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Abstract. We present density measurements from the application of interferometry and Fourier transform
fringe analysis to the problem of nonstationary shock wave reflection over a semicircular cylinder and com-
pare our experimental measurements to theoretical results from a CFD simulation of the same problem.
The experimental results demonstrate our ability to resolve detailed structure in this complex shock wave
reflection problem, allowing visualization of multiple shocks in the vicinity of the triple point, plus visual-
ization of the shear layer and an associated vortical structure. Comparison between CFD and experiment
show significant discrepancies with experiment producing a double Mach Reflection when CFD predicts a
transitional Mach reflection.
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1 Introduction

As discussed by Caulfield [1], holography is a powerful
flow diagnostic for investigating a variety of problems.
Takayama [2] describes how holographic interferometry is
used to study a variety of high speed flow problems of
interest to physicists and engineers. The technique has
been used extensively for both qualitative visualization
and quantitative measurements of complex shock wave
configurations. Both finite-fringe and infinite-fringe inter-
ferometry have been used. In many cases, the work has
involved the latter type, which has been very useful for
providing data for comparison with computational fluid
dynamic (CFD) simulation. In the case of two-dimensional
flows, comparison between CFD and experiment is reason-
ably straight-forward, since fringes in infinite-fringe inter-
ferograms correspond directly to density contours. How-
ever, spurious contributions to the phase shift can often
cause problems when attempting to interpret such inter-
ferograms. In addition, their spatial resolution is limited
by the fringe spacing, which can be quite large under cer-
tain flow conditions. To overcome these difficulties, finite-
fringe interferometry, accompanied by a good interfero-
gram analysis technique, is arguably the best solution. In
particular, for two-dimensional flows, it is possible to re-
solve complex flow structure with a high degree of spatial

resolution, producing results suitable for detailed com-
parison with CFD simulations, provided one uses a suf-
ficiently high heterodyning frequency during the interfer-
ometry and judiciously applies two-dimensional Fourier
transform fringe analysis to provide phase maps and ulti-
mately density maps of the flowfield. To demonstrate this,
we investigate the nonstationary flow produced by the re-
flection of a planar shock wave at the upper surface of a
semicircular cylinder as described below.

2 Experimental setup

The experimental setup used in our work consisted of a
semicircular cylinder of diameter D, sitting on a pedestal
of height h as illustrated in Fig. 1 and mounted in the
test section of a diaphragmless shock tube as described by
Mitobe [3]. The test section containing the model was sit-
uated within the object beam of a double-exposure holo-
graphic interferometer illustrated in Fig. 2. In the flow
visualization, the first exposure was made before the test
time, and the second one was made during the time in-
terval of interest to produce finite fringe holographic in-
terferograms, which were later processed to produce the
phase and density maps of the planar flowfield.
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Fig. 1. Schematic of semicircular cylinder used in nonstation-
ary shock reflection experiment. h, w ≈ 10 mm
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Fig. 2. Schematic of optical arrangement

The flow conditions for the experiments were for a
shock wave of Mach number 2.33 travelling through pure
molecular nitrogen gas at an initial pressure of 14.1 kPa,
and an initial temperature of 292 K. Flow conditions were
such that perfect gas behavior with a ratio of specific heats
of 1.4 could be assumed.

3 Theoretical considerations

The types of shock reflection that can be produced by in-
teraction of an incident shock with a cylindrical surface are
described by Ben-Dor et al. [4]. Two types are of particular
interest to the current work: transitional Mach reflection
(TMR) and Double Mach Reflection (DMR). These are
illustrated in Figs. 3 and 4 respectively. As discussed by
Ben-Dor et al. [5], TMR occurs when conditions are such
that a compression wave downstream of the shock configu-
ration can travel upstream and interact with the reflected
shock to produce a kink (K) that separates the reflected
shock (r) from a second Mach stem (m′). If the compres-
sion wave steepens into a shock wave, this kink develops
into a second triple point (T′) and DMR as illustrated in
Fig. 4 is established.
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Fig. 3. Schematic of TMR, after Ben-Dor et al. [5]. i: incident
shock; m: first Mach stem; r: reflected shock; m′: second Mach
stem; s: slipstream; R: reflection point; T: triple point; K: kink
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Fig. 4. Schematic of DMR, after Ben-Dor et al. [6]. i: incident
shock; m: first Mach stem; r: first reflected hock; m′: second
Mach stem; r′: second reflected shock; s: first slipstream; s′:
second slipstream. R: first reflection point; R′: second reflection
point; T: first triple point; T′: second triple point; v: vortex

Table 1. Different cases simulated by CFD

case p1 (kPa) Ms
h
D

code

a 14.1 2.32 0 E
b 14.1 2.33 0 NS
c 14.1 2.35 0 E
d 14.1 2.33 0.05 NS
e 14.1 2.33 0 E

4 Numerical methods

4.1 CFD simulations

Numerical simulations were performed for five different
cases, with different values of initial pressure, p1, incident
shock Mach number Ms, normalized pedestal height h

D
and using different solvers, i.e., Euler (E) or Navier-Stokes
(NS). These cases, which are identified in Table 1 are cho-
sen to determine the sensitivity of the shock reflection to
incident shock Mach number, viscous effects and the pres-
ence of the pedestal. By comparing the simulation results
of cases a, c and e we can determine the sensitivity of the
shock reflection to Ms, for an inviscid flow, for the range
2.32 < Ms < 2.35. By comparing the simulation results
of cases b and e, we are comparing results from a viscous
simulation with those of an inviscid simulation, thereby
determining the effects of viscosity on the reflection. By
comparing simulation results from cases b and d, we can
determine the effect that the pedestal has on the shock
reflection.
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Fig. 5. Schematic illustrating how ∆ and R are defined

4.2 Description of the CFD code

The unsteady Euler equations are solved by the finite vol-
ume method on a solution-adaptive unstructured quadri-
lateral grid by an in-house algorithm described by Sun
and Takayama [7], which has been successfully applied to
a variety of gas dynamic problems.

In the present simulation, the two-step Runge-Kutta
method is used to achieve second-order accuracy in time,
and the second-order spatial accuracy is obtained by fol-
lowing the MUSCL-type extrapolation. Given two extrap-
olated states besides a cell interface, the numerical flux
through it is given by a simple upstream splitting method
described by Sun and Takayama [8] For the Navier-Stokes
equations, the convection terms are discretized as done in
the Euler equations, and other viscous and heat conduc-
tive terms are solved by the central difference scheme. The
viscous flow simulation method is described in more detail
by Sun et al. [9]. In this simulation, the coefficients of vis-
cosity and heat-conduction varying with temperature are
assumed to follow the Sutherland’s formula.

4.3 Computational grid

The Initial background grid for the case of h
D = 0 contains

147 cells covering the whole domain. The initial cell size
is about 0.05D. The initial cells are automatically sub-
divided or refined around important flow features, such
as shocks, vortices, and the refined cells can also be de-
fined when these features pass away. An initial cell is al-
lowed to be subdivided at most six times in the present
computation, or a six level refinement is used. The finest
cell after refining six times is about 0.05D

26 = 0.00078D.
To cover the domain with such a fine cell uniformly re-
quires 147 × 26 × 26 = 602, 112 cells. With the solution-
adaptive technique, the simulation of shock reflection for
cases where h

D = 0 uses roughly 30,000 cells, only 6%
of the uniform grid. The simulation for the case where
h
D = 0.05 is done with a similar number of cells and simi-
lar cell refinement.

Table 2. Type of reflection predicted by CFD as function of
∆
R

for case b

∆
R

0.207 0.413 0.612 0.825

type RR TMR TMR TMR

Fig. 6. Shock wave configuration at instant when ∆
R

= 0.207
for case b

5 Numerical simulations

In this section, we present the results of our numerical sim-
ulations. We will present results for different instances in
time as the shock configuration travels along the cylinder’s
surface. We have found that for the purpose of presenting
our results, it is convenient to define these instances in
terms of the ratio ∆

R , where ∆ is the distance moved in
a horizontal direction by the incident shock after striking
the stagnation point on the cylinder and R is the radius
of the cylinder. This convention is defined in Fig. 5.

5.1 Sequence of simulation results for case b

Figures 6, 7, 8 and 9 present density contours of the shock
reflection as it travels along the surface of the cylinder for
case b. In this numerical simulation, the shock configu-
ration makes a transition from Regular Reflection (RR)
to TMR when 0.207 < ∆

R < 0.413, with TMR persisting
until ∆

R = 0.825. The results of this numerical simulation
are summarized in Table 2.

5.2 Simulations for different incident
shock Mach numbers

We performed CFD simulations for cases a, c and e to
determine the sensitivity of the solution to the incident
shock Mach number for inviscid flow. The resulting con-
figuration at the instant when ∆

R = 0.825 for these cases is
shown in Figs. 10, 11 and 13, respectively. The simulations
for these three cases thus indicate that TMR is predicted
when ∆

R = 0.825, with insensitivity to Ms over the range
2.32 < Ms < 2.35
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Fig. 7. Shock wave configuration at instant when ∆
R

= 0.413
for case b

Fig. 8. Shock wave configuration at instant when ∆
R

= 0.612
for case b

Fig. 9. Shock wave configuration at instant when ∆
R

= 0.825
for case b

5.3 Simulation for semicircular cylinder
on the pedestal

Case d was simulated to determine the effects of the
pedestal on the shock reflection configuration. We found
that the numerical simulation for this case was very sim-
ilar to that of case b if only the flows above the cylinder
are compared. As an example, Fig. 12 is very similar to
Fig. 9 above the cylinder, with both figures predicting a
TMR configuration.

Fig. 10. Shock wave configuration at instant when ∆
R

= 0.825
for case a

Fig. 11. Shock wave configuration at instant when ∆
R

= 0.825
for case c

Fig. 12. Shock wave configuration at instant when ∆
R

= 0.825
for case d

5.4 Inviscid flow simulation

Case e provides an inviscid flow simulation against which
the viscous flow simulation of case b can be compared
to ascertain whether there are viscous effects influencing
what type of shock reflection is predicted by CFD. From
our simulation, we found that cases b and e produced very
similar results. In particular, when ∆

R = 0.825, simulations
for both cases predicted TMR, as is evident by comparing
Figs. 13 and 9. In summary, both viscous and inviscid flow
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Fig. 13. Shock wave configuration for flow at instant when
∆
R

= 0.825 for case e

simulations predict TMR for the instant when ∆
R = 0.825,

with no discernable sensitivity to shock Mach number and
with the pedestal having no noticeable effect on the shock
configuration.

6 Sensitivity analysis

We now make some remarks regarding the ability of our
different simulations to explore the sensitivity of the reflec-
tion configuration at ∆

R = 0.825 to the initial conditions.
First, if an inviscid flow is assumed for the experiment,

then the solution depends only on the shock Mach num-
ber. If the shock Mach number is fixed, the solution is
determined, no matter what the value of the pressure. So,
it is sufficient for us to show that the solution is not sen-
sitive to the shock Mach number, which we have done.

Second, if viscosity and heat conductivity are influen-
tial in the process, it is sufficient to consider the Navier-
Stokes equations. Then we should consider three parame-
ters: Shock Mach number Ms; Reynolds number Re and
Prandtl number Pr. The last one, Pr, varies with temper-
ature. In the experiment, the characteristic temperature is
just the room temperature that agrees with numerical sim-
ulation. Therefore, the Prandtl number can be neglected.
The sensitivity of shock Mach number on the solution has
been investigated in the inviscid simulation. The only one
parameter left is the Reynolds number. We may argue
that the inviscid solution corresponds to the case of infi-
nite Reynolds number. Hence, the numerical simulations
for cases a–e make up a complete and sufficient sensitivity
analysis for our flow.

7 Experimental method

In this section, we provide further details about the ex-
perimental method used to obtain experimental results
against which the CFD simulations are compared.

7.1 Finite fringe holographic interferometry

Here we present a brief description of the double-exposure
finite-fringe holographic interferometry used in the current
work. As shown in Fig. 2, a beam from a pulsed laser was
split into two beams by a beam splitter (BS) to form the
object beam and the reference beam. The object beam was
collimated by a spherical lens (L1) and a paraboloidal mir-
ror (PM1) before passing through the test section, after
which the beam’s diameter was reduced by the combina-
tion of another paraboloidal mirror (PM2) and another
spherical lens (L2). The main purpose of PM2 and L2 was
to image the flow region onto the holographic film. The
film was secured on a flat film holder using a vacuum tech-
nique to ensure that the strict requirements of emulsion
flatness were satisfied. The reference beam passed around
the test section through reflection from a combination of
mirrors (M4 to M9) before being expanded by a lens (L3)
and illuminating the holographic film, where it interfered
with the object beam.

With the type of interferometer described above, in-
finite fringe interferograms are produced by keeping the
optics for both the reference and object beam fixed be-
tween exposures. In our work, finite-fringe interferograms
were produced by tilting the reference beam through a
small angle between exposures by precisely-controlled an-
gular displacement of lens L3. As described above, the
first exposure was made before the test event, and the
second exposure was made during the test event, which
corresponded to the instant when ∆

R = 0.825.
In the case of infinite fringe interferometry, the most

significant phase shift that occurs is a result of the phase
shift experienced by the object beam as it passes through
the flow in the test section. In the case of the finite-fringe
interferometry, the displacement of the reference beam
produces an additional, linearly varying phase shift, that
superimposes a heterodyning frequency over the whole im-
age.

The holograms were recorded on Agfa AE75 film, with
the pulsed laser source being a Ruby laser operating at
a wavelength, λexp, equal to 694.3 nm. The holograms
were reconstructed using a CW Argon-ion laser at a wave-
length, λrec, of 514.5 nm. The reconstructed interfero-
grams were enlarged, printed, and then scanned with a
high resolution scanner to produce digital images for later
analysis.

8 Overview of interferogram analysis

The interferogram analysis technique used in the current
work was based on the two-dimensional Fourier-transform
method described by Bone et al. [10], Bone [11] and Babin-
sky and Takayama [12].

The method involved the following steps:
1) performing a two-dimensional Fourier transform of the
interferogram;
2) applying a filter operation. This second step was re-
quired to remove both low-frequency and high-frequency
noise from the data;
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3) performing a frequency shift in the Fourier transform
plane, so that the data is located around zero frequency;
4) performing a two-dimensional inverse Fourier transform
to produce the filtered inverse transform g;
5) determining the phase by evaluating the arctangent of
the ratio of the imaginary and real parts of the inverse
transform;
6) ‘unwrapping’ the phase by adding multiples of 2π where
appropriate. This step required a sophisticated search al-
gorithm as described by Bone [11]; and
7) removing any residual background phase.

9 Determining the density
from the unwrapped phase

9.1 Two-dimensional flows

In the case of two dimensional flows, the phase φ is given
by

φ(x, y) =
2π

λ
[nref − nflow(x, y)]W , (1)

where W is the distance that the light travels through the
phase-shifting medium, λ is wavelength of this light, and
n is the refractive index. The subscripts ‘ref’ and ‘flow’
refer to ‘reference’ and ‘flow’ conditions, respectively. As
discussed by Merzkirch [13], for a perfect gas of uniform
composition, the refractive index can be related directly to
the density, ρ, of the gas and its Gladstone-Dale coefficient
K, so that one can write

n = 1 + Kρ . (2)

Liepmann and Rohko [14] show that the Gladstone-Dale
coefficient can be conveniently expressed in terms of its
value at the standard density, ρs, in which case the above
equation becomes:

n = 1 + β
ρ

ρs
. (3)

Values for β and ρs for the gases used in the current work
are given by Liepmann and Rohko [14]. Using the above
equations, the density of the flow is determined to be given
by

ρflow − ρref =
λρs

2πWβ
(φref − φflow) . (4)

Figure 14 shows a 1024 × 1024 digital image of the
finite-fringe interferogram of the planar flowfield investi-
gated in the current work. The size of the imaged region
is 94 mm in length ×134 mm in height.

10 Analysis

10.1 Fourier transform

This interferogram was processed using Steps 1–4 to pro-
duce the filtered phase distribution g. The Real part of this

Fig. 14. Finite fringe interferogram of shock wave reflection
off upper surface of semicircular model. The size of the imaged
region is 94 mm in width ×134 mm in height.

distribution is represented in Fig. 15, whereas its magni-
tude is presented in Fig. 16.

Note that Fig. 15 has the appearance of an infinite
fringe interferogram. The major difference is that noise,
which would normally be present in such an interferogram,
has been removed by the filtering in the Fourier transform
plane. Figure 16 has the appearance of a shadowgraph
that indicates that the observed shock configuration is a
DMR, with the same features as those in Fig. 4.

The density distribution of the flowfield was deter-
mined by the application of Steps 5–6 and the use of
Eq. (4). The result is presented in Fig. 17. In this figure,
we identify a cut at y = 117.5 mm that we use for compar-
ison with the CFD simulation for case b. This comparison
is shown in Fig. 19 and discussed below. The origin of the
Cartesian (x, y) coordinate system used in Fig. 17 is on
the stagnation point of the cylinder. The cut passes above
R′ and below T. In addition, it passes through m, s, r′ and
m′.

11 Uncertainty in normalized density

We define η = ρflow
ρref

to be the normalized measured density
presented in Fig. 17.

The uncertainty δη in the measured value of η is dom-
inated by the uncertainty in measuring the phase.

Hence, δη is found from Eq. (4), to be:

δη =
λpsTref

WprefTsβ

δφ

2π
(5)



A.F.P. Houwing et al.: Nonstationary shock wave reflection

Fig. 15. Real part of g.
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Fig. 16. Magnitude of g: (letters indicate features identified
in Fig. 4

where we have used the ideal equation of state to write
density in terms of pressure and temperature and δφ

2π is
the uncertainty in the fringe shift.

The values used for the parameters in Eq. (5) to de-
termine δη in the current work are presented in Table 3

Bone et al. [10], on whose technique our fringe analysis
is based, claim that for their method δφ

2π ≈ 0.02 Using the
values given in Table 3, we determine from Eq. (5) that
the uncertainty δη is less than 0.4%
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Fig. 17. Density Map of flowfield and cut at y = 117.5 mm.

Table 3. Values used for the parameters in Eq. (5)

parameter value parameter value

λ 694.3 nm Ts 273K
W 100 mm Tref 292K
ps 101.13kPa β 2.97 × 10−4

pref 14.1kPa δφ
2π

0.02

Table 4. Experimentally-determined locations of triple points,
reflection points and vortex

feature x(mm) y(mm) ∆x(mm) ∆y(mm)

R 89 100 ±2 ±2
R’ 80 116 ±1 ±1
T 82.0 119.0 ±0.5 ±0.5
T’ 75 119 ±2 ±2
v 79 101 ±3 ±3

11.1 Comparison of CFD simulation
with experimental results

Figure 18 shows the density contours of the flowfield as
determined by the CFD simulation for case b. This sim-
ulation was produced using the method described above.
The CFD simulation was initiated with the incident shock
wave 20 mm upstream of the cylinder (i.e. with i at
y = −20 mm) and terminated when the location of i in the
CFD coincided with its location in the experiment, that
is, when ∆

R = 0.825. Note, that, in Fig. 18, the letters
identify the same flow features as identified in Fig. 3 and
that the simulation produces a TMR in contradiction to
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Table 5. Experimentally-determined locations of flow features
along cut at y = 117.5 mm. NA indicates that cut does not pass
through feature. Each value has an uncertainty of ±0.5 mm

xm (mm) xm′(mm) xs(mm) xr(mm) xr′(mm)

83.1 56.5 81.4 NA 77.4

Fig. 18. Density contours of flowfield produced by CFD sim-
ulation for case b: letters identify the same flow features as in
Fig. 3

the DMR observed in the experiment. This discrepancy is
even more pronounced when we compare the density from
the CFD simulation to that from the experimental mea-
surements along the cut at y = 117.5 mm, as described
below.

In Fig. 19, we compare the experimentally-measured
and CFD-generated density along the cut shown in
Fig. 17. In Fig. 19,we see that the CFD follows the
experimentally-observed density profile in a qualitative
sense, in as much as, from right to left, both CFD and
experiment show density increases across m and s and
a density decrease across the rearward-facing shock m′.
However, where the experiment shows a steep density rise
across r′ the CFD predicts only a small density gradient,
suggesting that the CFD simulates a compression wave
rather than a shock wave. Further, there is a discrepancy
between CFD and experiment in the location of m′. These
discrepancies are because the CFD predicts TMR, whereas
DMR is observed in the experiment. This could indicate
that, in the CFD simulation, the incident shock did not
impact the cylinder at exactly the same time and at ex-
actly the same location as in the experiment. In fact, as
discussed by Ben-Dor et al [4], whether or not the con-
dition for DMR is satisfied is sensitively dependent on
where the shock strikes the cylinder. If the correct initial
conditions are not used by the CFD, it is possible that
TMR is simulated instead of DMR. In the current work,
the sensitivity of the solution to the initial position of the
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Fig. 19. Comparison between theoretical and experimen-
tal density for cut at y = 117.5 mm. Letters indicate
experimentally-measured locations of features identified in
Fig. 16

incident shock was not explored, however, the discrepancy
between CFD and experiment observed here indicates that
this should be investigated in further numerical work. A
possible cause for a difference in initial conditions is that
the model might have moved soon after the incident shock
struck its surface, causing the angle of incidence between
surface and shock to be different in experiment from that
in the CFD, thereby affecting the initial conditions of the
shock reflection process in the experiment and possibly
causing the experimental configuration to develop into one
quite different from that predicted by CFD. This proposed
explanation should be investigated in further work.

Three-dimensional effects can play a role in causing the
discrepancy, if the gap between the semicircular cylinder
and the window is sufficiently large, because such a gap
could allow high pressure gas from below the model to
cause compression waves to travel through the gap to the
upper surface where they can strengthen the compression
wave in a TMR configuration causing it to become a DMR
configuration. However, this is unlikely to be the case in
our cylinder model. The gap between the model and the
window is the order of 0.1 mm The boundary layer on
the side walls is another possible three-dimensional factor.
However, it is very thin in the shock tube experiment.

12 Conclusions

This report has demonstrated the use of finite fringe holo-
graphic interferometry for the quantitative measurements
of density in nonstationary shock wave reflection. The
experimental results demonstrate our ability to resolve
detailed structure in this complex shock wave reflection
problem, allowing visualization of multiple shocks in the
vicinity of the triple point, visualization of the shear layer
and an associated vortical structure. The experimental re-
sults have been compared with a CFD simulation and dis-
crepancies have been observed with CFD predicting tran-
sitional Mach reflection and experiment indicating double
Mach reflection has developed. The inability of the CFD
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to reproduce the experimental observation has not been
explained and is left as a possible topic for future research.
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