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Abstract Aimed at brittle compusiies 1=inforced by randomly distributed short-fibers with a relatively large aspect ra-
tio, stiffness moJulus avd sitength, a mesoscopic material model was proposed. Based on the statistical description,
damage n::chanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation
were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation dis-
tribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-bebaviors of composites were quantita-

tively analyzed. The theoretical predictions compared favorably with the experimental results.

Keywords: short-fiber reinforced composites, mesoscopic material model, damage constitutive theory, dam-
age-induced anisotropy, damage-rate effect.

Short-fiber-reinforced composites (SFRCs) are increasingly applied because they are cost-effec-
tive and display superior mechanical properties. Some damage constitutive equations derived for this
kind of material are based on the self-consistent scheme and equivalent inclusion method. An approxi-
mate extension of Eshelby’ s method proposed by Mori and Tanaka''’ has been widely adopted for fiber
reinforced composites recently. However, most of the material models and damage constitutive equa-

tions are still not good enough for composites with a relatively dense, large aspect ratio and randomly

]

distributed fibers. Liang and Bergan[2 introduced the fiber-reinforcing and sliding mechanisms into a

material model, so a polycrystalline metal model and mesoscopic elastoplastic constitutive relation were
proposedm; and the physical mechanism of the deformation-induced anisotropy ‘was embodied ™ ; the
mesoscopic description of the fiber-reinforcing mechanism was recently applied to multiphase fiber-re-
inforced composite materials!®’; those suggest a new way to develop a damage theory for SRFCs.

Continuous Damage Mechanics for homogeneous material was developed on the basis of a damage

concept proposed by Kachanov(® . (71

By using the intrinsic theory of thermodynamics, Rousselier

brought the damage variable into the framework of Continuum Mechanics. Later, Murakami'®’ extend-

ed the isotropic damage constitutive equation[g] into an anisotropy theory. By using statistical descrip-
(10

tion about micro-crack initiation as decohesion, Liu and Liang''®! proposed an anisotropic damage

model to simulate the damage behavior of polycrystalline metals. From a parallel bundle model for

{11]

long-fiber-reinforced composites, Krajcinovie'" suggested that the damage evolution is attributable to
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the probability distribution of rupture strength of fibers which made a great contribution for the damage
theory of SFRCs.

In contrast to continuum mechanics, the main difficulty in establishing the damage theory of
SFRCs lies in position and orientation heterogeneity of fibers, damage sensitivity to the initial-defects
and damage pattern in matrix, damage anisotropy depending on loading-path and deformation-history,
interaction between matrix and fibers, as well as coupling between differently oriented fibers. There-
fore, a new idea is needed to develop a damage theory for SFRCs. There are still challenging prob-
lems for SFRCs including how to construct a material model with microstructure, how to describe the
damage evolution laws of the fiber, matrix, and interface, and how to bridez a gap between mesoscop-
ic physical components and macroscopic behavior of composltes[m .

Owing to the complexity of material and the Hinitailon of experimental data, three basic assump-
tions were made in the present pajser to simplify the mathernaiical description of the constitutive equa-
tions for engineering spplication. The first is how the local strains relate to the overall strain in sub-
sec. 1.%. The second is cbout the stability of the statistical mean value of parameters for a represen-
tative element volume (REV) large enough in size in subsec. 1.2. The third concerns the unimpor-
tance of the interaction between differently oriented fibers in subsection 2.3.

Based on those assumptions and in view of the microstructural characteristics and physical prop-
erties of constituents, a meso material model was constructed first, followed by the derivation of a
damage-rate-dependent constitutive equation with consideration of the probability density of fiber rup-
ture , orientation distribution density, and stress-redistribution during fiber-breaking. An example was
given for glass fiber reinforced polypropylene polymers. The effect of initial orientation, damage-in-
duced anisotropy, and damage-rate effect on macro-behaviors of the material was quantitatively ana-
lyzed. The theoretical predictions compared favorably with the experimental results, which demon-
strate the predictability of the present model. Some conclusions and discussion are given in the last

section .
1 Material modeling

1.1 The heterogeneity of local stress-strain

SFRCs consist of matrix and randomly distributed short-fibers. Due to the position and orienta-
tion heterogeneity, the local strain and stress in the matrix and reinforcers relate to the macro strain in
a complicated manner. In the present study, it is assumed that local strain rate in the matrix and
fibers is dependent on their positions, but at each position it remains proportional to the macro strain
rate before damage takes place. Therefore, the heterogeneity of local strain rates can be described by

using of heterogeneity factors.

Let E,, and € ,, denote the local strain rates of the matrix and fiber, respectively, P = IR de-
note an orientation tensor of fibers in a unit vector I, and E denote a macro-strain rate tensor. Thus,

the above assumption can be stated as

E =C

m m . E, (1)
;f = Efé where ¢ = P:E, (2)

where ¢,, and Z*f are heterogeneity factors of the matrix and fibers, “ ~ " means they are functions of -
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location. Due to the interaction of micro-components, c,, and Ef vary generally with macro-deforma-
tion E .

As a primary study, attention is limited to an infinitesimal strain during an isothermal process,
and mechanical properties of constituents are incremental linear. Let S, and K, denote the siress

rate and transient stiffness tensor of the matrix, respectively, and o sand k  denote the stress rate and
the transient tangent modulus of the fiber, respectively. The local incremental stress-strain relations of

the matrix and the fiber can be written as
m E i . (3)
O'f = kfelj. (4)

1.2 Modeling of unidirectional-shini-fiber reinfurced composites

First wz con:idet the composites reinforced by short fibers randomly located in the matrix but ori-
ented in only one direction. The total deformation power of REV is equal to the sum of ones contribut-
ed by the matrix and fibers, i.e.

S:E =J §,.: E, dv +J&,Efdu = H
”m ﬂ/

In the isothermal and elastic process, the total power is identical to the rate of specific Helmholtz’

S‘m: EmdU-'-JEf&deP}!E.'. (5)
s

v
m

free energy, and the macro stress of the composites will be

S:fs,,,:;:mdv+f;f&fva. (6)
1)m U!
Thus, the total stress is shared by the matrix and fibers together. The macro stress rate can be derived
as
=j (gm:zm+§m:zm)dv+J (Z'f(;f-i-;'f;'f)dvp (7)
Substituting eqs. (1), (2) into egs. (3) (4) and then into eq. (7) yield
(U,,,K + Ufo) E (8)
where
- 1 -~ - 1( de, dc
szv—mjv[cm:Km:cm+E(Sm;—+d—E m)]dv, (9)
K, = kP P where k, = + ; de
s = kP () P where k; = o cfkf+dfd dv (10)

are macro stiffness tensors contributed by the matrix and flbers, respectively, v,, and v, are volume
fractions of the matrix and fibers, respectively. Eqs. (8)—(10) show an incremental constitutive re-
lation of heterogeneously unidirectional SFRCs in an isothermal and non-damage process .
Therefore, the unidirectional SFRCs can be modeled with the continuous matrix with K, and the
fiber-bundle with kf The matrix and fiber-bundle satisfy
S, =K,: E, (11)
o; = ks, where ¢, = P:E, (12)

respectively. The averdge stiffness of the matrix and fiber-bundle represents the statistical characteris-
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tics of the random distribution. Hence, the model can simulate the macro mechanical behavior of
practical composites. The variation of the average stiffness with deformation can be determined statis-
tically for specific materials. It should be noted that unlike long-fiber reinforced composites, REV is
much larger than the length of fiber itself, and the aspect ratio, stiffness modulus and strength are
greater. The property of fiber-bundles depends not only on the fiber property but also on the hetero-
geneity of the fiber distribution. Therefore, the fiber-bundle is equivalent to the long fibers with a
stiffness l_cf. Based on the minor interaction between differently oriented fibers, the above material
model can be extended to randomly oriented SRFCs (see subsec. 2.3). In the next secilon, we will
formulate the damage constitutive equation on the basis of the miodel witl) unidirzctionel short-fibers.

Without causing any confusion, the bars above the average siiffness tensors will be omitied.
2 Damage constitutive relation

2.1 Statistical expression and tliermodvnamic ceiation of damage variables
Dzmage ot SFRCs generally includes deterioration of the matrix, matrix-fiber interface debond-
ing, fiber-breaking and their interactions. Damage of the matrix and interface destroys the force-trans-
fer path, while fiber damage causes a concentration of defects and siress in the matrix and interface.
Therefore, no matter what kinds of damage take place, the load-bearing capacity of constituents will
decrease so as to result in a progressive deterioration of the average mechanical property of compos-
ites. It is too difficult to describe every detail of such a complicated damage process. Thus, the com-
plicated damage is attributed to the matrix deterioration and fiber-bundle damage due to fiber-breaking
and interface-debonding.
According to Kachanov’s damage definition'®, the average stresses of the matrix and fiber-bun-
dle satisfy
S, = (1-D,)S', (13)
o = (1 - Df)cr}d), (14)
where D,, is Kachanov’s damage factor of the degraded matrix, and Dy, a percentage of the damaged
fiber-bundle due to fiber-breaking and interface-debonding. Therefore, effective stresses, S'” and
a}"f) obey the ordinary stress-strain laws:
SO - K . E, (15)
&}ef) = kféf, (16)
‘where K, is the average stiffness tensor of the matrix, and k;, the average stiffness modulus of fiber-
bundles. Statistically, let ¢(e;) denote a probability distribution density of the broken or debonding
strain ¢, of fibers. It should satisfy the normalizing condition

J (e )des = 1. (17)
Thus, Dy can be calculated by the following equation
Dep) = | "plep)des, (18)

where ¢,, is the critical broken strain of the weakest fibers, and ¢ is the fiber accumulated strain.

Generally, ¢, should be the maximum strain reached during a deformation history. Therefore, the
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damage evolution of the fiber-bundle will be determined by the probability distribution density and the
maximum strain of the fiber-bundle.

For an isothermal and infinitesimal-strain process, independent state variables are the strain ten-
sor E and the damage vector D = { D, Df}. If f denotes the specific Helmholtz free energy, the

‘3] can be expressed as

oof = S:E-n-D, (19)

where pp is mass density. The quantities conjugate to E and D are the stress tensor S and the gener-

generalized Gibbs’ relation

alized thermodynamic force 17 = ! T s qf} , respectively. S and 1] are functions of £ and D . Since
n=n (E,D), we can write D = D (E, n). The damage evolution car thus be expressed as
aD abD -
B E oy

During a quasi-static process in which ihe internal variable # is fully controlled by the macro strain,

i.e. n =1 (E), the ahove equaiion can be further expressed as

X 4 oD . )
D={0—Q+——d—'l};E=3—g:E. (21)

In this case, the damage rate is proportional to the strain rate, and the proportional coefficient de-

pends on dD Evidently, % is material-dependent. For fiber-bundles, it can be obtained from eq.

dE "
(18), i.e.

dD, dD, de!

——de = —db{ = ¢(ep)P. (22)

2.2  Damage-rate effect and the damage constitutive equation
In the event of damage, the total deformation power of REV is equal to the sum of contributions
of the matrix and fiber-bundle. By using eqs. (13) and (14), the total power is
S:E = v,(1-D,)S8": E + v(1-Dy)ol"P:E. (23)
It derives
S = 0,(1-D,)8% + v,(1 - D)ol P; (24)
that is, the total siress of composites during damage is still shared by the effective matrix and fiber-
bundle together. And the total siress rate should be
§ =0, {(1-D)8 - D8+ v, {(1 - D)5 - Dy o }P. (25)
It can be seen that the total stress rate is affected by the damage-rate effect as well as the state of the
damage. In view of the thermodynamic considerations, the damage rate can be expressed by the macro
strain rate. Substituting eqs.(15), (16) and eq.(21) into eq. (25) yields
S = {0, K" + v, K} E, (26)
where the fourth rank stiffness tensors
dD db,

(e _ (1 _ _ g o 4 (e
K" = (1-D)K, -SSP @3 + 35 ®5n)> (27)
dD
K\ = kPP @ P where k\*” = k(1 - D,) - a}eﬁ—ldef (28)

are contributed from the effective matrix and fiber-bundle, respectively. K}d) embodies the effect of
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damage and damage rate of the fiber-bundle on the macro stiffness tensor. From eqs. (27) and (28),
the stiffness reduction can also be divided into two parts. One can be expressed by damage-state vari-
ables, and the other, by the damage rate. The influence of the later on the stiffness tensor is called
damage-rate effect.

Here, there is no damage healing and developing as | e/l decreases, i.e. D=0 during | e/l

decreases. The effective stiffness modulus of the fiber-bundle can be stated as

1 dD ‘
k(l-D)———a——[,ls|;max(|sh-l,l&:"l)andsrsr>0,
k}t‘f) - f s 1 - fodef f / S : (29)
k(1 - D), | e | < max(| e/ 1, le,isor edep < 0.

During a process without damage-growing, the effective stiffness tensor of thc matrix is
K(mef) =\ © DK, (30)
which is the same as the previous continuum damage thcory. Therefore, when the damage-rate effect
has little influsiice on the effeciive stiffness tensor, eq.(30) is an approximate formulation of the ef-
fective stiffness tensor . The damage-growing law of the matrix is material-dependent. An example will
be given in the next section.

To sum up, eqs. (26)—(28) are the incremental meso-damage constitutive equations of unidi-
rectional SFRCs. The effective stiffness tensor depends on the damage-rate effect as well as the dam-
age state. And they indicate also that damage-rate effect will play a very significant role with the in-
crease of damage and/or siress. It will eventually become a dominant factor to cause additional effec-

tive stress rate in material "'}, even resulting in damage evolution induced catastrophe[m .

2.3 The damage constitutive relation of 3-D oriented SFRCs

Generally speaking, short-fibers in composites are randomly oriented in 3-D space. Statistically,
one can introduce a probability density o({2) to describe the orientation distribution of fiber-bundles,
where (2 is the solid angle in a domain corresponding to a hemispherical surface. Thus, composites
reinforced by 3-D oriented short-fibers can also be modeled with the matrix and fiber-bundles with an
orientation distribution density p. Tips of unit vectors of all fiber-bundles form a hemisphere. The ori-
entation distribution density of fiber-bundles is the description of the orientation structure of compos-
ites. Usually, the orientation structure of long-fiber composites is much simpler than that of SFRCs.

According to eq.(28), the contribution of fiber-bundles to the macro stiffness tensor depends on
P, k}ef) s v7. In view of the slight interaction of oriented fibers in REV, the total power contributed

by all oriented fibers can be expressed by superposition, and the stiffness tensor of 3-D fibers becomes
y P y superp
K'Y = j Pk P @ P d02, (31)
Io)
where k'" satisfies eq. (29). The orientation distribution density o satisfies the normalizing condi-
f q e
tion
2n %
J pdf) = J J 0 sinfdgd¢ = 1, (32)
a 0J0

where § and $ are spherical coordinates. For isotropic distribution, p = 1/2x. The anisotropic distri-
bution may result from the manufacturing process and damage. Changing the equation on the left side

of eq. (28) into eq.(31) gives the damage constitutive equation for 3-D oriented SFRCs.
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3 Damage analysis of glass fiber-reinforced polypropylene composites

Damage of composites in the present paper is atiributed to the matrix deterioration and fiber-bun-
dle damage due to fiber-breaking and interface-debonding. The following will take glass fiber-rein-
forced polypropylene composites as an example, and the damage evolution law will be discussed. By
making use of the present material model and general form of the damage constitutive equation, the
synthetic effect of constituents on the macro-mechanical behavior of composites can be investigated,

and the theoretical results can be compared to experimental data.

3.1 Damage evolution law of the fiber-bundle

Statistically, for SFRCs, the normalized Weibull distribuzion with a cut-ofl is commonly accept-

ed, i.e.
[0, lepl<le,l,
g(es) = {am, fs_:&}("/'l' i [(5&)"/ (ec,)"f]} (33)
) WA - A -l = s leglzle,l.
l o {LEO P { i eg €o il
By integrating the above equation, the damage evolution law can be obtained as
0, lesl<le,t,
Di(e;) = [ AW g\ (34)
S - _ o R a4 ]}
1 exp{ Af[(e()) (50) , lerl=le, 1,

where A, is a damage coefficient of the fiber-bundle, n,, the Weibull exponent, and €,, a dimen-

sionless material constant. Consequently, the damage rate can be expressed as

0, Ief|<max(|e}l,|ec,|)orsfdefs0,
dD = éﬂ[ E[ (ﬂ!—l) A (35)
de, . (I—Df){e } » | & 1= max(l ef |, | &, |) and ede; > 0.
0 0

Therefore, the damage-rate effect is dependent on the loading-path and damage history .
For the damage-growing process (Df > 0), the damage critical condition corresponding to n, =
2 can be expressed as

%kfe} - —;_-kfei, =0, (36)

which is analogous to the well known Griffith’s criterion for crack propagation.

3.2 Damage evolution law of the matrix

Experimental results show that matrix damage is closely related to the degradation of fiber-bun-
dles in the glass fiber-reinforced polypropylene composites. In the following damage analysis, let ma-
trix damage be proportional to the average damage of fiber-bundles, i.e.

D, = Anu~D; where D, = fnpufdn, (37)

where A, is a matrix-damage coefficient, and n,, a damage exponent of the matrix with respect to

fiber volume fraction. The damage evolution or damage-rate tensor of the matrix can be expressed as

dD dD :
mo_ ool 9%
dE = MY Jgf defpdn’ (38)

where (2,, is an orientation domain or a set satisfying damage-growing conditions of fiber-bundles, i.e.
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Q4 = {d€2; | ¢4 | = max (I e}’ l, I e, |) and ede; > O}, (39)
Substituting eqgs. (35) and (38) into eqs. (26), (27) and (31) yields the specific form of the dam-
age constitutive equations for glass fiber-reinforced polypropylene composites.

3.3 Mechanical parameters of the matrix and fiber-bundles

14] , the reinforcers in laminates

Based on the experimental investigation of Thomason and Vlug[

are basically oriented randomly in a plane, so the fiber distribution density can be expressed as

1 L

‘D=—1;8(0_—2_)’ (40)
where & is Dirac &-function. For an initially isotropic distribution, o = 1,2n. In the follewing exam-
ples, attention is focused on the anisotropy effect, sc the heierogeneity of local strain rates in the ma-
trix and fiber-bundles is neglected and it is taken that ¢, = ¢, f>< I and ¢, = Z’fs 1, where ID><
I is the fourth rank unit tensac. I this case, the elastic stiffness tensor of composites can be fully de-
=1.6 GPa, v, =0.4,
and k=76 CPa. Otiier material constants can be calibrated according to a part of the experimental
results as ¢, =0.01, ¢, =0.038, A,=21.0, n,=4.0, A, =12.0, n, =0.5, respectively. In

the present study, 360 discrete orientations are selected for fibers oriented in a plane, and 1 440, for

termined by pkysical constants of the matrix and fibers, that is to say, K

m

fibers oriented in 3-D space. The physical properties of composites depend on the distribution density
and material constants of the matrix and fibers.

3.4  Overall behavior, damage-induced anisotropy and damage-rate effect

Figure 1 gives a comparison of predicted results with experimental data for glass fiber-reinforced
polypropylene laminates. Fig.1(a) and (b) show that the tensile modulus and strength of laminates
are almost proportional to fiber volume fraction. However, the failure strain of laminates has a strongly
nonlinear relation with fiber volume fraction (see fig.1(c)). The overall property of laminates be-
comes orthogonally anisotropic induced by damage. The strain softening results from the damage-rate
effect and the interaction between the matrix and fiber-bundle damage. All of the predicted tensile
modulus and strength as well as the failure strain of the composites match the experimental results ob-
tained by Thomason et al. [14,15) A5 Jack of the intrinsic stiffness of the tensile instrument, the strain

carresponding to E; = -~ 2E,_ is approximately taken as a failure limit in the present numerical anal-

yses.
15¢
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Fig. 1. Variations of tensile modulus, strength and failure strain of laminates with different fiber volume fraction, where marks
are experimental data from refs.[14] and [15]. (a) Tensile modulus vs. fiber volume fraction; (b) tensile strength vs. fiber

volume fraction; (c¢) tensile failure strain vs. fiber volume fraction.
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A tensile curve embodies a whole process from an elastic stage to the damage evolution till rup-
ture. A uniaxial extension will cause overall anisotropy of composites, but the damage-induced
anisotropy can hardly be measured by the simple extension. The present model is able to analyze the
overall anisotropy by examining the variation of the stiffness tensor. In the following numerical analy-
sis, the initially isotropic composite material reinforced by 30% fibers is taken as an example. Fig.2
shows variations of engineering constants E,/E,, & Es/E, (= Ey/E,), G/G,.(=G3/6G,) &
G,/ G, and v, with the tensile strain. Evidently, they all decrease with the increase of the tensile
strain, while E,, decreases most rapidly. Bumps in curves result from the damags-rate effect. The
discrepancy between E;; & E, and G, & G, indicates that the inj*ially Isotiopic composite is

(@) 2 4.4% ) cs2F

L ——

4.2 S~ -
| S~ 0.30

5_95 2r \ T:f: 4.0+~ 0285
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Fig. 2. Variations of engineermg constants of 1sotropic composites with tensile strain. (a) £,/ E,(line 1) and E,,/E,, (line

2) vs. tensile strain; (b) G,/ G, (line 1) and Gy/ G, (line 2) vs. tensile strain; (c) v, vs. tensile strain.

changed into a transversely isotropic material. The damage-induced anisotropy grows stronger and

stronger with the damage evolution.

3.5 The effect of initial orientation distribution on overall behavior

With the wide application of injection moulding technique of SFRCs, the effect of the orientation
concentration on the overall behavior becomes more and more significant. The orientation distribution
affects the overall performance as well as the stiffness tensor. For injection moulding, the orientation

distribution density can be approximately described as a cosine-type function, i.e.
o= L(n+1)cos"0, n =0,1,2,-", (41)
2n

where x-axis is the injection direction, ¢, an inclination angle with x,-axis. n =0 corresponds to
an isotropic distribution, while n—> % tends to unidirectional composites. Thus, n can be considered
as the measurement of fiber orientation concentration so as to be used to analyze the influence of fiber
orientation on the overall behavior of composites.

Generally, the influence of fiber orientation concentration on the overall performance is very
complicated, especially in the case of the interaction of initial anisotropy and damage-induced
anisotropy . For composites with the cosine-type distribution, its initial property is transversely isotrop-
ic. Fig.3 shows variations of tensile and shear moduli with the tensile strain for composites with n =
0, 1, 3, 5. The initial tensile modulus E; increases strongly with the increase of n, but its degrade
velocity with damage is the fastest. This shows the reason for high strength and low toughness for com-
posites with a strongly preferred orientation. However, the initially transverse tensile modulus E,; and

shear modulus G,; decrease with the increase of n and damage. The variation of E,, with n and dam-
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age is much more complicated than others, and it is strongly nonlinear. It can be seen that the pre-
ferred orientation of fibers offers the potential for enhancing some mechanical performance of compos-
ites but suffers the degradation of other properties. Therefore, it is of great significance to control

fiber-orientation for optimizing the performance of composites.

8 n=>5
n=3 3
6 -
5 n=1 )
LE: 4 %‘. n:3 \
Y] 55|
‘__ N—
2p =0 I n=s ‘\\ \
0k (a) ) 443-\—. L (b)
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Fig. 3. Variations of tensile and shear moduli with tensile strain for composites with n =0,1,3,5. (a) E,/E,, vs.

tensile strain; (b) E,/E, vs. tensile strain; (¢) G,/ G, vs. tensile strain; (d) G,/ G, vs. tensile strain.
4 Conclusion and discussion

A meso physical-mechanism-based material model is constructed for SFRCs which can be applied
to simulate and predict the overall mechanical behavior with damage. The constitutive equation is de-
rived with the initial and damage-induced anisotropy as well as the damage-rate effect taken into ac-
count. It is flexible and convenient for application to SFRCs with different fiber orientation distribu-
tions, including isotropic, plane and cosine-type distributions mentioned in numerical analyses.

The initial anisotropy caused by a preferred orientation and damage-induced anisotropy signifi-
cantly influence the mechanical property of SFRCs. The damage-induced anisotropy depends on the
loading path and deformation history.

The damage-rate effect vitally affects the ability to support the additional load increments of com-
posites. During a stress-controlled loading process, the damage-rate effect leads to the strength failure
or damage evolution induced catastrophe far earlier than complete damage. And during a strain-con-

trolled loading process, the damage-rate effect results in the strain softening of composites.
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Of course, the actual microstructure of SFRCs is much more complicated than the present mate-
rial model. The present work is only a primary attempt. We hope the present material model will be
helpful-to serve as a bridge linking the microscopic material parameters of the composites to the macro

mechanical behavior for enginetring applications and optimum design of SFRCs.
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