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On the shear instability of saturated soil
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Abstract

In this paper, the dynamic instability of simple shear of saturated soil is discussed. The governing
equations are obtained based on mixture theory in which the inertia effect and the compressibility of grains
are considered. Perturbation method is used to analyze and it is shown that two types of instability may
exist. One of them is dominated by pore-pressure-softening, while the other by strain-softening. © 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The issue of the inception of localized shearing in granular materials subjected to undrained
deformation has been the object of both theoretical as well as experimental research. Theoretical
contributions are related mainly to stability and bifurcation analysis of diffused and localized
failure models [1-3]. Typically, the stability problem is formulated by considering small pertur-
bations in field variables (e.g. displacement and pore pressure). Classical continuum approach
leads, in this case, to the ordinary diffusion equation for the perturbation in pore pressure [1,2].
Alternatively, the localization in fluid-infiltrated soil may be considered as a bifurcation problem
[4]. The experimental evidence on deformation instabilities and the failure models comes from
conventional triaxial [5,6] as well as plain strain biaxial tests [7]. The results indicated that the
uniform response is often followed by the onset of a diffused, non-homogeneous deformation
model, after which distinct shear bands form. However, this problem is often discussed under
inertia-free undrained conditions [1,8,9]. In view of the above, an attempt of this paper is to
discuss the instability of saturated soil so as to obtain a comprehensive and precise picture of the
instability phenomenon.
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Nomenclature

Oex effective stress in x-direction

Oy effective stress in y-direction
shear stress

Y shear strain

p pore pressure

P density of water

O density of grains

Uwx, Uwy Velocities of water in x- and y-directions
Usr, Usy  velocities of grains in x- and y-directions

g gravity acceleration

Il viscosity of water

k Darcy permeability

Cs material parameter

E. compressible modulus of grains
o frequency of perturbation

p wave number of perturbation
Ry strain-hardening coefficient

Qo pore-pressure-softening coefficient
H, strain-ratio-hardening coefficient
L characteristic time

I characteristic length

2. Formulation of problem

Consider a sample of saturated soil, which is subjected to a partial drained deformation under
simple shear. The pore water is assumed to be incompressible, while grains are compressible.
x-axis is in horizontal direction, while y-axis is in vertical direction. Shear loading is applied in
x-axis. The deformation can only occur in x-direction but may have a gradient in the other
direction.

3. The constitutive relations

The skeleton of soil is taken as visco-plastic, so the constitutive relations may be expressed as
follows under shear loading [9,10]:

0o = 11 (13:P)
0 = f2(1.7.p) M)
T=/ (% V’,p>,
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in which o, 0., are the effective stresses in x- and y-directions, respectively, ¢ the shear stress, y
the shear strain, y the shear strain ratio, p the pore pressure and is equal to ¢ — o, ¢ 1s the total
stress and is a constant, which means, p denotes a,.

4. The governing equations

Here, the momentum equations of water and grains are given as follows according to mixture
theory [11]:

~— = —Kn(vy, — sx)s
v T = Kl —va)
Ovy, O
Pw gty + @_1; = —Kn(vyy — vy) — P&,
2)
OVey Op Ooy Ot 5 (
1 v 1 - A ——=K wx sx /)y
T e
Ovy, op 0o, Ot
(1= (1) 2 = = oy =) = (1 =i

where vy, vy, are velocities of pore water in two directions and vy, v, the velocities of solid phase
in two directions, n the porosity, K the obstraction coefficient and K = u/k, where k is the physical
permeability and u is the viscosity.

Differentiate the last two equations of Eq. (2) in the x- and y-directions, respectively, and then
add them together, the first governing equation is obtained as follows:

¥y ot dy
= n)pat =2 K2
( n)ps atz ayz n at7 (3)

in which y is the shear strain.

The mass balance equation for solid phase is as follows considering that 0/0x = 0:

1 on Ov, 1 0p
— = — . 4
l-not Oy p, Of 4)

The mass balance equation for the fluid phase is as follows considering that 0/0x = 0:

=~ oy — vy ) = L0 1 Opy oy
@y[n(UWy vy)] = P, at+pw ot +6y’ )

Assume p,, = constant, then the equations above are simplified as follows:

Oe, 1 0n 1 Op

o l—-ndt p, ot (6)
Ogs,  Ovgy

o Oy (7)
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and

dq 1 ©on n Op

T ioad p ®)
in which

q = n(vwy = vy). 9)

The relative specific discharge is related to the pore-fluid pressure gradient according to Darcy’s
law

k op
— - 10
1 u oy (10)

Assume that changes in porosity are mainly due to shear (dilatancy law), we will have

1 On oy
. T _c = 11
l—-nd ot (11)
in which C; is a material parameter.

Assume that changes in solid density (grain compressibility) are due to changes in pore pres-
sure, we will have the following equation [12]:

_1op,_10p (12)
p, Ot E; 0t
in which E, is the compressible modulus of grains, which means grains are compressible.
The second governing equation is obtained by instituting Egs. (10)—(12) into Eq. (8)
k ©? d no
=G -, (13)
u oy ot E, ot
in which C, = C;/n.
Now, the governing equations can be rewritten as follows:
1 L0y Op
CKndyr ‘ot Eor
2 2 (14)
a ) 0y 0t , Oy
—N)ps= — = = —Kn"—.
Psor ~ oy ot

The solutions of these equations are difficult to seek for because of the non-linear. It has been
shown by experiments and numerical results that the soil deformation develops from uniform to
non-homogeneous, which means from stable modes to unstable modes.
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The aim of this paper is to seek for the condition of instability. The perturbation method is
therefore adopted here. Hence, a smooth developing deformation state v,, 7o, py is taken as the
base state, which is a solution of Eq. (14). When perturbation has been applied to the governing
equations, we will be able to analyze the factors and condition of instability.

5. Perturbation analysis [13,14]

We study the solutions in next form

Y=+ V<l
p=p+pr; P <]|pl, (15)
t=1+7; || < |0l

where ), po, 7o 1s a solution of Eq. (14), and
V’ — ,})oeat-‘riﬁy’
pl — poeaﬂriﬂy’ (16)

‘L'/ — ,L.oea(tﬂﬂy’

where o, § are respectively, the frequency and the wave number.
Differentiating the constitutive relations (1), we may obtain

dr =Ry dy — Oy dp + H, dy, (17)
where
ot ot ot
n=(g), o=-(5), m=(5), 1)
Therefore
T° = Roy* — Qop°® + aHyy®. (19)

The parameters Ry, Qy, Hy may be determined by experiments and it needs much more work.
Institute Egs. (15), (16), and (19) into Eq. (14), a homogeneous system of equations is obtained
as follows:

(1 = n)pe® + B*(Ro + aHy) + Kn*o]y* — B Qup® = 0,

E. 20
E.Ciay® + (—ﬁ—oc>p':O. (20)
Kn

As we all know, the determinant of the coefficients should be equal to zero, if the system has
solutions, which leads to
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E(1 - E.R
pEl = n) ")/32+H0ﬁ2+Kn2>a2+A1a+—°ﬁ4:0, (21)
n

1= 3

where 4, = (E.Hy/Kn)f* 4+ E:nf* + Rof> — E.Ci Q0"
It is a spectral equation and if « has a positive real root, instability is possible. Now, we give the
dimensionless form of Eq. (21) by using the next dimensionless variables

1 _ 2 1 52 1 RO H(]
= = kh=—, A=—, B= C = C10p. 22
o pskl &, :8 psROk%ﬁ ) 1 K’ Er’ psklEr’ 1Q0 ( )
Then, the spectral Eq. (21) may be reduced to the following form:
n(l —n)A@® + [(1 — n) B> + nBB* + An®)@® + [(n* + nd — nC)B* + ABB*)a + f* = 0. (23)
It is obvious this equation has two extreme situations:
(i) For long wavelength(f — 0), Eq. (23) has two solutions
— n2
= 0 o = 0 o= — .
p=0, a or o = (24)

It shows that the deformation is always stable.
(i1) For short wavelength (f — o0), Eq. (23) has only one solution, which is

- 1
y = —— 25
p— o0, o 1B (25)
It is again always stable. This solution is not coincided with that of Rice [1], which is that the
shortest the wavelength is, the fastest the deformation develops. The reason may be that the
inertia is considered here. If the inertia terms Ov,/0t, Ovy,/0t, Ovy,/0t, Ovy, /0t in Eq. (2) are

neglected, by perturbation analysis, the value of « will be obtained as follows:

o = Ro/[ka(C1Q0 — 1)/ B* — Ho)- (26)

It is obvious the shortest wavelength develops the fastest under this condition.

Nevertheless, we can see there is a negative term —nCf*@ in Eq. (23), which may lead to in-
stability. It must occur at special wave numbers. Therefore, it is of interest to seek for the wave
number f_ for which the corresponding o, > 0 is a maximum. In addition to the spectral Eq. (23),
dn and B, must satisfy the next equation

,
@ =0, (27)

which leads to

»  (I+n+nB)@, + [n* +n(d — C)on
P =~ 2(ABay, + 1) ' (28)
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Keeping Efn > 0 in mind, we arrive at an important inequality to determine the limit of the o,
value

n(C—A4) —n?

i < L g 2
0 <y < WBnil an, (29)

Hence, for qualitative discussion, the value of &° can be used to represent the point of intersection
om. The characteristic time can be expressed as

1 kp pki(nB+n+1)  nHy+ (n+1)pEik

o O Ol n(C—A4)—n> n(CiQE: — Ry — nkE,)’

It is obvious that the characteristic time is affected by compressible modulus of grains, strain-rate-
hardening, obstruction, strain-hardening and pore-pressure-softening. The characteristic length /.
is related to ¢, by

Zz/tc ~ OCm/ﬂrzn ~ Roki (Bfn/&m)

The length is the pattern one rather than diffusion one.
Combining both the spectral Eq. (23) and the extreme condition (28), the equation to deter-
mine &, may be obtained as follows:

fi =1 (30)
in which

fi = 44n[(1 — n)ay + n*](ABom + 1), (31)

r={a +n+nB)&m+[n2+n(A—C)]}2. (32)

From Fig. 1, for the region &, > 0, it may be seen that the left branch of function £, and the right
branch of f; must have an intersection between 0 and &}, as long as

A—2vV/An+n

= <1. (33)

It is the criterion for the existence of a solution &,, and therefore is what we desired. If n < A4, this
criterion can be simplified to

A_ R,
C _ErCIQO

<1. (34)

This means the condition of instability is that pore-pressure-softening overcomes the strain-
hardening. It is very interesting that whether instability occurs or not is not related to the
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111,52

Fig. 1. Plots of the functions f; and f>, defined in Egs. (31) and (32).

permeability & and the strain-rate-hardening H,. However, these factors influence instability
markedly in some other aspects, which will be discussed later. Next, three interesting special cases:
small permeability, no strain-hardening and no pore-pressure-softening will be discussed.

(1) Permeability is small, K — oo. In this case, the spectral equation (21) becomes

(1= n)paa, + HoB*%m + (Ry — QoE:C1) 7 = 0. (35)

We can see, if Ry — QoE,C; < 0, namely A/C < 1, &, has a positive real root and instability will
occur. It is important to appreciate that the same formal criterion (34) can be used whether the
instability is under permeable condition or not.

(i1) No strain-hardening, Ry = 0. The spectral equation (21) will become the next form on this
condition

(1=npy » [p(l—n) » Hy,, Kn? Hy 4 2 2
E, o + Kn ﬁ +Eﬁ + E, o+ Eﬁ +nﬁ C]Qoﬁ =0. (36)

The condition that & has positive real root is as follows in this case:
H
R n— 0, <O. (37)
Kn

In this criterion, permeability, strain-rate-hardening and pore-pressure-softening play the role.
(iii) No pore-pressure-softening, Qy = 0. Now, we turn to discuss the second mode of instability
in which there is no pore-pressure-softening, in this case, we can formulate the spectral equation
as follows:

E.(1— E.R
(1 — }’l)pSOC3 + <%’1n)ﬁ2 —{—Hoﬁz + [(I’l2 —|—R0ﬁ2> O(2 +A10€ +K—no'g4 = 0 (38)

Although H, and K must be positive, Ry might be negative. Therefore, Ry < 0 may be another
possible cause of instability. Eq. (38) can be rewritten in the next form
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psEr(l — }’l)
Kn

E.R
ﬁ2+H0ﬁ2+Kn2)oc2+Aloc: ]Ro|ﬁzoc+%no|ﬁ4, (39)

(1=t + (
where 4, = (E.Hy/Kn)f* + E.nf’.
It is easy to see that there must be a solution o > 0; therefore, deformation must be unstable. It
is very simple to show that no maximum in « exists and o is a monotonically increasing function of
p, with

. ) R
lime — 0 and limo — M,
p—0 p—o0 HO

. H,

limt =ty =—.
ﬁ—):)() min ‘RO’

This implies the shorter the wavelength, the earlier the occurrence of instability.

6. Practical criterion

Now we concentrate on the instability mode dominated by pore-pressure-softening, but turn to
practical considerations.

It is especially useful that criterion (34) implies a strain criterion. Recalling [R,] = stress/strain,
we can easily deduce that the inequality (34) is equivalent to a strain criterion. It is desirable to
establish a criterion connecting state parameters and material constants on each side of the in-
equality.

If the constitutive relation of the soil concerned is formulated explicitly, the critical strain is
easy to obtain. For instance, supposing Q, = constant, and rate-constant stress and strain rela-
tionship behaves as

=Gy, (40)

where G is the shear modulus, m is a constant. Then, the practical criterion is obtained as follows
by the inequality (34):

mtg
Ercl QO .

Yo > (41)

7. Conclusions

It has been shown that there may exist two types of possible instability of saturated soil under
simple shear; one is dominated by pore-pressure-softening while the other by strain-softening.

The criterion for the first mode of instability combines pore-pressure-softening, strain-hard-
ening and compressible modulus of grains and implies a practical critical strain. The critical strain
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can be obtained simply when the constitutive relation has an explicit expression. The analysis of
this paper (e.g., Eq. (41)) may be applied to saturated sand, clay and rock, but these results are not
suited for some soils such as loess because of their special characteristics.
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