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Abstract: In a vertically oscillating circular cylindrical container, singular perturbation
theory of two-time scale expansions was developed in inviscid fluids to investigate the
motion of single free surface standing wave including the effect of surface tension. A
nonlinear slowly varying amplitude equation, which incorporates cubic nonlinear term,
external excitation and the influence of surface tension, was derived from potansial flow
equation. The results show that, when forced frequency is lower, the affect cf zuiiace ten-
sion on mode selection of surface wave is not important. Howzver, when forced frequcacy
is higher, the surface tension can not be neglected. This proved that the surface tension
causes free surface returning to equilibriur: location ln addition, due to considering the
effect of surface tension, the thecrctical 1esult approachss to experimental results much
more than that of no surface tension.
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Introduction

Since the 1980s, the onset of the instability of surface waves in a vertically excited cylindrical
container(!], secondary instabilities and transition to spatio-temporal chaos(?%! and turbulencel?
were extensively investigated for weakly viscous fluids. E Xuequan et al.l®~7 carried out the
flow visualization and experimental study on surface wave patterns in a circular cylindrical
vessel by vertical external vibrations. They obtained very beautiful photographs of free surface
patterns, and most of them have not been reported before. Recently, a theoretical treatment
associated with the experiments in Refs.[5—7] was established by Jian®~19! from which the
nonlinear amplitude equation without considering the effect of surface tension and second order
free surface displacements were obtained by two-time scale singular perturbation expansion in
ideal fluids. Although theoretical contours of free surface waves agree well with the experimental
visualization, the forced frequency had large differences.

In this article, a nonlinear amplitude equation, which is similar to that of Ref.[8], is obtained
from Euler equation in inviscid fluid including the effect of surface tension. The difference
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of two amplitude equations is that the latter includes the effect of surface tension. Finally,
some theoretical results with surface tension are compared with those without surface tension.
It showed that theoretical forced frequency with the effect of surface tension much closes to
experimental results when the same pattern is excited.

1 Governing Equations and Non-dimensional Formulation

We consider surface waves excited by the vertical motion of a circular cylindrical basin filled
with fluid. The physical modeling is the same as Fig.1 in Ref.[8]. The meanings of parameters
are the same as those in Ref.[8]. It is assumed that the fluid is inviscid, incompressible and the
motion is irrotational, there must exist a velocity potential function ¢(r, 8, z, t), and satisfy the
following governing equation:
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The kinetic and kinematic boundary conditions at free surface z = 7(r, 8,t) are
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where constants I' and p denote the surface tension coefficient and the dzusity of the fluid,
respectively. The effect of surface tension is intrcduced by honndary condition of the free
surface. In addition, since the influence of viscosity is iguored, the boundary conditions on
the side-wall and at the bettom of the vessel become zero normal velocity for rigid container,
namely,
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Taking the radius R of the vessel as the length scale, and nondimensionalizing all related
independent and unknown variables, the following scalings are adopted:

2*=z/R, v =r/R, n* =n/R, t* =t/\/R/g, ¢* = ¢/(RVgR),
= A/R, wy=wo/V9/R, & =4Auj/g, I'"/p* = (9R*)I'/p.

Note that the asterisks “+” denote dimensionless quantities and are subsequently dropped.
Substituting Eq.(6) into Egs.(1)>(5), then expanding Eqs.(2) and (3) into Taylor series at z =0

by neglecting the term O(e*), we obtain the following non-dimensional governing equation:
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Boundary conditic... on side-wall and at the bottom,
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In order to solve Egs.(7)-(11) by the two-time scale perturbation expansion, a slowly varying
time scale 7 is introduced, and let 7 = £%¢, we have
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To seek the solutions of ¢(r, 8, z,t) and n(r, 4,t), we expand them in a power series in € as
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Substituting Eqs.(12) and (13) into the non-dimeusicnal cquaticns (7)-{(11), we can give the
approximate equations by comparing the coefiiciants of the smisl! parameter €* at the two sides
of the equations.

2 First Order Approximate Solutions

The governing equation and boundary conditions of first order problem are
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Let ¢1 = (D1(r, 2, 7)e® + &1 (r, 2, 7)e™*?*) cosm#, here 1 denoted the complex conjugate of
&y, 12 is called the natural frequency of the surface wave. Substituting ¢; into Eqgs.(14)-(18),
combining Eqs.(14)-(15), then @, satisfies the following governing equation and boundary
conditions:
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Let &, = p(T)R(r)Z(z), substitute &; into Eqgs.(19)-(22), and solve this equation by separation
of variables, then the first order velocity potential and the displacement of free surface are
obtained as

é1 = Jm(Ar)cosh[A(z + h/R)] - [p(7)e?* + B(7)e %] cos mb, (23)
m = —iA/02 - Jp (Ar)sinh(AR/R) - [p(7)e'?t — B(7)e™ %] cos m. (24)

The meaning of the above functions and symbols are the same as those in Ref.[8], and the
following dispersion relationship is satisfied:

22 = Amntanh(Amnh/R)Y(1+ T/p - A2,) = Q2, .. (25)
3 Second Order Approximate Solutions

The governing equation and boundary conditions of second order problem are
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Combining boundary conditions (27) and (28), eliminating 7, using the expressions (23)
and (24) of first order solution, we can assume second order velocity potential ¢5 has the form
of

¢2 = Bm,c,(r, 2) cos 2m0 - (pZ(T)ezmt - ﬁ2(7)e—2mt) , (31)

where B, ¢, (r, 2) is the function of r and z. Take Eq.(31) into Eqs.(26)—(30), then the function
B (7, 2) satisfies the following governing equation and boundary conditions:
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The expression of Bp, g,(r,2) can be obtained by solving Eqs.(32)-(35), then instituting
By, ¢, (r,z) into (31), We can obtain the second approximate solution of velocity potential
P2t

$2(r, 0, 2,1, 7) = [ X1(r, 2) + Xo(r, 2)cos(2mb)] - [p?(T)e* % — B2(r)e~ B, (36)

n2(r, 0,,7) = [Y1(r) + Ya(r)cos(2mB)] - [p?()eP? + p?(r)e 2. (37)
The detailed expressions of Xi(r, z), Xz(r, z), Y1{r) and Y3(r) are given in Ref.[10]. We have
solved the second order velocity potential and the displacement of free surface. However, the
slowly varying amplitude p(7) is still not determined. We continue to consider the third order

governing equation and the boundary conditions. Amplitude equation of p(7) will be derived
using the solvability condition of the third problem.

4 Third Order Approximation Problems and Amplitude Equation

The governing equation and boundary conditions of third order problem are
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Applying the same method as Ref.[8], the amplitude equations of free surface wave associated
with slowly variable time are

@%ﬂ = Mip2(7)[p3(7) + p3(7)] + M2[p1(7) sin(207) — pa(7) cos(207)], (43)
@%T_) = —Mipi(1)[p3(7) + P3(T)] — Ma[p1(7) cos(207) + p2(7) sin(207)). (44)

All parameters and their detailed expressions in Eqs.(43) and (44) were given in Ref.[10].
5 Computational Results

5.1 Influence of surface tension on mode selection
In order to demonstrate the influence of surface tension on the natural frequency and mode
selection, we illustrated the variation of the dimensional natural frequency with the wave number
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both with surface tension and without surface tension in Fig.1l. The selection of parameters
is similar to those used in Refs.[5-7]. It can be shown that the frequency of the surface wave
incrcases with the increase of the wave number no matter the surface tension was included or

not. When forced frequency is low (e.g., smaller than 10 Hz), the effect of surface tension on
mode selection can be ignored. However,

when forced frequency is high (e.g., larger

é 807 Without surface tension  .* than 10 Hz), the influence of surface tension
= - - - With surface tension ~_~” is significant.
§ 60 ' .’ References (8, 9] have compared their
8 . theoretical flowing patterns with those of ex-
'E 40t . periment in ideal fluids without taking the
= ,»’, effect of surface tension into account. Al-
& 90t s though theoretical contours agree well with
g > those of experiment, the excited frequencies
E 0 N S have large discrepancy. For example, the the-
¢ 10 20 30 40 50 60 70 oretical excited frequencies for (8, 4) and (9,
Wave number k/m™! 6) modes are 16.71 Hz and 19.66 Hz respec-
Fig.1 Variation of dimensional natural fre- tively, while the experimental forced frequen-

cies for those two modes are 50 Hz and 52 Hz.
fluid h=1.0cm, radius of the ves- When the effect of surface tensic=: is consid-
sel R=7.5cm, surface tension I'= ered in the paper, the thecretical forced fre-
0.0727 N/m, density of fluid p = 103 quencies are 21.16Hz and 28.67 H= respec-
kg/m?) tively for above twc modes. The theoreti-
cal resu’t approaches to experimental results
much mere than that of no surface tension.

quency with wave number (depth of

5.2 Comparison with experimnent

A comparison can alea e made betiveen the theoretical and laboratory contours of Refs.[6-8]
in Fig.2 at diffeient forcing frequencies (the left figures are theoretical numerical contours, and
the right ones are experimental contours of the surface flow patterns). The solid and dashed lines
denote the position of free surface above and below the equilibrium surface, respectively. When
the effect of surface tension is taken into account, the theoretical result closes to experimental
ones better than that of no surface tension. However, the discrepancy of forced frequency is
still very large. The reasons are possibly the effect of contact line, the mode competition and
the viscosity of the fluid, etc. The influence of the weak viscosity on the mode selection will be
discussed in another paper.

6 Conclusions

From above analysis, following results can be obtained:

{1) The method of two-time scale expansion is effective to resolve the problem with the
effect of surface tension in vertically oscillating circular cylindrical container.

(2) The nonlinear amplitude equations (43)-(44) and free surface displacement (13) can be
correctly used to describe the surface wave motion in a vertically excited vessel.

(3) When the wave number is small, the influence of the surface tension on pattern selection
is insignificant. However, when the wave number is large, the effect of the surface tension is
important.

(4) The surface tension has the function, which causes free surface returning to equilibrium
location. That is to say, it needs higher forced frequency to produce the same flowing pattern
incorporating surface tension than that of having no surface tension.
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Fig.2 Comparison of theoretical contours of surface wave mode with those of experiment (depth of
fluid A = 1.0 cm, radius of the vessel R = 7.5 cm, the forcing amplitude A =11.4 pm, surface
tension coefficient I = 0.0727 N/m), density of fluid p = 10* kg/m?)
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