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ABSTRACT  The multi-layers feedlorward neural network is used for inversion of material constants of {lu-
id-saturated porous media. The direct analysis of fluid-saturated porous media is carried out with the bound-
ary element method. The dynamic displacement responses obtained from direct analysis for prescribed materi-
al parameters constitute the sample sets training neural network. By virtue of the effective L-M training algo-
rithm and the Tikhonov regularization method as well as the GCV method for an appropriate selection of regu-~
larization parameter, the inverse mapping from dynamic displacement responses to material constants is per-

formed. Numerical examples demonstrate the validity of the neural network method.
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I . INTRODUCTION

The inverse problem of material constants is of interest in rock and soil engineering and geophysi-
cal prospecting engineering. The approximations of material parameters are generally obtained by inve-
rse analysis of the static and dynamic displacement response measured in situ. The classical inverse
methods reduce an inverse problem of material parameters to an optimal problem by fitting displacement
simulated with the displacement measured'’| . The solution of an optimal problem is obtained generally
by searching in the space of parameters. Deterministic searching and stochastic searching are two main
searching methods. The information of derivative of one-order or two-order is needed in deterministic
searching methods, such as the gradient method and Newlon method. Unfortunately, the extraction of
gradient information is often difficult and time-consuming, especially for multi-parameters inversion
problems. The computation of gradient by the time-convolution regularization method™ or the time-in-
verse wave field method”' shows the iniricacy. Furthermore, the derivative-based searching methods
will fall in the local extremum of misfit error function easily. The stochastic searching method, for ex-
ample, simulated anneal algorithms™ and genetic algorithms®', need only the information of misfit er-
ror function by adoption of Metrpolis® criterion and criterion of survival of the filtest. Therefore, the
time-consuming computation of gradients is avoided. But the effectiveness of the stochastic searching
method is sensitive to the selection of various probability parameters. The neural network method is a
powerful tool for dealing with complicated nonlinear problems. The feedforward networks of 3 layers
with sufficient neural elements can perform any complicated nonlinear mapping. Stayroulakis and Ante-

st used the neural network approach to deal with crack detection problems recently. It stands to rea-

«  Project supported by the National Natural Science Foundation of China (Nos. 19872002 and 10272003) and
Climbing Foundation of Northern Jiaotong University.
Received 10 December 2001 ; revision received 29 September 2002.



Vol.15, No.4 Wei Peijun et al.: Fluid-Saturated Porous Media « 343 -

son that neural networks can perform mapping displacements response measured to material constants
and the key problem is how to design the structure of neural networks and how to train neural networks.
It’s feasible to design the structure of neural networks with genetic algorithms, although great cost has
to be paidm . But it’s more common to design the structure ol neural networks by trial-and-eror and
using the experience of the designer[g] . The methods of training neural networks have heen studied
widely after the back propagation algorithm is proposed, for example, the variable learning rate meth-
od, conjugate gradient algorithm and quasi-Newton algorithm. The L-M algorithm appears to be the
fastest method among these methods because it’s designed Lo approach second-order training speed
without having to compute the Hessian matrix®’ . The sample sets lraining network can be obtained
from direct computation by using various numerical methods, for example, finite element methods and
boundary element methods.

The parameters inverse problem of fluid-saturated porous media is studied by using the neural net-
work approach in this paper. For the semi-space of media often encountered in geophysical prospecting
problems, the finite element method brings inevitably the introduction of complicated artificial bound-
ary. Aliernatively, the infinite boundary elements are introduced when the boundary element method is
used. In contrast, the boundary element method is more suitable for semi-space problems owing to the
relative simplicity of infinite boundary element. The basic solutions of fluid-saturated porous media are
necessary for boundary element methods and can be ohtained with the help of analogy between poro-
elasticity and thermoelasticity[ 0] A feedforward neural network of 3 layers is used to perform the map-
ping from displacement response to material constants. The sample data sets for training neural net-
works are obtained from direct computation by the boundary element method. And the effective L-M
method is used to train neural networks. Two numerical examples are given to show the validity of the
neural network method.

I . THE BOUNDARY ELEMENT METHOD FOR FLUID-
SATURATED POROUS MEDIA

The Biot’s equations of fluid-saturated porous media are expressed as

ty; + X; = Pui‘:i‘l'Ple,:“l'b(lli"Ui) (1)
z+ Xi = ppi; + pp U = b = Uy) (2)
where t; = (X + QEIR)S,-je +2ue; + Q0,0, tT= Qe + Re, py = (1-B)p, + Pas Pn=Bor+ Pa>
D = — Pas P, 8nd oy are mass density of solid phase and fluid phase respectively, p, additional mass

density which represents a mass coupling between fluid and solid, 8 porosity, A, u, ¢ and R mate-
rial constants, b a dissipation constant, u; and U; solid and fluid displacement respectively, e and ¢
solid and fluid diladon, X, and X; body forces acting on solid and fluid.

From Betti’s reciprocal relation, the following equation holds

[ (tu! + fu::mmj (X! + X,U; )0
r n

= [ Grus e 0D s | (XTw + 2 UDA0 (3)
Jr 0
where I is the boundary of domain 2, t; = t;n; and U, = Un;, 1 is the unit normal to the bound-
ary.
For dynamic poroelastic problem in frequent domain, by using the fundamental solutions corre-

sponding to the following two sets of body forces!™
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(1) X/ =8(x-£&)6;; X" =0
(2) X;" =[(12x)ar] 3 X[ =X (iwb + &’ pp )/ ( —iwb + @’ py)
The integral representations of the solid displacement u; and fluid pressure r are obtained in case of

body force being ignored!™!

s + | tudl 4 | 7 UAL = | (hug v U0 (L= 1,2) ()
r r
Jent +J ug tdl +J r(Upy - JX;'ni)dF = L*(t;; w + 73 U,)dIl (4b)
r r
or cu' +J p udl = Lu*de’ (5)
r
where 1 = fu,, Uy rfT, p={t;, ly, Un}T
th by - Uy Ly Uy~ Ty : 1 0 O
P o=t tn ~Ubl, u' ={up un -1, Ciz"é“l:OI O}
by tp — Up TR I ¢ 0 -7
Equation (5) can be discretized with boundary elements
M N
e+ D) E{LP* (5,W)M(f,v)J(E,V)dF}u“’j)
I=1 j=1 !
PR |
_ LZ{JH (&, D)N(£.7)J (&, 7)dT Jp07 (6)
=l f=

Mo MW
or cu' + Z _Jflgu“’j) = Z EG%”J) (7)
151 = =1 j=1
where M is the number of bourlltfm; elements, N t‘heJ node number on boundary, N;(&,7) the shape
function, and J(£, ) the Jacobian matrix.
Let H' = H + ¢, and Eq.(7) can be written in a more compact form;

Hu = Gp (8)
Equation (8) can be reordered as usual passing all the unknowns to the left-hand side and the known
to the right, then the linear algebraic equations are obtained

AX = F (9)
where X is the vector of the unknown boundary value of u and 7, and F is obtained by multiplying
the corresponding columns of H or G by the known values of 4 and 7.

Il . NEURAL NETWORK FOR INVERSE MAPPING

By using the boundary element method discussed above, the dynamic displacement response at
the surface of fluid-saturated porous media whose
material constants are prescribed can be estimated.
The process is called direct analysis or direct map-
ping. The process to inverse determine the material output
constants from known dynamic displacement re-

ponse is called iverse analysis or inverse mapping.

It’s expected that the inverse mapping can be simu-

lated by multi-layers feedforward neural network in ,
Fig.1 Inverse mapping neural network for parameter

‘order to avoid directly solving the mathematical C .
) inversion of fluid-saturated porous media.

model of inverse system that is very complicated for
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fluid-saturated porous media. The multi-layers feedforward neural network is composed of a large num-
ber of highly interconnected neural elements which are assigned to a number of consecutive layers, as
shown in Fig. 1. The first layer receives signal and the last layer outputs response. An internal signal
is transmitted from one layer to the next in the hierarchy. Each neural element sums the input from the
neural elements of the previous layer to which it is connected, magnifies hy an appropriate weight
which resembles the synaplic strength in neural connections, then transforms it by a transfer function
(activation function or response function), and transmits it to the neural elements of the next layer.
The numbers of hidden layers and neural elements in the hidden layers are related to the problem stud-
ied. The transfer function of neuron in the hidden layer is continuous Sigmoid functiom.

fx) = U1+ expl- (5 - 8)]] (10)
where 8 is the valve value of neuron. The transfer function of neuron in the output layer is taken as a
linear function. The mapping character of the network is determined by the weight W; between neurons
of dissimilar layers and the valve value &, of neurons. The net inpuls and the outputs of neuron i in

layer k + 1 in the neural network of M layers can be expressed as
5

s,

nht o= }_} w",ij”of + O (11)
i=1

ofth = A (k) (k =0,1,,M-1) (12)

Training network is to adjusted gradually weight W; and valve value 6; to minimize exvor function
of neural networks by appropriately constructed algorithms according to a large number of data diploid
{(pi,t), (i=1,, Q) | ohtained from direct analysis, where displacement response p; correspond
to prescribed material constants #; . Usually, the least mean square etror is taken as the error function

or misfit error function.
J 7
- M ‘ G
E = E(rq - o) (t, - 0}) = }_fe?;eq (13)
r]"-'- q=

Among various algorithms of training networks, the L-M algorithm appears to be the faster algorithm for
training moderate-sized feedforward neural networks (up to several hundred of weights) because it can
be adjusted between gradient method and Newton method by an appropriate factor s . The network pa-
rameters ¥ , including weights W, and valve value §;, is adjusted as following in the L-M algorithm,

2

Ax = [J"(x)J(x) + W] (x)e(x) (14)
where J(x) is Jacobian matrix composed of one-order derivatives. By considering
vE(x) = J'(x)e(x), VE(x)~J(x)J(x) (15)

it is obvious that the L-M algorithm approaches gradient algorithm when parameter o is large enough
and Gauss-Newton algorithm when parameter y is small enough. In the process of training, the param-
eter . is adjusted as following: if Elx(k+1)]= E[x(k)], then u=10p; else g = /10,

In order to overcome overfitting which may degrades the prediction of network, the misfit error

function is regularized to make the output of network smoother.
0 N

“ VT 2

E = Leq(x)eq(x) +72xj (16)
g=1 j=1

where ¥ is Tikhonov regularization parameter. In case that regularization parameter 7 is too small, the

purpose of smoothening output of network could not be carried out; in case that regularization parameter
¥ is too large, the total misfit error would increases apparently. The appropriate regularizalion parame-
ter ¥ is given by using general cross validation (GCV) method™ to achieve the best tradeoff between
smoothening output of network and decreasing misfit etror.
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V. NUMERICAL EXAMPLE
The first numerical example studied in the present paper deals with a geomechanical problem of
semi-space of fluid-saturated porous media excited by a uniform harmonic normal traction on the surface
shown in Fig.2. The amplitude, breadth and frequency of the uniform harmonic normal traction ap-
plied on solid phase are: P, =100 KPa, 2a =2 m and w =1 rad/sec. The suiface of {luid-saturated

porous media is drained. The boundary conditions are expressed as

7. =0, g (-a,a)
. = Py, x€(-a,a), atz = 0
., = 0, xE(—OO,‘W), at z = 0
T = 0, x € (- w,®), atz =0

P=100KPa Py

surface Y YyY Y TUTTYT X - ' Y Y Y Y X
|l<2al .| measure point [ \ <] - /
Iig.2  2-D semi-space of fluid-saturaled porous media Fig.3 2-D semi-space of fluid-saturated porous media
exciled by uniform harmonic load. - with a fluid-saturated overlay of dissimilar

material conslants excited by uniform

harmonic load.

The reference material constants are: A = 4 x 10° N/n?*, p= 6% 10° N/t Q =1.399 x 10°
N/m*, R=0.444x10° N/m’, b =0.19 x 10° Ns/m*, p, = 2700 kg/n’, o, = 1000 kg/m’, o, = ~ 150
kg/m’ and $=0.20. The unknown material constants are o, , p;, 8). Fives value are equidistantly
collected between 80% and 120% of the reference material constants and 125 smaple sets are acquired
according the orthogonal design principle. By using boundary element method, the displacement al
measured points on surface of fluid-saturated porous media can be computed to obtain the displacement
responses to 125 sample sets of material constants. The topological structure of neural network is 10-
15-3. 10 input nodes correspond to the horizontal and vertical displacements of 5 measured points and
3 output nodes correspond to 3 unknown material constants. The 125 sample sets are used to train the
network with the L-M algorithm. The neural network trained is used to carry out inverse mapping from
displacement responses to material constants. In order lo check the prediction of network, 5 groups of
material constants are obtained randomly and the corresponding displacements are computed by bound-
ary element method. Then, the corresponding displacement responses are put into network. The corre-
sponding material conslants are obtained from output of network and are compared with real value in
Table 1. The fact that mean errors are not exceed 5% for the 5 groups of material constatns indicates
that good prediction of material constants can be carried out by network performing inverse mapping
through an appropriate tranining of network.

The second numerical example studied is a semi-space of fluid-saturated porous media with a flu-
id-saturated overlay of dissimilar material constants as shown in Fig.3. The excitation applied on the
surface and the boundary conditions are same as in the first example, The reference material constants
of the overlay (h =5 m) are: A =3 x 10° N/m®, p=4x10° N/m®>, Q¢ =1.3x10° N/m*, R=0.4
x 10° N/m?, b =0.2x 10° Ns/m*, p, =2100 kg/m®, o, = 1000 kg/m’, o, = ~ 120 kg/m’ and f =



Vol.15, No.4 Wei Peijun et al. : Fluid-Saturated Porous Media + 347 -

0.4. The unknown material constants are: (1) (p,, o;,3) in the overlay. (2) (g, , ;. f3) in the un-
derlying semi-space. The collecting ol sample data sets and the training of neural network are same as
in the first example. Similarly, 5 groups of material constants obtained randomly and corresponding
surface displacements are used to check the prediction of network. The real value of material constants
and the prediction of network are list in Table 2 and Table 3, respectively. It is found that prediction
of (p;»p,,8) in the overlay is belter than that of (o, , p;, 8) in the semi-space (the mean relative er-
ror is 6.81% for overlay and 9.44% for underlying semi-space) . This phenomenon may be explained
by that the swrface displacement responses are more sensitive to the material conslants of overlay than
that of fluid-saturated underlying semi-space. In addition, the fact that the mean error in the second
example is greater than that in the first example indicates that larger sample data sets are necessary for

more complicated problem to reduce the errors.

Table 1 The comparison between be real value and prediction of network
for (p,,p;, ) in the semi-space

Test Real value Predictions of Relative error
groups (oyspr8) neural network (%)
1 2710 920 0.185 2765 897 0.173 2.03 2.51 6.49
2 3045 834 0.228 2989 876 0.241 1.84 5.04 5.70
3 2846 1176 0.203 2798 1094  0.196 1.69 6.97 3.45
4 3175 1032 0.168 3281 986 0.152 3.34 4.46 9.52
5 2241 856 0.194 2097 795 0.207 6.43 7.13 6.71
% Mean relative error; 4.89(%).
Table 2 The comparison between the real value and prediction of network
for (p,,pr, ) in the overlay
Test Real value Predictions of Relative error
groups (pesprsB) neural network (%)
[ 2485 1065 0.318 2573 082 0.352 3.53 7.79 10.69
2 1852 1173 0.422 1764 1098 0.456 4.75 6.39 8.06
3 1698 1087 0.484 1548 1023 (.439 8.83 5.89 9.29
4 2180 025 0.364 2106 993 0.381 3.39 7.35 4.67
5 2012 856 0.451 2124 028 0.417 5.57 8.41 7.53

% Mean relative errors 6.81(%).

Table 3 The comparison between the real value and prediction of network
for (p, .o, 3) in the underlying semi-space

Test Real value Predictions of Relative ernor
groups Coorpra B) neural network (%)
| 2814 1082 0.186 2639 1206 0.163 6.21 11.46  12.37
2 2197 895 0.219 2033 1017 0.236 7.46 13.63 7.76
3 3168 1193 0.204 2983 1109 0.232 5.8 7.04 13,72
4 2513 026 0.172 2785 834 0.190 10.82  9.93 10.46
5 2672 1106 0.197 2410 1183 0.181 9.81 6.96 8.12

% Mean relative error; 9.44( %) .
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V . CONCLUDING REMARKS

The parameter inverse problem of fluid-saturated porous media is more difficult than that of one
phase elastic media. The difficulties come from not only the complicated direct analysis by use of Biot’s
equations with coupling of solid and fluid phase, but also the extraction of gradient infarmation which is
very time-consuming owing to many material constants involved. The mapping method by the neural
nelwork recluces an inverse problem to the design of the network stucture and the adjustment of weights
and valve value to render the complicated and verbose computation of gradient unnecessary. If only suf-
ficient training sample sets are acquired by direct computation, the inversion mapping from displace-
ment response to material constants can be carried out. A comparison between the first and second ex-
amples shows that the mean eror in the second example is greater than that in the fust. This indicates
that larger training sample sets are necessary for more complicated problems in order to obtain satisfac-
tory error limit, In the second example, the prediction of material constants in the overlay is better than
that in the underlying semi-space. This implies that the material constants to which the displacement
responses are more sensitive can be predicted, in general, to higher precision than that to which the
displacement responses are less sensitive.

The generalization of the network is important for the practicability of the neural network trained.
The surface of misfit error function in general has more than one extremum. The regularization is to
smoothen the surface, which not only improves the prediction of network, but also is helpful for the al-
gorithm to converge to the global extremum. The Tikhonov regularization method and the GCV method
for an appropriate selection of regularization parameters are effective. On the other hand, the large
number and wide scope of smaple sets can improve the prediction of network more directly. But the
very large number of smaple sets can preatly increase the cost of training. Besides the training algo-
rithm and the training sample sets, the design of structure of network is important to the improvement of
the effect of inverse mapping. It’s expected to help obtain the best neural network by combines the L-
M backpropagation algorithm training network and the evolutionary algorithm for searching for the best

structure .
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