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AbstractÐThe Peierls±Nabarro model of the interfacial mis®t dislocation array is analytically extended to
a family of dislocations of greater widths. By adjusting a parameter, the width of the mis®t dislocations,
the distribution of the shear stress, and the restoring force law can be systematically varied. The smaller
the amplitude of the restoring force, the wider the mis®t dislocations and the lower the interfacial energy.
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1. INTRODUCTION

Interfaces play crucial roles in determining the

properties and performance of materials. They may

be completely incoherent, coherent but strained or

semi-coherent. The incoherent and semi-coherent

cases are characterized by the presence of mis®t dis-

locations (MDs). These dislocations at the interface

are geometrically necessary defects which are part

of the interfacial structure, and they reduce the mis-

®t strain with respect to the unrelaxed fully coher-

ent interface by locally decreasing the interfacial

coherency [1±3].

The concept of mis®t dislocations was introduced

by Frank and Van der Merwe [4, 5] in a Frenkel±

Kontorva model for oriented monolayer over-

growths in 1949. Since then there have been numer-

ous observations of mis®t dislocations in epitaxial

thin ®lms as reviewed by Matthews [6], and some

observations in metal±ceramic composites have also

been reported [7]. The Peierls±Nabarro (PN)

model [8, 9], although relatively simple, can bridge

continuum theory and atomistic theory, and has the

potential of providing a quantitative estimation for

the atomistic properties of the dislocations. Van der

Merwe [10, 11] has studied interfacial MDs by

means of Fourier analysis procedure. The Fourier

analysis procedure is mathematically complex, and

cannot provide a clear physical representation simi-

lar to the traditional treatment [8, 9]. In our former

work [12], we took an alternative simpler method

than Van der Merwe's, in which we followed the

original Peierls±Nabarro idea of dealing with a

similar problem. Under the sinusoidal assumption

for the law of force, an exactly analytic solution

when the components of the bicrystal have di�erent
elastic parameters was obtained [12]. However, as
pointed out by Foreman et al. [13], due to the
assumed sinusoidal law of force, the dislocation

core in the bulk dislocation will be extremely
narrow. So a ¯atter type of periodic function may
be valid in a real crystal. This paper treats the law

of force for a ¯atter type, and represents a family
of edge type mis®t dislocations. We will also focus
on how the interfacial energy depends on the law of

force.

2. PEIERLS±NABARRO MODEL

As illustrated in Fig. 1, we consider a bicrystal
composed of two cubic crystals 1 (upper) and 2
(lower) joined at the {001} interface, and a MD
array is positioned at the interface. We make the

conventional assumptions: (i) the crystals deform
under applied forces like isotropic elastic continua
with shear moduli m1 and m2 and Poisson's ratios n1
and n2, respectively, (ii) crystals 1 and 2 have lattice
parameters a1 and a2, respectively (assuming
a1 > a2), (iii) in order to achieve an appreciable

mathematical simpli®cation of the problem, the lat-
tices of materials 1 and 2 are imagined to be gener-
ated from a so-called reference lattice with lattice

parameter c de®ned by [10]

p � Pa1 � �P� 1�a2 �
�
P� 1

2

�
c �1�

where P is an integer. Equation (1) thus de®nes the
mis®t f, c, and the MD spacing p as

p � a1a2
a1 ÿ a2

, c � 2a1a2
a1 � a2

, f � c

p
� 2�a1 ÿ a2�

a1 � a2
: �2�
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The de®nition of the mis®t is very close to a con-
ventional de®nition �a1 ÿ a2�=a2 in thin ®lms when

a1 and a2 are very close. As pointed out by Van der
Merwe [14], it seems meaningful to use the quantity

c/p rather than �a1 ÿ a2�=a2 as a measure of mis®t
when both crystals are semi-in®nite.

As shown in Fig. 1, we assume the dislocation
core to be con®ned within the glide plane xz (i.e.

interface), and the dislocation line to be chosen as
the z-axis direction. When neglecting the normal

component of the Burgers vector of dislocations at
the interface, the Burgers vector ~b (� ~u� ÿ ~uÿ) is

only parallel to the x-axis. For a single edge dislo-
cation at the interface, within a continuum theory,

the relevant shear stress at the interface is

sxy � 2m2
�k2 � 1�

�1� a1�
�1ÿ a22�p

�
b

x

�
�3�

where a1 and a2 are Dundurs' parameters.{ For the

periodic dislocation array in Fig. 1, the relevant
shear stress along the interface is

sxy � 2m2
�k2 � 1�

�1� a1�b
�1ÿ a22�p

cot

�
px
p

�
: �4�

Following the original PN model [8, 9], a continu-

ous distribution of in®nitesimal dislocations with
Burgers vector density r�x 0� � ÿdu�x 0�=dx 0 can pro-

duce the plastic displacement u(x) [� u��x� ÿ uÿ�x�]
of the upper part of the interface (y > 0) with

respect to the lower part (y<0). The resultant shear
stress at x, sxy(x), is the sum of the contributions

from all these in®nitesimal dislocations. sxy(x) is
balanced by the corresponding component of the

periodic restoring force F(U(x)) acting between
atoms on either side of the interface. U(x), com-

posed of plastic displacement and mis®t displace-
ment due to a1 6� a2, is the relative displacement of

an atom in material 1 relative to the corresponding

atom in material 2

U�x� � c

2
� c

p
x� u�x�: �5�

The term c=2� cx=p simply represents the relative

displacement of the corresponding atoms when the

bicrystal is constructed in an imagined generation

process without any deformation. For the case of a

periodic MD array at the interface, using

equation (4) we can obtain the following integro-

di�erential equation similar to the PN equation:

ÿm
� p=2

ÿp=2

1

p
cot

�
p�xÿ x 0�

p

�
du�x 0�
dx 0

dx 0 � F�U�x�� �6�

with the boundary conditions u�ÿp=2� � 0 and

u� p=2� � 0. The value of m depends on the elastic

constants of two materials, and is equal to

2m2�1� a1�=��k2 � 1��1ÿ a22��. Similar to the original

PN model, the restoring stress F(U) may assume a

sinusoidal form

F�U�x�� � t0
2p

sin�2pU�x�=c� �7�

and t0 is de®ned as the shear modulus parallel to

the interface.

With the help of equations (5) and (7),

equation (6) can be transformed into

ÿm
� p=2

ÿp=2

1

p
cot

�
p�xÿ x 0�

p

�
dU�x 0�
dx 0

dx 0

� t0
2p

sin�2pU�x�=c� �8�

where boundary conditions are U�ÿp=2� � 0 and

U� p=2� � c. In general, there is no systematic

method to solve the integro-di�erential equation (8).

However, in Ref. [12], we had guessed that the inte-

gro-di�erential equation (8) had the following ana-

lytic solution:

U�x� � c

2
� c

p
arctan

�ÿ ����������������
bÿ2 � 1

q
� bÿ1

�
tan

px
p

�
�9�

where

b � 2pcm
pt0
� 2pmf

t0
: �10�

Here, the dimensionless number b is a key physi-

cal parameter which controls the structure of the

interfaces. b decreases with increasing t0 and

decreasing f. From equation (5), we can obtain the

plastic displacement

u�x� � c

p
arctan

�ÿ ����������������
bÿ2 � 1

q
� bÿ1

�
tan

px
p

�
ÿ c

p
x: �11�

It is worth noting that the solution of equation (9)

is completely similar to the solution of Van der

Merwe [10, 11]. But the governing equation of Van

der Merwe's solution takes the form [10, 11]

Fig. 1. The mis®t edge dislocation at the interface.

{a1 � �G�k2 � 1� ÿ �k1 � 1��=�G�k2 � 1� � �k1 � 1��,
a2 � �G�k2 ÿ 1� ÿ �k1 ÿ 1��=�G�k2 � 1� � �k1 � 1��, and
G � m1=m2, k1 � 3ÿ 4�1, k2 � 3ÿ 4�2 for plane strain.
For the derivation of equation (3) refer to Ref. [15].
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2p
�
dc
dX
ÿ 1

2p

�
�ÿ 1

2pb

�p
0

�sin 2pc�X� t�

ÿ sin 2pc�Xÿ t��cot 1
2
t dt �12�

where c � U=c, X � 2px=p.
Equation (12) completely di�ers from our govern-

ing equation (8). The governing equation (12) was
solved by Van der Merwe through Fourier analysis.

Van der Merwe's result is an approximate solution,
in which normal displacement is not continuous
across the interface. In our derivation, the continu-
ity of tractions and displacements at the interface is

assured, since equation (3) is the exact elastic stress
solution of an edge dislocation at the interface. The
di�erence between our solution and Van der

Merwe's solution is that m � 1=��1ÿ �1�=m1 � �1ÿ
�2�=m2� in Van der Merwe's method, while in our
method m � 2m2�1� a1�=��k2 � 1��1ÿ a22��.
Apparently they are equal only when the two com-
ponents of the interface have the same elastic par-
ameters; otherwise, they are not equal, and the

relative di�erence between them may be up to 13%.
Similar to bulk dislocation, the half-width of the

dislocation z can be de®ned as

z � 2c

pf
arctan

�ÿ �������������
b2 � 1

q
ÿ 1

�
=b
�
: �13�

Clearly, the dislocation core width is related to the
mis®t f, shear modulus t0 and elastic constants of
two materials. This illustrates the fact that mis®t f

and shear modulus t0 can in¯uence the interface
structure. Equation (13) shows that an increase in
shear modulus t0 leads to a decrease in width of the

mis®t dislocation core, whereas at constant shear
modulus t0, the width of a dislocation increases
with decreasing of mis®t f. When t0 � 2m and
f � 0:05, z�: c, i.e. about 1.0 atomic spacings, it is

very narrow. The mis®t dislocations are wider than
this in an actual bicrystal. The extreme narrowness
here is due to the assumed sinusoidal law of force

equation (7). Therefore, to consider a ¯atter type of
periodic function of stress against relative displace-
ment may be more valuable.

3. MODIFICATION OF THE LAW OF FORCE

As mentioned above, the assumed sinusoidal law
of the restoring force equation (7) is unlikely to be
valid in real crystals. As a consequence, a ¯atter

type of periodic function of stress against relative
displacement should be proposed, which will lead to

a wider dislocation core width. In the following, we
will investigate this question quantitatively, and

determine how the width of a dislocation and the
interfacial energy vary with the assumed law of
forces.

In order to obviate the di�culty of having to
solve the integral equation (6) of the type men-
tioned, similar to Foreman et al.'s treatment [13],

the method of approach adopted here is to choose
some suitable type of function U(x), to ®nd the cor-
responding stress distribution from equation (6)

and, by eliminating x between them, ®nd F(U) as a
function of U. The main di�culty of the approach
is to ®nd some type of function U(x) which will
ensure that the initial slope of the corresponding

function is a constant t0 for a small value of U/c at
the origin x � 0.
As has been stated, it is required to ®nd such dis-

placement functions U(x) that they (i) represent
wider dislocations than that obtained by assumed
sinusoidal force, and (ii) give curves of stress

against relative displacement having the same initial
slope as the previously assumed sinusoidal curve
equation (7), thus ensuring that F(U) is the same

for small U(x)/c.
A displacement function which satis®es the con-

ditions mentioned is

U�x� � c

2
� c

p
arctan

�
1

a
tan

px
p

�

ÿ f �a�
aÿ2 tan

px
p

1� aÿ2 tan2
�
px
p

� �14�

where f �a� � �bÿ 2aÿ ba2�=�2ab� 2�. When

bÿ 2aÿ ba2 � 0, namely a � a0 � 1=�
�������������������
�bÿ2 � 1�

q
�

bÿ1�, U(x) reduces to equation (9). Displacement

curves U(x) with various values of a are shown in
Fig. 2 for the cases b � 0:1 and 1.0. Clearly, the lar-
ger a is, the wider the dislocation is. In the wider

dislocations, U(x) varies more slowly from atom
to atom, so that the maximum elastic strains are
smaller, and the theory may be accordingly more

consistent. Equation (14) can be conveniently
written as

U�x� � c

2
�
�
1� f �a� @

@a

�
c

p
arctan

�
1

a
tan

px
p

�
: �15�

Inserting equation (15) into the left-hand side of
equation (8), the resulting stress distribution is then

sxy � ÿ cm
p

�aÿ2 ÿ 1�tan
�
px
p

�
1� aÿ2 tan2

�
px
p

� ÿ f �a�
2aÿ3 tan

�
px
p

�
� 2aÿ3 tan3

�
px
p

�
�
1� aÿ2 tan2

�
px
p

��2
26664

37775: �16�
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The shear stress curves are shown in Fig. 3 for the
cases b � 0:1 and 1.0. As the dislocation widens,

along with increasing a, it is found that maximum

stress decreases, its position moves outwards and
the shape of the curve is smoother.

Considering equations (14) and (16), the function
F(U) corresponding to the assumed displacement is

written most conveniently in parametric form as

U�y� � y� f �a�
2a

c

p
sin

�
2p
c
y
�

�17�

F�y� � ÿ cm
p

��
a

2
ÿ 1

2a

�
sin

2p
c
y� f �a�

2
sin

4p
c
y

� f �a��aÿ2 � 1�sin 2p
c
y*sin2

�
p
c
y
��

�18�

where

y � c

2
� c

p
arctan

��
tan

px
p

�
=a

�
:

The cases b � 0:1 and 1.0 are illustrated in Fig. 4.

As can be seen, the initial slopes of F(U) curves are
constant t0 � �2pmf �=b for all values of a when b is

®xed, but amplitudes decrease as a increases, i.e. the

mis®t dislocation width increases. This can be

shown clearly in Tables 1 and 2. For example,
when b � 0:1, a � 5a0 (a0 � 0:050), the amplitude

of the restoring force becomes 0.39 times that of

sinusoidal law, then the width of dislocation is 2.5
times that of sinusoidal law. The width of mis®t dis-

locations is approximately linear inversely pro-

portional to the amplitude of the restoring force

when a is between a0 and 10a0 for b � 0:1, i.e.

z*Fmax1cm=p, and this result was also found in the
bulk dislocation by Foreman et al. [13]. However,

this linear inversely proportional relation seems not

satisfactory when b is large, for example, when

b � 1:0, a � 3a0 (a0 � 0:414), the amplitude of the

restoring force becomes 0.36 times that of sinusoi-

dal law, but the width of dislocation is 1.64 times

that of sinusoidal law.

Fig. 2. The displacement curves for various values of b
and a. U(x) is the atomic relative displacement function
between corresponding atoms at the interface, x the atom
coordinate, c the lattice parameter of the reference lattice,
and p the MD spacing. So both U/c and x/p are dimen-
sionless quantities. Upper ®gure: b � 0:1 and a � a0, 5a0,
10a0, 20a0, 30a0 (a0 � 0:050). Lower ®gure: b � 1:0 and

a � a0, 2a0, 3a0 (a0 � 0:414).

Fig. 3. The corresponding shear stress s distributions with
respect to displacements in Fig. 2 for various values of b
and a. s=�cm=pb� is a dimensionless quantity. All the other

parameters are the same as in Fig. 2.

Fig. 4. Curves of stress F against displacement U.
F=�cm=pb� is a dimensionless quantity. All the other par-

ameters are the same as in Fig. 2.
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4. DISCUSSION AND APPLICATION

4.1. Energy of mis®t dislocation

Similar to the original PN model, the energy of
the mis®t dislocation is calculated as the sum of
two contributions: the elastic strain energy stored in

the two half-crystals and the mis®t energy associ-
ated with the nonlinear distortion of bonds across
the slip plane [16]. With the help of equations (14)

and (16), the elastic strain energy per unit area can
be obtained from

Ee � ÿ 1

2p

��p=2
ÿp=2

sxy�x�u�x� dx: �19�

The mis®t energy per unit area can be written as

Em � 1

p

��p=2
ÿp=2

F�U�x�� dx: �20�

In parametric form, the mis®t energy per unit area
can be expressed as

Em � 1

p

��p=2
ÿp=2

F�y�x�� dx �21�

where

F�y� � ÿ
�
F�y� dU�y�: �22�

Therefore, the mean total energy per unit area of
the interface due to forming of mis®t dislocation is
called interfacial energy and it can be written as

E � Ee � Em: �23�

Only if F(U) is adopted as sinusoidal law of
force, the interfacial energy can be integrated as

E � t0c
4p2

ÿ
1� bÿ

�������������
1� b2

q
ÿ b ln

�
2b

�������������
1� b2

q
ÿ 2b2

��
:

�24�
Usually, the interfacial energy E has to be numeri-

cally calculated, the resulting interfacial energy E is

shown in Figs 5 and 6 for various b and a. As a

increases, the elastic energy, the mis®t energy and

the total energy decrease when b is ®xed. The elastic

energy decreases more rapidly than the mis®t

energy as a increases for ®xed b. This means that

Table 1. Information of mis®t dislocations for b � 0:1. Here, a0 � 0:050; z is the half-width of mis®t dislocations; Fmax the maximum of
restoring stress F(U); Em, Ee, E the mis®t energy, the elastic energy and the total interfacial energy, respectively. The de®nitions of c, m, p

and b can be found in the text

a z/p Fmax/(cm/pb) Em/(c
2m/2ppb) Ee/(c

2m/2ppb) E/(c2m/2ppb)

a0 0.032 1.0 0.095 0.17 0.27
5a0 0.080 0.39 0.093 0.11 0.20
10a0 0.15 0.20 0.087 0.060 0.15
20a0 0.28 0.091 0.070 0.020 0.090
30a0 0.39 0.035 0.051 0.0065 0.058

Table 2. Information of mis®t dislocations for b � 1:0. Here, a0 � 0:414 and the de®nitions of the rest of the physical quantities are the
same as in Table 1

a z/p Fmax/(cm/pb) Em/(c
2m/2ppb) Ee/(c

2m/2ppb) E/(c2m/2ppb)

a0 0.25 1.0 0.59 0.19 0.78
2a0 0.32 0.65 0.50 0.10 0.60
3a0 0.41 0.36 0.33 0.027 0.36

Fig. 5. Upper diagram: the mis®t energy Em vs a for
b � 0:1, 0.2, and 1.0. Lower diagram: the elastic energy Ee

vs a for b � 0:1, 0.2, and 1.0. Both Ee=�c2m=2ppb� and
Em=�c2m=2ppb� are dimensionless quantities.
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interfacial energy depends on both the magnitude
of restoring force F and the form of force. These

can be shown clearly in Tables 1 and 2. For
example, when b � 0:1, a � 5a0 (a0 � 0:050), the
width of dislocation increases 1.5 times that of sinu-

soidal law, here the mis®t energy only decreases by
2% compared with that of sinusoidal law, but the
elastic energy decreases by 35%. The mis®t energy,

elastic energy and interfacial energy decrease more
rapidly for larger b than smaller b. For example,
when b � 1:0, a � 3a0 (a0 � 0:414), the width of
dislocation increases 0.64 times that of sinusoidal

law, here the mis®t energy decreases by 44% com-
pared with that of sinusoidal law, but the elastic
energy decreases by 86%. This shows that energies

are more dependent on the form of restoring force
for larger b than for smaller b.

5. SUMMARY AND CONCLUSIONS

The Peierls±Nabarro model for the interfacial
mis®t dislocation array is analytically extended to a
family of dislocations of greater widths. We can

systematically vary the width of mis®t dislocations,
the distribution of shear stress, and the law of
restoring force by adjusting parameter a. As a
increases, the amplitudes of the restoring force and

shear stress of the mis®t dislocation decreases and
the width of dislocation increases. The width of

mis®t dislocations is approximately linear inversely
proportional to the amplitude of the restoring force
when a is between a0 and 10a0 for smaller b, i.e.

z*Fmax1cm=p. Meantime, the elastic energy, the
mis®t energy and the total energy decrease as a
increases when b is ®xed. The energies depend on

the form of the restoring force, and the dependence
is stronger for the case of large b than that of small
b. In further work, we will discuss the solution of

equation (6) for the arbitrary restoring force F(U).
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