyapunov exponents determines whether or not the unperturbed motion is stable
[18]. According to Lyapunov, if all the exponents are negative then the unperturbed motion is
asymptotically stable. In addition, Chetaev [19,20] showed that if one of the Lyapunov exponents
is positive then the unperturbed motion is unstable.

Since the phase space volume shrinks to zero for a dissipative system, the stable, steady-state
motion for an N-dimensional system lie on a `surfacea of dimension less than N. Loosely speaking,
this surface is called an attractor. There are four types of attractors in dynamic systems: "xed-point,
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limit cycles, tori, and chaotic attractors. An attractor which consist of only one state is called
a `"xed-pointa, it is a `steady statea for the system* once the system is close to that state, it enters
that state; and once the system is in that state, it does not leave. Limit cycles represent periodic
motions, tori represent quasiperiodic motions. Chaotic attractors are crucial to dissipative dynam-
ical systems that are aperiodic. Fixed-point, limit cycles manifest regularity, chaotic attractors tend
to appear highly irregular. It is worth noting that "xed-point attractors, limit cycles and tori are
predictable, chaotic attractors exhibit unpredictable and bizarre motions. In a chaotic attractor,
orbits of nearby points must diverge from each other due to the sensitive dependence on initial
condition. If you make even the slightest change in the initial con"guration of the system, then the
resulting behavior of the system may be dramatically di!erent. The dimension of the attractor
re#ects one of the essential aspects of dissipative dynamics; that is, the contraction of the phase
volume. The dimension of an equilibrium point is zero and that of a limit cycle is one. But since
a chaotic attractor is generated by contraction accompanied with stretching and folding of the state
trajectories, it has a di!erent dimension that may not be de"ned by an integer number. The
Lyapunov spectrum is closely related to the fractional dimension of the associated strange
attractor. The main purpose of the Lyapunov exponents is to characterize the dynamical properties
of orbits and trajectories on attractors, the fractal dimension focuses on the geometry of attractor.
Lyapunov characteristic exponents show the rate of exponential divergence or convergence of
nearby trajectories from the chaotic attractor according to whether they are positive or negative,
respectively. The concept of `fractal dimensiona provides a second important tool, by means of
which we can attempt to give a quantitative characterization of chaotic attractors. The fractal
dimension is a measure of the extent to which orbits "ll a certain subspace, and a noninteger
dimension is a hallmark of a strange attractor. A noninteger fractal dimension indicates that orbits
of a system tend to "ll up less than an integer subspace of the phase space. A trajectory of
a dynamical system with exponents all negative corresponds to a "xed point. A limit cycle, on the
other hand, has one zero exponent, the rest being negative. An attractor for a dissipative system
with one or more positive Lyapunov exponents is said to be `strangea or `chaotic.

For calculating the exponents the method suggested by Wolf et al. is used [17]. To compute the
fractal dimension of the strange attractor we use the equation given by Frederickson et al. [21]

D
0
"j#

j
+
i/1

¸E
i

D¸E
j`1

D
. (24)

j is de"ned by the condition

j
+
i/1

¸E
i
'0 and

j`1
+
i/1

¸E
i
(0. (25)

4. Numerical analysis and discussion

Letting x
1
"f, x

4
"t, Eq. (17) is reduced to a system of "rst-order equations

xR
1
"x

2
,

xR
2
"x

3
,
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Fig. 2. The largest Lyapunov exponents ¸E
1

and the de#ection f (t) for a"0.01, u"1, l/h"50, g
c
"9]10~3 and (a)

g"0.007, (b) g"0.5.

xR
3
"R

1
x
1
#R

2
x
2
!ax

3
!3q

1
q
3
x2
1
x
2
#q

1
q
2
q
3
e~ax4x

2
Z#R

3
x3
1
, (26)

xR
4
"1,

where

R
1
"!a)2[1!2g cos(hx

4
)]!2gh)2 sin hx

4
#q

2
q
3
,

(27)
R

2
"!)2[1!2g cos(hx

4
)], R

3
"!aq

1
q
3
#q

1
q
2
q
3
.

The trapezoidal rule can be used to compute the integration Z, i.e., when t"k*t (k is integer and
larger than 1, *t is time incremental)

Z"P
t

0

eaqf 2dq"SJF#

*t
2

ea(k~1)*tf 2
k~1

#

*t
2

eak*tf 2
k
, (28)
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Fig. 3. The largest Lyapunov exponents ¸E
1

and the de#ection f (t) for a"0.000001, u"1, l/h"50, g
c
"9]10~7 and

(a) g"0.0000007, (b) g"0.5

where

f
k
"f D

t/k*t , SJF"

k
+
i/2

*t
2

[ea(i~2)*tf 2
i~2

#ea(i~1)*tf 2
i~1

]. (29)

Similarly, let x
1
"f, x

4
"t Eq. (21) is reduced to a system of "rst-order equations of the form:

xR
1
"x

2
,

xR
2
"x

3
,

xR
3
"R

4
x
1
#R

2
x
2
!ax

3
, (30)

xR
4
"1,

where

R
4
"!a)2[1!2g cos(hx

4
)]!2gh)2 sin hx

4
#q

2
q
3

(31)
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Fig. 5. The largest Lyapunov exponents ¸E
1

and the de#ection f (t) for a"0.01, u"1, l/h"50, g
c
"9]10~3, for

linear analysis, g"0.5.

Fig. 4. The largest Lyapunov exponents ¸E
1

and the de#ection f (t) for a"0.0001, u"1, l/h"50, g
c
"9]10~5,

g"0.5.

The numerical results were obtained by using >(t)"A#Be~at"0.1#0.9e~at, k"0.46,
N

xs
"0, )"u and h"2u.

The numerical time integrations of Eqs. (26) and (30) are conducted using the fourth-order
Runge}Kutta method with step size *t"(2p/h)/200. An algorithm due to Wolf et al. [17] is used to
calculate the Lyapunov exponents numerically. In this paper, the initial conditions are f (0)"0.1,
fQ (0)"0, the value of f$ (0) is obtained by introducing t"0 and f (0)"0.1 in Eqs. (15) and (20).

The numerical results are shown in Figs. 2}7, where, Figs. 5 and 6 are solution of linear analysis,
others are nonlinear solutions.

In Fig. 2a, ¸E
1
"!1.4454]10~3, ¸E

2
"!1.4965]10~3, ¸E

3
"!1.1485]10~2, ¸E

t
"0.

The signs of ¸E
1
,¸E

2
and ¸E

3
are (!,!,!), so, the unperturbed motion is asymptotically

stable. The attractor is a stable "xed point.
In Fig. 2b, ¸E

1
"!1.5927]10~3+0, ¸E

2
"!6.2646]10~3, ¸E

3
"!6.5697]10~3,

¸E
t
"0. The signs of ¸E

1
,¸E

2
and ¸E

3
are (0,!,!). The attractor is a limit cycle.
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Fig. 6. The largest Lyapunov exponents ¸E
1

and the de#ection f (t) for a"0.000001, u"1, l/h"50, g
c
"9]10~7, for

linear analysis, g"0.5.

Fig. 7. The largest Lyapunov exponents ¸E
1

and the de#ection f (t) for a"0.01, u"25, l/h"10, g
c
"3.6]10~4,

g"0.0002.

In Fig. 3a, ¸E
1
"1.3557]10~5+0, ¸E

2
"!9.4272]10~7, ¸E

3
"!1.4057]10~5, ¸E

t
"0.

The signs of ¸E
1
, ¸E

2
and ¸E

3
are (0,!,!), The attractor is a limit cycle.

In Fig. 3b, ¸E
1
"5.7807]10~2, ¸E

2
"6.3256]10~4+0, ¸E

3
"!5.8441]10~2, ¸E

t
"0.

The signs of ¸E
1
, ¸E

2
and ¸E

3
are (#,0,!). There exist chaotic attractor. Using Eq. (24), the

fractal dimensions of the strange attractor of the system is found to be

D
0
"j#

j
+
i/1

¸E
i

D¸E
j`1

D
"3#

5.7807]10~2

5.8441]10~2
"3.989.

In Fig. 4, ¸E
1
"4.7602]10~3,¸E

2
"5.8916]10~4+0,¸E

3
"!5.4937]10~3, ¸E

t
"0.

The signs of ¸E
1
,¸E

2
and ¸E

3
are (#,0,!). There exist chaotic attractor. Using relation Eq. (24),

the fractal dimensions of the strange attractor of the system is found to be

D
0
"j#

j
+
i/1

¸E
i

D¸E
j`1

D
"3#

4.7602]10~3

5.4937]10~3
"3.866.
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In Fig. 5, ¸E
1
"3.451]10~1, ¸E

2
"!5.8178]10~3, ¸E

3
"!3.5368]10~1, ¸E

t
"0.

In Fig. 6, ¸E
1
"3.5062]10~1, ¸E

2
"!7.0996]10~3, ¸E

3
"!3.4352]10~1, ¸E

t
"0.

In above two cases (Figs. 5 and 6), because the analyses are based on the small de#ections theory
(geometrically linear analysis), there exists no chaotic attractor. Whereas, for ¸E

1
'0 the systems

are unstable.
In Fig. 7, ¸E

1
"!1.4254]10~3, ¸E

2
"!2.9466]10~3, ¸E

3
"!1.0055]10~2, ¸E

t
"0.

The signs of ¸E
1
, ¸E

2
and ¸E

3
are (!,!,!), so, the unperturbed motion is asymptotically

stable. The attractor is a stable "xed point.

5. Conclusions

1. Because of the stretching of the middle plane, the response amplitude within the large de#ections
theory is smaller than that predicted by using the small de#ections theory (cf. Figs. 2b to 5;
Figs. 3b to 6).

2. When g(g
c
, the system is asymptotically stable regardless of the values of the viscoelastic

parameters (see Figs. 2a and 7) so long as a"1/t
r

is not very small (see Fig. 3a).
3. An unstable system may become stable at larger values of a (see Figs. 2b and 3b). And from

Eq. (22), at large a, g
c

is increased, so that a also stabilizes the system.
4. Due to the geometry nonlinearity, there may exist chaotic attractor in the dynamical system for

a particular set of parameters (see Figs. 3b and 4).
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