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Numerical simulation of an adaptive optics system
with laser propagation in the atmosphere

Hai-Xing Yan, Shu-Shan Li, De-Liang Zhang, and She Chen

A comprehensive model of laser propagation in the atmosphere with a complete adaptive optics ~AO!
system for phase compensation is presented, and a corresponding computer program is compiled. A
direct wave-front gradient control method is used to reconstruct the wave-front phase. With the long-
exposure Strehl ratio as the evaluation parameter, a numerical simulation of an AO system in a
stationary state with the atmospheric propagation of a laser beam was conducted. It was found that for
certain conditions the phase screen that describes turbulence in the atmosphere might not be isotropic.
Numerical experiments show that the computational results in imaging of lenses by means of the fast
Fourier transform ~FFT! method agree well with those computed by means of an integration method.
However, the computer time required for the FFT method is 1 order of magnitude less than that of the
integration method. Phase tailoring of the calculated phase is presented as a means to solve the problem
that variance of the calculated residual phase does not correspond to the correction effectiveness of an AO
system. It is found for the first time to our knowledge that for a constant delay time of an AO system,
when the lateral wind speed exceeds a threshold, the compensation effectiveness of an AO system is
better than that of complete phase conjugation. This finding indicates that the better compensation
capability of an AO system does not mean better correction effectiveness. © 2000 Optical Society of
America

OCIS code: 010.0010, 010.1080, 010.1300, 010.3310, 350.1260, 350.4600.
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1. Introduction

It is well known that a turbulent atmosphere deterio-
rates optical waves that propagate in the atmosphere.
Astronomical observation and laser propagation are
the most important fields impacted by this problem.
An adaptive optics ~AO! system can be used to over-
ome, at least partially, the atmospheric deterioration
f the optical wave.1 Generally, an AO system can be

divided into three parts: wave-front detection, wave-
front reconstruction, and wave-front correction. A
Hartmann–Shack ~HS! detector is used for real-time
detection of the deformed wave front. The widely
used wave-front reconstruction methods include the
direct wave-front gradient control method2,3 and the
modal wave-front reconstruction method in terms of
Zernike polynomials expansion.4 A deformable mir-
ror is often used to correct the wave front.
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A theoretical model and numerical calculations can
be used to simulate the propagation of an optical
wave in a turbulent atmosphere and in the operation
of an AO system. In this way one can design a new
AO system, estimate its performance, and compare
the different schemes to optimize results. Further-
more, one can perform numerical experiments for an
existing AO system to investigate its operation and
performance. It is possible and convenient for the
numerical simulation to treat a number of different
conditions, some of which might be difficult or even
impossible to realize in a real experiment.

To simulate optical wave propagation in a turbu-
lent atmosphere, Fleck and colleagues used the
multiple phase-screen method to compute three-
dimensional laser beam propagation.5 Martin and
Flatte used a similar approach to investigate the in-
tensity and statistics by means of numerical simula-
tion of wave propagation in three-dimensional
random media.6

In theoretical studies of AO systems most investi-
gators use analyses to simulate an AO system and
calculate its performance. A number of studies have
been published on this topic ~see, for example, Refs. 7
and 8!. A few investigators have employed a numer-
cal simulation to study the performance of an AO
20 June 2000 y Vol. 39, No. 18 y APPLIED OPTICS 3023
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system. Some studies have appeared in conference
proceedings ~see, for example, Ref. 9!. However, a

etailed description of the theoretical model and com-
utational results were not included in these numer-
cal simulation studies ~see, for example, Refs. 10 and
1!.
The current authors have been pursuing simulta-

eous numerical simulations of the atmospheric
ropagation of optical waves and an AO system since
988. This is our first opportunity to communicate
ur results to our colleagues outside of China. A
omprehensive theoretical model was developed and
oded into a numerical algorithm. The atmospheric
ropagation of optical waves and the operation of an
O system were included. A laser beam propagat-

ng in the atmosphere with an active AO system was
hosen as an example. Simulating the operation of a
eal AO system, a laser beam from a beacon propa-
ates through a turbulent medium to obtain the de-
ormed wave front; then the deformed wave front is
etected, reconstructed, and corrected by the AO sys-
em. Finally, a phase-compensated beam from the
ain laser propagates in the same, but transported

because of the time delay in the AO system and the
ateral wind andyor lateral movements of target and

ain laser!, turbulent medium again to reach the
arget. A long-exposure Strehl ratio is used to eval-
ate the performance of the AO system.
In this paper we discuss the following: ~i! A

urely numerical simulation of the propagation of
ptical waves in a turbulent medium and in the op-
ration of an AO system is described. ~ii! The nu-
erical simulation of the propagation of the optical
ave in a turbulent medium and the numerical sim-
lation of all portions of an AO system are combined.
he turbulence-deformed wave-front phase is used as

he object of treatment of the AO system, and the
ptical wave with compensated wave-front phase
ropagates in the same turbulent medium. ~iii! Var-
ous conditions in the practical application of wave
ropagation and the AO system can be included in an
nalogous way.

2. Theoretical Model and Numerical Simulation of
Laser Propagation in a Turbulent Medium

For optical wave propagation to the forward ~z! di-
ection, Maxwell’s wave equation in the parabolic or
n the Fresnel approximation can be written as

2ik
]f

]z
1

]2f

]x2 1
]2f

]y2 1 k2~n2 2 n0
2!f 5 0, (1)

where

f~x, y, z! 5 E~x, y, z!exp~2ikz!. (2)

E~x, y, z! is a slowly varying wave field amplitude; the
wave number k 5 2pyl; n is the refractive index; n0
is the refractive index in the medium without turbu-
lence; and for atmospheric propagation n0 can be
taken as 1 and

n2 2 n0
2 5 ~n0 2 n1!

2 2 n0
2 < 2n1, (3)
024 APPLIED OPTICS y Vol. 39, No. 18 y 20 June 2000
where n1 5 n 2 n0 is the deviation of the refractive
index, which is a stochastic quantity.

In the case of laser beam propagation a focused
beam is quite important and common. For the fo-
cused beam the following coordinate transformations
are used,

x# 5 xy@a~1 2 zyl !#,

y# 5 yy@a~1 2 zyl !#,

z 5 zy~ka2!, (4)

where a is the radius of the beam and l is a transfor-
mation factor; l . 0 corresponds to a convergent
beam, l , 0 corresponds to a divergent beam, and l3
` corresponds to a parallel beam.

Propagation equation ~1! becomes

2i
]c

]z
1

1
~1 2 ka2zyl !2 S]2c

]x#2 1
]2c

]y#2D 1 2k2a2n1c 5 0,

(5)

here

c~x#, y#, z! 5 S ca2

8pPT
D1y2

3 ~1 2 zyl !f~x, y, z!expFik~x2 1 y2!

2l~1 2 zyl !G , (6)

PT is the total beam power, and c is the speed of light.
Equation ~5! is the basic propagation equation used
in the numerical simulation. It is changed into a
difference equation and solved numerically.

When we adopt an approach similar to that of Fleck
et al.,5 the multiple phase-screen model is used to
describe the turbulent medium. The main idea is as
follows. The effect of turbulence on the optical wave
is expressed in terms of random change in the refrac-
tive index n1. The propagation path through the
turbulent medium can be divided into several seg-
ments, which may have different lengths. In this
study equally spaced segments are used for simplic-
ity. It is thought that each segment may deform the
phase of the optical wave independently but does not
have a significant influence on the amplitude of the
wave. The amplitude of the optical wave is changed
only in the propagation process of the wave with the
deformed phase. Changes in amplitude and phase
of the optical wave can be treated separately. Then
the contribution of the turbulent medium segment to
the phase of the optical wave can be pressed into a
thin phase screen and added to the initial phase of
the wave. The wave with changed phase then prop-
agates to the next phase screen in a medium without
turbulence. At the position of the next phase screen,
the wave with changed amplitude is modified by the
new phase screen and so on. This process continues
until the wave reaches the target.

The effect of a turbulent medium segment on the
optical wave phase can be deduced as follows. In
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propagation equation ~5!, remove the terms for dif-
fraction, and get

2i
]c

]z
1 2k2a2n1c 5 0. (7)

he solution is

c~x# , y# , z 1 Dz! 5 c~x# , y# , z!exp~ik2a2n1Dz!

5 c~x# , y# , z!exp~ikn1Dz!, (8)

where Dz 5 ka2Dz is the step length in the z direction.
The effect of a turbulent medium segment is equiva-
lent to adding an additional phase n1Dz to the initial

hase of the optical wave. In a practical calculation
t is assumed that the additional phase is added in an
nfinitesimally thin phase screen, i.e.,

c~x# , y# , z1! 5 c~x# , y# , z!exp~ikn1Dz!. (9)

Then the wave field c~x# , y# , z1! propagates to reach
the next phase screen in a medium without turbu-
lence to obtain c~x# , y# , z 1 Dz!. Now the problem is
o determine the additional phase change G~x, y! re-
ulting from a turbulent medium segment Dz.
It can be proved that in the difference form

~x, y! 5 n1Dz

5 ~pDzDkxDky!
1y2 (

I52~Nxy2!11

Nxy2

(
J52~Nyy2!11

Nyy2

exp~iIDkxx

1 iJDkyy!Fn
1y2~IDkx, JDky!@a1~IDkx, JDky!

1 ia2~IDkx, JDky!#, (10)

where Fn~kx, ky! 5 Fn~kx, ky, 0! is the spectral density
for the refractive-index fluctuations. Assuming a
von Karman spectrum,

Fn~kx, ky! 5 0.033Cn
2~k0

2 1 kx
2 1 ky

2!211y6. (11)

Here Cn
2 is the index structure constant and k0 5

2pyL0, where L0 is the outer scale length of the tur-
ulence. The formula deduction requires that Dz ..

0. a1 and a2 are two-dimensional complex random
numbers. These independent random numbers are
assumed to obey Gaussian statistics and to have vari-
ance 1. Furthermore, it is required that

a1~kx, ky! 5 a1~2kx, 2ky!,

a2~kx, ky! 5 2a2~2kx, 2ky!. (12)

The step lengths Dkx and Dky for wave numbers kx
and ky are

Dkx 5
2p

NxDx
5

2p

NxDx#a~1 2 ka2zyl !
,

Dky 5
2p

NyDy
5

2p

NyDy#a~1 2 ka2zyl !
, (13)

where Nx, Ny are the grid numbers in the x and the y
irections and Dx, Dy are the corresponding step

lengths.
When we combine Eqs. ~10!–~13!, G~x, y! can be
calculated from the double sum ~assuming the grid
numbers Nx 5 Ny 5 N!,

G~mxDx, myDy! 5
2p

N S0.033pDzCn
2

DxDy D1y2

3 (
I52~Ny2!11

2Ny2

(
J52~Ny2!11

Ny2 expS2pIimx

N
1

2pJimy

N D
FS2p

L0
D2

1 S 2pI
NDxD

2

1 S2pJ
NDyD

2G11y12

3 @a1~IDkx, JDky! 1 ia2~IDkx, JDky!#, (14)

hich can be computed by a sequence of fast Fourier
ransform ~FFT! operations.

3. Theoretical Model and Numerical Simulation of an
Adaptive Optics System

The research presented here includes only the simu-
lation of an AO system in a stationary state. In a
practical AO system, the dynamic control process
must be included to make the system stable. The
dynamic control process is ignored here. It is well
known that an AO system must have a time delay,
because the system has a limited response and the
wave-front detection, reconstruction, and correction
take some time. The effects of the time delay are
treated as follows. On the basis of the well-known
Taylor hypothesis, the turbulence ~i.e., the phase
screens! is considered to be frozen in a short time
period ~for example, for a few milliseconds!. The

hase screens are assumed to move laterally in the
elay time period because of lateral wind andyor the
ateral movements of the laser and target. Thus the
aser beam with compensated phase will propagate
hrough the laterally moved phase screens to reach
he target ~see Fig. 1!. The phase reconstruction
sed here is based on the direct wave-front gradient
ontrol method.2,3 The effects of noise and detection

errors in the AO system are ignored here.

Fig. 1. Combination of numerical simulation of laser propagation
in the atmosphere with that of an AO system.
20 June 2000 y Vol. 39, No. 18 y APPLIED OPTICS 3025
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A. Wave-Front Detection

The wave field of the beam that radiates from a bea-
con propagates through a turbulent medium and ar-
rives at a HS detector. The detector is divided into
several subapertures. The wave field of a subaper-
ture u1~x0, y0! propagates to reach the focal plane of
the HS detector. Its wave field becomes

u2~x, y! 5 * *
S

f
ilr2 exp~ikr!u1~x0, y0!dx0dy0, (15)

where **S expresses the integral over the subaper-
ture and r is the distance between points ~x, y! on the
focal plane and ~x0, y0! on the subaperture. The

osition of the optical center can be calculated as

xc 5 * *
T

xuu2~x, y!u2dxdyY* *
T

uu2~x, y!u2dxdy, (16)

yc 5 * *
T

yuu2~x, y!u2dxdyY * *
T

uu2~x, y!u2dxdy, (17)

where **T expresses the integral over the focal plane.
When we take the position of the optical center of the
focused plane-wave field of the subaperture as 0, the
average tilts of the subaperture in the x and the y
directions can be calculated as

Gx 5 ~2pyf l!xc, (18)

Gy 5 ~2pyf l!yc, (19)

where f is the focal length of the subaperture.
In a practical AO system the overall tilt of the wave

front is corrected by a specific tilt-correction mirror.
In the numerical simulation the overall tilts in the x
and the y directions are separated as

ux 5
1
m (

i51

m

Gx~i!, (20)

uy 5
1
m (

i51

m

Gy~i!, (21)

where m is the number of the subaperture and Gx~i!
and Gy~i! are the average tilts of the ith subaperture
in the x and the y directions, respectively. The av-
erage tilts of each subaperture after subtraction of
the overall tilts in the x and the y directions consti-
tute the tilt matrix G. In this paper it is assumed
that the tilt-correction mirror can completely correct
the overall tilts ux and uy.

B. Wave-Front Reconstruction

The main point of wave-front reconstruction is to
obtain the control matrix. The control matrix mul-
tiplies the tilt matrix G to get the actuator voltage
matrix V. The control matrix is determined by use
of the direct wave-front gradient control method.
026 APPLIED OPTICS y Vol. 39, No. 18 y 20 June 2000
The surface shape of a deformable mirror that is the
corrected wave front can be expressed as

cm~x, y! 5 (
j51

K

VjRj~x, y!, (22)

where K is the total number of actuators on the de-
formable mirror, Vj is the voltage of the jth actuator,
and Rj~x, y! is the influence function of the jth actua-
tor, which describes the effect of a unit displacement
of the jth actuator on the surface shape of the deform-
able mirror. In principle, the influence function of
each actuator may be different, and this effect can be
included in the numerical simulation. For this
study it is assumed that a Gaussian influence func-
tion can be used for all actuators of the deformable
mirror,

Rj~x, y! 5
2p

l
exp$lnb@~x 2 xj!

2 1 ~y 2 yj!
2#yd2%, (23)

where b is the coupling factor between the adjacent
actuators, xj and yj are the coordinates of the jth
actuator, and d is the distance between the adjacent
ctuators. In fact, any type of influence function for
he actuator can be used in the simulation computa-
ion.

Differentiating the corrected wave front cm~x, y!
with respect to x and y and averaging over the sub-
aperture, we can show that

Gxi 5 (
j51

K

GvxijVj, (24)

Gyi 5 (
j51

K

GvyijVj, (25)

where

Gvxij 5
1
si * *

Si

]Rj~x, y!

]x
dxdy, (26)

Gvyij 5
1
si * *

Si

]Rj~x, y!

]y
dxdy. (27)

Here **Si
is the integral on the ith subaperture and Si

is the area of the ith subaperture. Gvxij and Gvyij can
e considered to be the average tilts on the ith sub-

aperture produced by a unit displacement of the jth
actuator. In matrix form,

G 5 Gv V. (28)

Equation ~28! can be solved with the least-squares
method to obtain

V 5 Gv
1G, (29)

where Gv
1 is the generalized inverse matrix with

least-squares and minimum norm of matrix Gv. Gv
1

can be deduced by decomposition of singular values.
Gv

1 is the control matrix of the direct gradient control
wave-front reconstruction.



Table 1. Six Strehl Ratios

Differ

er of
C. Wave-Front Correction

In a practical AO system the wave-front correction is
realized by a high speed tilt-correction mirror and a
deformable mirror. Correspondingly, the corrected
wave-front phase of the main laser beam can be ex-
pressed as

cc 5 ctilt 1 cm 5 ux x 1 uy y 1 (
j51

K

VjRj~x, y!. (30)

4. Results and Discussion

The Strehl ratio is a useful parameter for describing
the propagation quality of an optical wave. Six
Strehl ratios are used in the numerical simulation.
The ratio of the brightness of the brightest point on
the target after propagation through the turbulent
medium and through a vacuum is defined as STRA.
The ratio of the optical energies within a circle
around the brightest point with a radius of the first
dark ring in the Airy pattern after propagation
through the turbulent medium and through a vac-
uum is defined as STRAA. STRB and STRBB are
similar ratios for the center point on the target in-
stead of the brightest point. STRC and STRCC are
the ratios for the optical center on the target. The
long-exposure Strehl ratio obtained from the accumu-
lated wave field is used, since it is similar to experi-
mental observations.

Table 1 shows that it is necessary to average over
many turbulence realizations to get relatively stable

Times 1 2 3

STRA 0.0675 0.0480 0.0409 0
STRB 0.0154 0.0109 0.0113 0
STRC 0.0188 0.0062 0.0139 0
STRAA 0.254 0.200 0.210 0
STRBB 0.132 0.121 0.170 0
STRCC 0.225 0.197 0.192 0

Computational conditions: l 5 0.6328 mm; L 5 1 km; open loop
128 3 128, in center; ten phase screens.

Table 2. STRCC in

Cn
2 ~m22y3! Times 1 2 3

10214.5 OL 0.596 0.551 0.492
AO 0.881 0.883 0.876

10214 OL 0.225 0.197 0.192
AO 0.649 0.601 0.585

10213.5 OL 0.0978 0.0634 0.061
AO 0.165 0.214 0.210

Computational conditions: 61-unit AO system; others, see Tab

Table 3. Effect of Grid Numb

Cn
2 ~m22y3! 10213.5

Grid number 128 3 128 256 3 256 12
STRCC 0.0523 0.0538

Computational conditions: 50 turbulence realizations, open loo
results. Fifty realizations appear to be sufficient.
Also note that the values for averaged STRA, STRB,
and STRC are comparable, the averaged STRAA,
STRBB, and STRCC are comparable, and the former
values are much smaller than the latter values.

The relative variances of STRA, STRB, and STRC
are always larger than those of STRAA, STRBB, and
STRCC. In other words, fluctuations of STRA,
STRB, and STRC are larger than those of STRAA,
STRBB, and STRCC. We chose STRCC as the eval-
uation parameter.

It is shown in Table 2 that in turbulent media with
different strengths, 40–50 realizations generally give
a relatively stable averaged Strehl ratio, and the
Strehl ratio rapidly becomes worse as the turbulence
grows stronger.

40 50 100 200

8 0.0145 0.0139 0.0137 0.0132
9 0.0112 0.0116 0.0119 0.0116
9 0.0112 0.0116 0.0121 0.0121

0.156 0.157 0.162 0.152
0.162 0.161 0.164 0.163
0.162 0.161 0.164 0.164

5 10214 m22y3; phase-screen grids, 512 3 512; propagation grids,

ent Turbulent Media

30 40 50 100 200

0.496 0.520 0.514 0.495 0.502
0.859 0.858 0.858 0.856 0.854
0.155 0.162 0.161 0.164 0.164
0.605 0.612 0.616 0.614 0.612
0.0536 0.0532 0.0523 0.0487 0.0490
0.223 0.221 0.220 0.214 0.212

OL, open loop.

Propagation on Strehl Ratio

10214 10214.5

128 256 3 256 128 3 128 256 3 256
1 0.193 0.514 0.524

opagation grids in center; others, see Table 1.

Table 4. Test of Isotropism of Phase Screens ~I!

Position x Grid y Grid 10 Times 20 Times 50 Times

Left 1 65–192 193–320 0.276 0.285 0.262
Center 193–320 193–320 0.229 0.214 0.238
Right 1 321–448 193–320 0.230 0.181 0.228
Upper 1 193–320 321–448 0.315 0.372 0.362
Center 193–320 193–320 0.229 0.214 0.238
Lower 1 193–320 65–192 0.238 0.210 0.181

Computational conditions: l 5 0.6328 mm; L 5 340 m; open
loop, Cn

2 5 2.78 3 10214 m22y3 ~r0 5 5 cm!; phase screens of the
first kind; phase screen grids, 512 3 512; propagation grids, 128 3
128; ten phase screens.
30

.015

.008

.008

.143

.155

.155

; Cn
2

3

le 1.
8 3
0.16

p, pr
20 June 2000 y Vol. 39, No. 18 y APPLIED OPTICS 3027
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Table 5. Test of Isotropism of Phase Screens ~II!
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3

Table 3 shows that computational results with a
128 3 128 grid are comparable with those with a
256 3 256 grid. The computer time required with
the 128 3 128 grid is approximately one fourth of that
with a 256 3 256 grid.

An improper phase-screen creation method, i.e., an
improper random-number generator, can give rise to
phase screens without isotropism ~see Table 4!. The
averaged Strehl ratios after passing through the
phase screens of the first kind at different positions in
the x direction are comparable. However, that is not
the case in the y direction. We checked independent
andom numbers a1~kx, ky! and a2~kx, ky! @see Eqs.

~10! and ~14!# carefully and found that they obey
Gaussian statistics and have variance 1. With an-
other kind of random numbers, a second kind of
phase screen was produced that is perfectly isotropic
~see Table 5!.

It was found that, in contrast to Ref. 5, the coordi-
nate transformations, Eqs. ~4!, for a focused beam are
profitable in that the positions of the phase screens
are not influenced by the coordinate transformations.
It is quite easy to arrange equally spaced screens.
Another advantage of the coordinate transformations
is that it is possible to get comparable results by use
of fewer phase screens, so computer time can be re-
duced ~see Table 6!.

The beam from a beacon may propagate in a strong
turbulent medium to reach the HS detector. Fig-
ures 2 and 3 show a disturbed phase wave front,
which is calculated from our numerical simulation for
this case. Figure 4 shows the corrected phase after
the correction of an AO system of 61 units ~with 48
subapertures and 61 actuators!. The correspon-
dence of Figs. 2 and 4 is quite poor, although the
Strehl ratio ~STRCC 5 0.673! shows that the phase

Position x Grid y Grid 10 Times

Left 1 65–192 193–320 0.157
Center 193–320 193–320 0.161
Right 1 321–448 193–320 0.155
Upper 1 193–320 321–448 0.205
Center 193–320 193–320 0.161
Lower 1 193–320 65–192 0.216

Computational conditions: same as Table 1 except for the prop

Table 6. STRCC in the Different Turbulent Media

Cn
2

~m22y3! Times

10 Phase Screens 20 Phase Screens

50 100 200 50 100 200

10214.5 OL 0.490 0.481 0.475 0.482 0.477 0.462
AO 0.855 0.854 0.853 0.857 0.854 0.852

10214 OL 0.161 0.164 0.164 0.162 0.166 0.160
AO 0.616 0.614 0.612 0.616 0.611 0.607

10213.5 OL 0.0451 0.0447 0.0448 0.0469 0.0472 0.0451
AO 0.215 0.211 0.206 0.204 0.202 0.201

Computational conditions: 61-unit AO system; others, see Ta-
le 1. OL, open loop.
028 APPLIED OPTICS y Vol. 39, No. 18 y 20 June 2000
compensation should be quite good. This apparent
anomaly results because the calculated phase has
discontinuities. The phase calculated from inverse
trigonometric functions is limited to changes of 2p.
The discontinuities in the calculated phase are arti-
facts of the trigonometric functions. In practice, it is
impossible for the wave-front phase to have such dis-
continuities; even the wave front is greatly deformed

Fig. 2. Surface drawing of deformed phase wave front including
overall tilt before phase tailoring.

Fig. 3. Topographic drawing of phase wave front of Fig. 2.

0 Times 50 Times 100 Times 200 Times

0.180 0.183 0.170 0.169
0.166 0.161 0.164 0.164
0.165 0.181 0.174 0.175
0.168 0.161 0.165 0.164
0.166 0.161 0.164 0.164
0.198 0.178 0.179 0.167

ion grid position, phase screen of the second kind.
2
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by the turbulent medium. We devised a technique
called phase tailoring to remove the phase disconti-
nuities. Figure 5 shows the disturbed phase of Fig.
2 after phase tailoring. The correspondence of Figs.
4 and 5 is quite good. Figure 6 shows the residual
phase after AO phase compensation and phase tai-
loring. Figures 7 and 8 show a cross section of the
disturbed phase of Figs. 2 and 5, respectively. It is
clear that phase discontinuities are removed after
phase tailoring.

For an AO system in a stationary state, in the case
of strong turbulence three to four iterations are
needed to get the best correction effect for one turbu-
lence realization ~see Table 7!. It can be seen from

able 7 that the Strehl ratio does not correspond to
hase variance before phase tailoring, but the corre-
2

2

pondence between Strehl ratio and phase variance is
uite good after phase tailoring. In the case of weak
urbulence, phase tailoring is not needed, and one to
wo iterations are enough to obtain the best correc-
ion.
Fig. 4. Surface drawing of AO-corrected phase wave front of Fig.
2.
Fig. 5. Surface drawing of phase wave front of Fig. 2 after phase
tailoring.
Fig. 6. Surface drawing of residual phase wave front of Fig. 2
after phase tailoring.
Fig. 7. Cross section of phase wave front of Fig. 2 at y grid point
4.
Fig. 8. Cross section of phase wave front of Fig. 5 at y grid point
4.
20 June 2000 y Vol. 39, No. 18 y APPLIED OPTICS 3029



o

A
l
s
w
I
A
p

Table 7. Strehl Ratio and Phase Variance s 2 without the Overall Tilt of an AO System
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3

In the numerical simulation of laser propagation in
a turbulent medium different random number seed~s!
can produce different turbulent media, although its
spectral density for the refractive-index fluctuations
~von Karman spectrum! and index structure constant
are the same. It can be seen from Table 7 that the
Strehl ratios and phase variances with and without an
AO system are different for different turbulent media.

Referring to Table 2 as the turbulence strength
increases, we see that the Strehl ratios with and
without an AO correction rapidly decrease and that
;50 turbulence realizations are sufficient for usable
average results.

There are two methods of calculating the image of
the wave field on each subaperture. These are re-
ferred to as the FFT method and the integration
method. The former uses the FFT to evaluate wave
propagation equation ~5! with n1 5 0. The latter
uses a direct numerical integration to evaluate Eq.
~15! or its equivalent. Equation ~5! can be used only
under conditions that satisfy the parabolic or the
Fresnel approximation. However, Eq. ~15! can be
used in any case. To use Eq. ~5! and the FFT

Condition 1 2

Iteration Times STRCC sf
2 STRCC sf

2

0 ~OL! 0.469 4.7568 0.469 2.0776

1 0.772 4.8937 0.772 0.5566
2 0.810 5.2581 0.810 0.4695
3 0.813 5.4267 0.813 0.3543
4 0.815 5.4437 0.815 0.2975
5 0.816 5.4341 0.816 0.2652
6 0.815 5.5034 0.815 0.2486
7 0.815 5.4999 0.815 0.2401
8 0.814 5.4735 0.814 0.2359
9 0.814 5.4757 0.814 0.2341

10 0.814 5.4707 0.814 0.2334

Computational conditions: l 5 0.6328 mm; L 5 340 m; 37-uni
128; ten phase screens; one turbulence realization. Condition
Condition 2: Cn

2 5 2.78 3 10214 m22y3 ~r0 5 5 cm!, after phase ta
hase tailoring. Condition 4: Cn

2 5 1.90 3 10215 m22y3 ~r0 5 25
~r0 5 5 cm!; different phase screens, after phase tailoring. OL, o

Table 8. Comparison of Focusing Calculations with the FFT and the
Integration Method

Times OL FFT Int.

1 0.338 0.819 0.819
2 0.406 0.827 0.828
3 0.311 0.836 0.836
4 0.268 0.826 0.826
5 0.236 0.828 0.828

10 0.236 0.844 0.845
20 0.221 0.840 0.840
30 0.237 0.839 0.839
40 0.233 0.834 0.834
50 0.245 0.834 0.834

Computational conditions: iteration times, 4; Cn
2 5 2.78 3

10214 m22y3 ~r0 5 5 cm!; others, see Table 7. OL, open loop.
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method, the focal length of each subaperture is arti-
ficially increased. Table 8 shows that computational
results with the FFT to calculate focusing of the wave
field onto each subaperture agree well with those
from the integration method. The computer time
required with the FFT method is approximately 1y20
of that with the integration method.

Real AO systems have limited response for wave-front
detection, reconstruction, and correction, so the output of
the compensated phase is delayed. Practically, this is
the topic of dynamic control. An effective delay time Dt
is used to include this effect in the present numerical
simulation of an AO system in a stationary state. The
main laser beam with the compensated wave front radi-
ates out after Dt. In this time period the phase screens
move because of lateral wind andyor lateral movements
f target and laser source.
Simulation results for the laser propagation and an

O system with a time delay of 4.5 ms with different
ateral wind speeds are shown in Table 9. The re-
ults of open loop ~without an AO system! and those
ith complete phase conjugation are included as well.

t is apparent that as the wind speed increases the
O phase-compensation results worsen. The com-
lete phase-conjugation results worsen more rapidly.

3 4 5

RCC sf
2 STRCC sf

2 STRCC sf
2

.835 1.7969 0.922 0.1573 0.338 2.3095

.954 0.0474 0.979 0.0200 0.762 0.3078

.965 0.0345 0.983 0.0146 0.818 0.2256

.965 0.0347 0.983 0.0147 0.818 0.2271

.965 0.0342 0.983 0.0145 0.819 0.2233

.965 0.0343 0.983 0.0145 0.819 0.2229

.965 0.0342 0.983 0.0144 0.819 0.2219

.965 0.0341 0.983 0.0144 0.819 0.2215

.965 0.0341 0.983 0.0143 0.819 0.2211

.965 0.0341 0.983 0.0144 0.819 0.2208

.965 0.0341 0.983 0.0144 0.819 0.2206

system; phase-screen grids, 512 3 512; propagation grids, 128 3

n
2 5 2.78 3 10214 m22y3 ~r0 5 5 cm!, before phase tailoring.

g. Condition 3: Cn
2 5 4.455 3 10215 m22y3 ~r0 5 15 cm!, before

, before phase tailoring. Condition 5: Cn
2 5 2.78 3 10214 m22y3

oop.

Table 9. Effects of Lateral Wind Speed V on STRCC of AO Phase
Compensation and the Complete Phase Conjugation

V ~mys! OL AO CPC

0 0.245 0.834 0.978
2 0.253 0.667 0.673
4 0.254 0.443 0.412
6 0.252 0.322 0.294
8 0.246 0.266 0.241

10 0.252 0.232 0.208
13 0.250 0.204 0.182

Computational conditions: delay time, 4.5 ms; 50 turbulence
realizations; others, see Table 8.

CPC, complete phase conjugation; OL, open loop.
w
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2. W. Jiang and H. Li, “Hartmann–Shack wavefront sensing and
If the turbulent medium does not move, the complete
phase-conjugation results are better than those with
AO phase compensation. However, when the wind
speed is larger than a certain value ~for the conditions
of Table 9, V . 3 mys!, the results with AO phase
ompensation become better than those with com-
lete phase conjugation. As the lateral wind speed
s increased further the complete phase-conjugation
esults become worse than those with no phase com-
ensation.
It is concluded that, when the AO system has a

ertain delay time, an AO system with better phase-
ompensation capability does not necessarily produce

better compensation result. To obtain better AO
ompensation, in addition to improving the phase-
ompensation capability of the AO system by means of
ncreasing the numbers of subapertures and deform-
ble mirror actuators, it is necessary ~and perhaps
ore important! to decrease the delay time and im-

rove the dynamic control performance of the system.
The numerical simulation was also performed with
filtering method in which an AO system is simpli-

ed as a high-pass filter. The filtering method with
proper bandpass can give reasonable results in

ome cases, but it cannot give quantitative results for
ome other conditions even for an AO system in a
tationary state. The filtering method is only a
ough approximation.

A numerical simulation including the effects of
oise, detection error, and dynamic control is in
rogress.

The authors gratefully acknowledge the many
elpful discussions with Wenhan Jiang.
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