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Peierls-Nabarro model of interfacial misfit dislocation: An analytic solution
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We propose a method to treat the interfacial misfit dislocation array following the original Peierls-Nabarro’s
ideas. A simple and exact analytic solution is derived in the extended Peierls-Nabarro’s model, and this
solution reflects the core structure and the energy of misfit dislocation, which depend on misfit and bond
strength. We also find that only withb,0.2 the structure of interface can be represented by an array of
singular Volterra dislocations, which conforms to those of atomic simulation. Interfacial energy and adhesive
work can be estimated by inputtingab initio calculation data into the model, and this shows the method can
provide a correlation between theab initio calculations and elastic continuum theory.
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I. INTRODUCTION

The importance of interfaces between dissimilar mater
cannot be emphasized enough in many areas, such as in
erostructure devices, metal-ceramic composites, and pro
tive coatings. Interfaces play crucial roles in determining
properties and performance of materials. They may be c
pletely incoherent, coherent but strained or semicoher
The last case is characterized by the presence of misfit
locations~MD!. These dislocations at interface are geome
cally necessary defects, which are part of the interfa
structure, and they reduce the misfit strain with respect to
unrelaxed fully coherent interface by locally decreasing
interfacial coherency.1

The concept of misfit dislocation was introduced by Fra
and Van der Merwe2 in a Frenkel-Kontorva-type model fo
the oriented monolayer overgrowths in 1949. Since th
there have been numerous observations of misfit dislocat
in epitaxial thin films as reviewed by Matthews,3 and some
in metal-ceramic composites,4,5 On the theoretical part, the
studies were carried out almost all by the continuum the
of dislocation and mainly focused on transformation of c
herently grown epitaxial films into semicoherent ones as
thickness of the film increasing,1,6 and very limited atomic
calculations were performed for metal-metal interfaces
metal-ceramic interfaces.5,7,8

As we all know, the continuum theory which does n
involve any atomic level information cannot response
core structure of misfit dislocation. On the other han
atomic simulations can reflect atomic level informatio
while it takes tedious and intensive computational proces
The Peierls-Nabarro~PN! model,9 though relatively simple,
can bridge the continuum theory and atomic theory, and
the potential of providing quantitative estimation for atom
tic property of the dislocations. Recently, the PN model h
been extended to estimate Peierls stress directly from
generalized stacking energy surface, for both narrow
wide dislocations.10 Merwe11,12 had studied interfacial MD
by the Fourier analysis procedure~we call it Merwe’s
PRB 590163-1829/99/59~12!/8232~5!/$15.00
ls
et-
c-

e
-
t.

is-
i-
l
e

e

k

,
ns

y
-
e

d

t
e
,
,
s.

as
-
s
he
d

method in the context!. However, Merwe’s method is math
ematically complex, and until now, the exact analytic so
tion have not yet been obtained for the PN model when
components of interface have different elastic paramete12

In this paper, we take an alternative method, which follo
the original Perierls-Nabarro’s idea and is simpler than M
we’s, to deal with the similar problem. By means of th
method, we derive an exact analytic solution, i.e., a conc
expression of displacement field of misfit dislocation. In t
discussion, we focus on two questions: one is how the M
core energy and structure depend on both misfit and the b
strength parallel to the interface; and the other is how
input ab initio calculation data into our model.

II. PEIERLS-NABARRO MODEL

We consider a two-layer, which is illustrated in Fig.
composed of the two cubic crystals, 1~upper! and 2 ~lower!
joined at$001% interface, and MD array is positioned at th
interface. We make the conventional assumptions:~i! the
crystals 1 and 2 have lattice parametersa1 anda2 , respec-
tively (a1.a2), ~ii ! a1 and a2 may be generated from
reference lattice with parameterc defined by13

FIG. 1. Misfit-edge dislocation at the interface.
8232 ©1999 The American Physical Society
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p5Pa15~P11!a25S P1
1

2D c, ~1!

where P is an integer, and~iii ! the crystals deform unde
applied forces like isotropic elastic continua with she
moduli m1 and m2 and Poisson’s ratiosn1 and n2 , respec-
tively. Equation~1! defines misfitf, c, and the MD spacingp
as

p5
a1a2

a12a2

c5
2a1a2

~a11a2!
~2!

f 5
c

p
5

2~a12a2!

~a11a2!.

As shown in Fig. 1, we assume the dislocation core to
confined withinx0z glide plane~i.e., the interface!, and the

Burgers vectorb⇀ to be parallel to thex axis and the dislo-
cation line to be chosen as thez-axis direction. For single-
edge dislocation at interface, using the result of continu
theory, the relevant shear stress at interface is14

sxy5
2m2

~k211!

~11a1!

~12a2
2!p

S b

xD . ~3!

Here,a1 ,a2 are Dundurs’ parameters.14 For the periodic dis-
location array in Fig. 1, the relevant shear stress along in
face is

sxy5
2m2

~k211!

~11a1!b

~12a2
2!p

(
n52`

`
1

x1np
. ~4!

Using identities(2`
1`1/n1a5p cotpa,15 one obtains

sxy5
2m2

~k211!

~11a1!b

~12a2
2!p

cot
px

p
. ~5!

Following the original PN model,9 within the glide plane, at
each point with a distancex8 from the dislocation line, the
plastic displacementu (5u12u2) of the upper part of the
interface (y.0) with respect to the lower part (y,0) results
from the continuous distributions of infinitesimal disloc
tions with the Burgers vector densityr(x8)dx85

2@d u(x8)/dx8#dx8. The component alongb⇀ of the total
resultant stress atx, sxy(x), is the sum of the contribution
from all these infinitesimal dislocations.sxy(x) is balanced
by the corresponding component of the periodic restor
force stressF@U(x)# acting between atoms on either side
the interface.U(x), composed of plastic displacement a
misfit displacement, is the relative displacement betw
corresponding atoms on either side,

U~x!5
c

2
1

c

p
x1u~x!. ~6!
r

e

r-

g

n

For the case of periodic MD array at interface, using Eq.~5!
we can obtain the following integro-differential equatio
similar to PN equation

2mE
2p/2

p/2 1

p
cotFp~x2x8!

p Gdu~x8!

dx8
dx85F@U~x!#, ~7!

with the boundary conditionsu(2p/2)50 and u(p/2)
50. m depends on the elastic constants of two materi
and equals to$@2m2 /(k211)#@(11a1)/(12a2

2)#%. Similar
to the original PN model, the restoring stressF(U) assumes
a sinusoidal form

F@U~x!#5
t

2p
sin@2pU~x!/c# ~8!

andt is defined as bond strength parallel to the interfac
This sinusoidal approximation may, however, be very cru
A more physical interpretation of the restoring stressF(u) is
to consider it as the gradient of the so-called generali
stacking fault energy (gs f or g) ~Ref. 16! surface, which can
be obtained byab initio calculation,17 in the appropriate di-
rection for the dislocation under study. Then the restor
stress is simplyF(u)52]g/]u.18 In the case of interface
thegs f surfaceg(u) ~energy per unit area! can be generated
from the energy of the displaced interface in a referen
lattice with parameterc defined by Eq.~2!, as material 1
displaces with respect to material 2 at interface. Interfac
gs f obtained byab initio calculation will be given in detail
in other paper. In this paper, we still assume sinusoidal
storing force.

With the help of Eqs.~6! and ~8!, Eq. ~7! can be trans-
formed into

2mE
2p/2

p/2 1

p
cotFp~x2x8!

p GdU~x8!

dx8
dx8

5
t

2p
sin@2pU~x!/c#, ~9!

where boundary conditions areU(2p/2)50 and U(p/2)
5c. If we use the notation

X5tan
px

p
~10a!

X85tan
px8

p
. ~10b!

Equation~9! can be written as

2
m

pE2`

1`11XX8

X2X8
dU~X8!5

t

2p
sin@2pU~X!/c#. ~11!

In general, there is no systematic method to solve
integro-differential Eq.~11!. However, similar to original PN
model, we guess that Eq.~11! has the following analytic
solution

U~X!5
c

2
1

c

p
arctan@g~b!X# ~12!
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FIG. 2. Relative displacementU(x) for variousb. U(x) of the singular-Volterra dislocation is also shown for comparison. All
quantities are dimensionless.
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g~b!5Ab22111b21 ~13!

b5
2pcm

pt
5

2pm f

t
.

Substituting Eq.~12! into Eq. ~11!, this solution can be
easily verified. Here, the dimensionless numberb is a key
physical parameter, which controls the structure of interfa
it decreases with increasing oft and decreasing off. The
importance ofb will be shown in Sec. III. By inserting Eq
~10! into Eq. ~12!, we can obtain

U~x!5
c

2
1

c

p
arctanF ~Ab22111b21!tan

px

p G ~14!

and plastic displacement

u~x!5
c

p
arctanF ~Ab22111b21!tan

px

p G2
c

p
x. ~15!

A graph of U(x) is shown in Fig. 2, and it shows tha
U(2p/2)50 and U(p/2)5c. Also, U(2z/2)5c/4 and
U(z/2)53c/4. Thus, the half width of the misfit dislocatio
core can be defined as

z5
2p

p
arctan@b~Ab2112b!#. ~16!

Clearly, the misfit dislocation core widthz increases asb
increases. This illustrates the fact that misfitf and bond
strengtht can influence the structure of the misfit disloc
tion. The Eq.~16! shows that an increase in bond strengtht
leads to decreasing in width of misfit dislocation co
whereas at constant bond strengtht, the width of misfit dis-
location increases with decreasing of misfitf.

Through Fourier analysis, a solution similar to Eq.~14!
had been obtained with neglecting the normal forces
Merwe.11,12 Merwe’s result is an approximate solution, an
in which normal displacement is not continuous. In our de
vation, the continuity of tractions and displacements at in
face is assured, since Eq.~3! is the exact elastic stress sol
tion of an edge dislocation at interface. The differen
between the two solutions is thatm51/@(12n1 )/m11(1
e,

,

y

-
r-

e

2n2 )/m2# in Merwe’s method, while in our methodm
5@2m2 /(k211)#@(11a1)/(12a2

2)#. Apparently they are
equal only when the two components of interface have sa
elastic parameters; otherwise, they are not equal, and
relative difference between them may be up to 13%.

III. DISCUSSION AND APPLICATION

A. Energy of misfit dislocation

Similar to the original PN model, energy of the mis
dislocation is calculated as the sum of two contributions:
elastic strain energy stored in the two half crystals and
misfit energy associated with the nonlinear distortion
bonds across the slip plane.19 The former can be written as

Edisl
el ~R!52

1

2E2R

1R

sxy~x!u~x!dx, ~17!

whereR<p/2. Edisl
el (R) is the elastic energy contributed b

the stresses within the interval2R to R at interface. With
u(x) described by Eq.~15!, the shear stresssxy along inter-
face is

sxy~x!52
t

2p

b sinS 2px

p D
Ab2112cosS 2px

p D . ~18!

Then, inserting Eqs.~18! and~15! into Eq. ~17!, one obtains

Edisl
el ~R!5

mc2

2p
w~R/p! ~19!

w~r !5E
2r

r sin~2px!$arctan@g~b!tan~px!#2px%

Ab2112cos~2px!
dx.

~20!

For singular-Volterra-type dislocation, the elastic selfe
ergy per unit length along the axis of a cylinder of radiusR
around the dislocation can be written as

Edis5Ecore1K ln
R

r c
,
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where r c represents the core radius, and energy factorK,
which is introduced by Foreman,20 is constant related to ma
terials’ parameter. If elastic energy of the misfit dislocation
also linearly correlated with lnR, we can say the misfit dis
location is like singular-Volterra-type dislocation, and t
structure of the interface can be qualified as an array
singular-Volterra-type interface dislocations. In the follow
ing, we compute the elastic energy of dislocations as a fu
tion of distance to the center.

Figure 3 illustrates that the elastic energiesEdisl
el increases

linearly with ln(R) for interface with smallb, but not with
large b.21 This transition occurs whenb is about 0.220.4.
This shows that the MD structure forb,0.2 is dislocation-
like, i.e., in terms of a singular-Volterra type. The viewpoi
can also be confirmed by Fig. 2, and it shows thatU(x) is
more closer to singular-Volterra dislocation for smallerb.
The width of misfit dislocation corez/p is bigger than 10%
whenb.0.2, in which case the core part of misfit disloc
tion cannot be neglected compared with the whole interfa
so here it is unreasonable to describe the interface struc
as an array of singular-Volterra dislocations. This means
low-misfit and high-interfacial bond strength is favorable f
nucleating dislocation-like local structure, and only interfa
with small b can be represented by an array of singul

FIG. 3. Elastic energyEdisl
el vs ln(R/p) for variousb. Energy is

in units ofmc2/2p. R represents the distance from the center of
dislocation at interface andp is the period of misfit dislocation
array.
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Volterra dislocation. And this is qualitatively agreed to th
of atomic simulation by W. P. Vellinga.8 For the case ofb
,0.2, the energy factorK of misfit dislocation is in range of
0.520.7(mc2/2p).

The total misfit energy can be written as

Edisl
misi f t5E

2p/2

1p/2

F@U~x!#dx ~21!

with the approximation in Eq.~8!, F(U) is defined as
F(U)52*F(U)dU5tc$12cos@2pU(x)/c#%/4p2. Integrat-
ing Eq. ~21! with the help of Eq.~14!, one can obtain

Edisl
mis f it5

mc2

2p

11b2A11b2

b
. ~22!

Equation~22! shows misfit energy increases with decreas
of b. At constantt, the smaller misfit the larger misfit en
ergy, and this bears out the results of atomic simulation.8

B. Interfacial energy and adhesive work

The mean total energy per unit area of interface due to
forming of misfit dislocation is called interfacial energy an
can be written as

E5
1

p
@Edisl

el ~p/2!1Edisl
misi f t#. ~23!

Integrating Eq. ~20!, we can give w(1/2)5
2 ln@2bA11b222b2#, then the interfacial energy can b
written as

E5
tc

4p2
~11b2A11b22b ln@2bA11b222b2# !.

~24!

Expression~24! means that to estimate interfacial ener
need to know magnitude oft. In original PN model,t can
be chosen so that, for small displacements, the elastic lim
recovered. However, given interface, it is not easy to e
matet by experiment. One effective approach is to obtain
it by ab initio electronic calculation. Scho¨nbergeret al.22

madeab initio electronic calculations for Ag/$100%MgO and
Ti/$100%MgO interfacial system, and they presented the fo
constants parallel to the interface 0.5 eV/Ag/MgO/Å2 and
1.7 eV/Ti/MgO/Å2, respectively. Then, the correspondin
bond strengtht can be calculated and they are 3.8
31010 Pa for Ag/MgO and 13.0531010 Pa for Ti/MgO, re-
spectively. Dimensionless numbersb are 0.185 for Ag/MgO
and 0.042 for Ti/MgO, respectively, and both are smal
than 0.2. These show that Ag/$100%MgO and Ti/$100%MgO
interface can be represented by an array of singular-Volt
dislocation.

The theoretical adhesive work byab initio calculation ex-
ceeds the experimental estimate because in the experim
sample there are misfit dislocations, whose energy redu
the adhesion.23 However, the energy of misfit dislocation
cannot be directly calculated since the unit cells, which
required including one misfit dislocation, are too large forab
initio method. To obtain the sound value, the theoretical
hesive work byab initio calculation must exclude interfacia

e
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energy due to the forming of misfit dislocation. Assumi
that the interface is constructed of a square network of m
dislocation with Burgers vectors of thec^100& type, Eq.~24!
gives interfacial energy 313.4(mJ/m2) for Ag/$100%MgO
and 408.4(mJ/m2) for Ti/$100%MgO, respectively. There
fore, for Ag/$100%MgO interface, the theoretical adhesiv
work will be reduced from 900(mJ/m2) to 586.6(mJ/m2),
and is a bit larger than experiment value 4
6100(mJ/m2).23 We believe that the error remained is d
to sinusoidal approximation of the restoring forceF@U(x)#.
In order to gain more precise adhesive work, the exact
storing forceF@U(x)#, which is obtained byab initio calcu-
lation, will be put to use in the future work.

IV. SUMMARY AND CONCLUSIONS

Following the original Peierls-Nabarro’s idea, PN mod
of periodic misfit dislocation array is developed in the pap
.

i

A
.

e

fit

e-

l
r,

and is exactly analytically solved. The extended model c
clarify the effects of different bonding strengths and mis
on the interface structure. The solution shows that the c
structure and the core energy of misfit dislocation clea
depend on bond strength and misfit parallel to the interfa
The dimensionless numberb52pm f /t determines the
structure and the energy of interface, and only whenb
,0.2 the structure of interface can be represented by an
ray of singular-Volterra dislocations.

Obviously, our method provides a correlation betweenab
initio calculations and the continuum theory. It enables us
estimate interfacial energy and adhesive work simply by
putting ab initio calculation data. For example, we can d
termine that the adhesive work of Ag/$100%MgO interface is
about 586.6(mJ/m2).

Finally, our approach can be easily applied to the int
face, which is constructed of periodic screw dislocation
ray.
.
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