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ABSTRACT An analytical solution for the three-dimensional scattering and diffraction of plane
P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing
Fourier-Bessel series expansion technique. Unlike previous studies, in which the saturated soil
deposits were simulated with the single-phase elastic theory, in this paper, they are simulated with
Biot’s dynamic theory for saturated porous media, and the half space is assumed as a single-phase
elastic medium. The effects of the dimensionless frequency, the incidence angle of P-wave and the
porosity of soil deposits on the surface displacement magnifications of the hemispherical alluvial
valley are investigated. Numerical results show that the existence of a saturated hemispherical
alluvial valley has much influence on the surface displacement magnifications. It is more reasonable
to simulate soil deposits with Biot’s dynamic theory when evaluating the displacement responses
of a hemispherical alluvial valley with an incidence of P-waves.

KEY WORDS Biot’s dynamic theory, three-dimensional scattering, hemispherical alluvial valley,
analytical solution

I. INTRODUCTION
Irregular local geological conditions and topography may have significant influence on the amplifi-

cation of the ground motion and thereby cause earthquake disasters, especially for the situations where
thick soft clay deposit exists. A typical example is the Mexico earthquake in 1985[1]. The earthquake
occurred on the coast of Michoacan, USA (magnitude is 8.1), however Mexico City was damaged even
more seriously than the epicenter. Investigations showed that it is the thick bathtub soft clay stratifica-
tion on which Mexico City laiy that caused these results. Therefore, to investigate the dynamic response
of a field with special local geological conditions is of great importance for earthquake resistance design.

In the recent three decades, the effects of irregular geological conditions and surface topography
on the amplification of the ground motion have been drawing increasing attention from geotechnical
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engineers, seismologists and earthquake engineers. Since Trifunac[2] developed for the first time an
analytical solution for scattering of plane SH-waves by a semicircular canyon, great progress has been
made on this subject[2−−6]. Some researchers further investigated the three-dimensional cases[7−−9].
Lee[8,9] developed an analytical solution for three-dimensional scattering anddiffraction of planewaves by
hemispherical canyons and hemispherical alluvial valleys. However, in the above analytical investigations
the soft clay deposit in a canyon or alluvial valley was regarded as single-phase elastic medium. It would
be more reasonable to simulate the soft clay deposit with saturated porous media. So far, only a few
two-dimensional models have been developed for analysis of the scattering and diffraction of plane waves
in a saturated porous medium by irregular geological conditions[10,11].

In this paper, an analytical solution is developed for the three-dimensional scattering and diffraction of
P-wave by a saturated hemispherical alluvial valley, where the soft deposit is simulated by Biot’s dynamic
theory[12,16] and the half space is assumed as single-phase elastic media. The surface displacement
amplitude of a hemispherical alluvial valley is obtained analytically. The effects of the frequency and
angle of incidence of P-wave and the porosity of sediments on the surface displacement amplitudes are
discussed. Furthermore, these results are compared with those obtained by Lee[9], in which the alluvial
valley was assumed as a single-phase elastic medium.

II. THE MODEL AND FUNDAMENTAL EQUATIONS
Consider a three-dimensional soft saturated porous hemispherical alluvial valley, with radius r = a,

embedded in a half-space, as shown in Fig.1. The half-space is assumed as a homogeneous and isotropic
single-phase elastic medium, and the hemispherical alluvial valley as a homogeneous saturated porous
medium. The interface between the two media is assumed to be impervious. The geometry of the model
is described with spherical coordinates (r, θ, ϕ) (see Fig.2). For the study of surface displacement,
rectangular coordinates are also employed. The relationship between the two coordinates is shown in
Fig.2.

Fig. 1. An illustrationof a half-space with a hemisphere
alluvial valley and incident P-waves.

Fig. 2. Spherical and rectangular coordinates.

The fundamental equations for the soft saturated porous hemispherical alluvial valley are chosen
as Biot’s dynamic equations[12]. Meanwhile, the traditional single-phase elastic theory is employed for
simulating the half space.

By defining F (r, θ, ϕ, t) as a function of space and time, the wave equation in spherical coordinates
can be written as
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By means of separation of variables, a general harmonic solution of Eq.(1) is a linear combination of
any two of the four basic solutions of the form

Zj
n(kr)Pm

n (µ)cossin (mϕ) exp(−iωt) (2)
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where Zj
n (j = 1, 2, 3, 4) are the spherical Bessel and Hankel functions:
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in which jn(kr), yn(kr) and hn(kr) are the cylindrical Bessel and Hankel functions, k is the wave
number, i =

√
−1, m ≤ n = 0, 1, 2, ... , Pm

n (µ) is the associated Legendre polynomial, and µ = cos θ.

III. SOLUTION OF THE PROBLEM
In this study, we consider P-waves are propagating from the elastic half-space to a hemispherical

alluvial valley with an angle of incidence γ relative to z-axis, as shown in Fig.1. In solving Biot’s
governing equations, it is convenient to introduce the following Helmholtz resolution[12]:

u = gradΦ+ curlH , U = gradΨ + curl G (4)

where Φ and H are potentials associated with the solid phase of the saturated porous material, while
Ψ and G are potentials associated with the pore fluid phase.

The displacement vector of incident plane P-waves in the elastic half-space can be expressed as

ui = a0(sin γex + cos γez) exp[ih0(x sin γ + z cos γ) − iωt] (5)

in which a0 is the amplitude of incident P-waves, ω the angular frequency. In general, for the presence
of only free half-space boundary, the incident P-wave is reflected from the plane free surface (z = 0)
into P-wave and SV-wave, whose displacement vectors can be given as follows, respectively

ur
1 = K1a0(sin γex + cos γez) exp[ih0(x sin γ − z cos γ)]

ur
2 = K2(α0/β0)a0(cos δex + sin δez) × exp[ik0(x sin δ − z cos δ)]

(6)

where ex and ez are the unit vectors in x- and z-directions, α0 and β0 are the P-wave velocity and
SV-wave velocity, respectively, h0 = ω/α0 is the wave number of P-wave, k0 = ω/β0 is the wave number
of SV-wave, superscript ‘r’ means the reflected waves, the subscripts ‘1’ and ‘2’ represent P-wave and
SV-wave, respectively. K1 and K2 are the reflection coefficients, which are given as

sin δ =
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(7)

The resultant displacement vector is

ui+r = ui + ur
1 + ur

2 (8)

The stress-free boundary conditions should be satisfied, i.e.

σi+r
zz = σi+r

zx = σi+r
zy = 0 at z = 0 (9)

Based on the theory for elasticwaves, it is convenient to employwave potentials to get the displacement
solutions of u. Thus ui and ur

1 can be derived from φ(i), φ(r), respectively, and ur
2 from ψ(r) and χ(r).

These wave potentials can be expanded as
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where the summation is for m ≤ n = 0, 1, 2, ..., and the coefficients
{

A
(i)
mn, A

(r)
mn, B

(r)
mn, C
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mn

}

were given

in Ref.[8]. The above potentials should satisfy their scalar wave equations:
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wherehj and kj are the wave number of P-waveand that of SV-wave in the elastic half-space, respectively.
For the presence of the saturated alluvial valley, both longitudinal and transverse outgoing spherical

waves are reflected back into the valley, where standing waves are formed. The potentials of reflected
waves by the spherical boundary surface can be expressed as
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where the summation is for m ≤ n = 0, 1, 2, ..., the spherical Hankel function Z
(3)
n = h

(1)
n is used for the

product h
(1)
n (·) exp(−iω t), which represents an outward propagating-wave, the superscript ‘S’ means

reflection by the spherical boundary surface in half-space.
According to Biot’s dynamic theory[12], longitudinal PI -wave, PII-wave and transverse SV-wave will

be refracted in the valley. The refracted standing wave potentials can be represented by[15]
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where superscript ‘f ’ means refraction by the spherical boundary surface, h1(= ω/α1) and h2(= ω/α2)
are the wavenumbers ofPI and PII-waves, respectively, k1(= ω/β1) is the wavenumber of transversewave

in the saturated alluvial valley,
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coefficients corresponding to scattered and refracted potentials {φ(S), ψ(S), χ(S)} and {φ(f)
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χ(f)} , which satisfy the associated scalar wave equations (11). The displacements can thereby be
expressed by the spherical coordinate as
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By satisfying the boundary conditions, the expansion coefficients can be determined. The boundary
conditions in the spherical boundary surface (r = a) are

ui + ur + us = uf , σi + σr + σs = σf
s + σf

l (15)

and the impervious boundary condition is

uf
s,r − uf

l,r = 0 (16)

where the subscripts ‘s’ and ‘l’ represent the solid and the fluid phase of the saturated porous material.
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In the presence of free boundary (z=0) and the hemispherical valley (r ≤ a, z ≤ 0), additional
spherical wave potentials will be generated in both the half-space medium and the saturated alluvial
valley. They can be presented as follows:

(i) Half-space:
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where j =1, 2, m ≤ n = 0, 1, 2, . . . , the subscript ‘R’ means the scattering between the free boundary
surface and the spherical boundary surface in half-space.

(ii) Saturated alluvial valley:
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where m ≤ n = 0, 1, 2, ...; the subscript ‘F ’ means the reflection by the free boundary surface in the

saturated porous material. The potentials {φ(R), ψ(R), χ(R)} and {φ(F )
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can be determined with given boundary conditions.

The resultant potentials φ for the whole wave field are given by the sum of the potentials in each
medium. Similarly, the resultant displacements u and the stress vector σ can be obtained. They are
expressed as follows:

(i) Half-space (represented by superscript ‘0’):
Potentials:

φ(0) = φ(i) + φ(r) + φ(S) + φ(R)

ψ(0) = ψ(i) + ψ(r) + ψ(S) + ψ(R)

χ(0) = χ(i) + χ(r) + χ(S) + χ(R)

(19)

Displacements:
u(0) = ui + ur + uS + uR (20)

Stresses:
σ(0) = σi + σr + σS + σR (21)

(ii) Saturated alluvial valley (represented by superscript ‘1’):
(1) Solid phase:
Scalar wave potentials :
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Vector wave potentials H:
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Displacements:
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(2) Liquid phase:
Scalar wave potentials Ψ ′:
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φ′1
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Vector wave potentials G:
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where ηI, ηII, ηIII are the amplitude ratios of potentials for the solid and fluid phases of the saturated
porous media[13].

The following boundary conditions should be satisfied:
(a) Valley and half-space interface conditions:
The displacements and stresses along the interface between the valley and the half-space (r = a)

are assumed identical:

u
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The interface is assumed to be impervious, i.e.

u
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Combining Eqs.(15),(16), (30) and (31) gives (at r = a, z <0)
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(b) Free surface conditions:
(1) Half-space:
Along the free surface of the half-space (z = 0, x2 + y2 ≥ a2), the wave-induced stresses vanish, i.e.

σ(0)
zz = σ(0)

zx = σ(0)
zy = 0 (33)

In the spherical coordinate, this equation can be transformed into
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θϕ = 0 at r ≥ a, 0 ≤ ϕ ≤ 2π, θ = π/2 (34)

Combining boundary condition Eqs.(9) and (34), we get

σS + σR = 0 at r > a, z = 0 (35)

(2) Saturated alluvial valley:
At the free surface of the saturated alluvial valley (z=0, x2 + y2 < a2), the wave-induced stresses

vanish, i.e.
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In the spherical coordinate, Eq.(36) can be transformed into
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Assuming the free surface of the valley is permeable for water, the permeable boundary conditions are

σ
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l,rr = 0 at r < a, z = 0 (38)



Vol. 19, No. 2 Zhao Chenggang et al.: An Analytical Solution for Three-dimensional Diffraction · 147 ·

Similar to the analysis by Lee [14], using Eqs.(30), (31), (4) and (5) for each ‘(m, n) component’ and
m ≤ n = 0, 1, 2, ..., the following formulae can be obtained (at r = a):
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with j=1, 2 in the summation. The terms d
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. In this analysis, the boundary conditions, i.e. Eqs.(33)∼(38), are used. On

the free surface of half-space (z = 0), the spherical wave potentials are represented by series with argu-
ment ‘r’ , and putting these into Eqs.(33)∼(35), at θ= π/2, 0≤ ϕ ≤2 π, r ≥a, σθθ=0, form = 0, 1, 2, . . .,
we get
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Similar to σθr = 0, m = 0, 1, 2, . . . , we get
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(

+
B

(1)
m,m+2l

B
(3)
m,m+2l

)

e
(1)
0,62 +

(

+
C

(1)
m,m+2l+1

C
(3)
m,m+2l+1

)

e
(1)
0,63 = 0 (n = 0, 1, 2, . . .)

∞
∑

l=max(0,n)

(

+
A

(2)
m,m+2l−1

iA
(3)
m,m+2l−1

)

e
(2)
0,61 +

(

+
B

(2)
m,m+2l

iB
(3)
m,m+2l

)

e
(2)
0,62 +

(

+
C

(2)
m,m+2l−1

iC
(3)
m,m+2l−1

)

e
(2)
0,63 = 0 (n = 0,±1,±2, . . .)

(42)

where i =
√
−1, e

(k)
0,ij are series expansion coefficients given by Lee [14]. Similar to the above free surface

of the saturated alluvial valley, Eqs.(36)∼(38) are used, at θ= π/2, 0 ≤ ϕ ≤ 2π, r ≤ a, σθθ = 0, for
m = 0, 1, 2, . . . , we get

n
∑

l=0

(

+
A

(F )
m,m+2l

A
(f)
m,m+2l

)

e
(1)
1,21+

(

+
B

(F )
m,m+2l

B
(f)
m,m+2l

)

e
(1)
1,22+

(

+
C

(F )
m,m+2l−1

C
(f)
m,m+2l−1

)

e
(1)
1,23+

(

+
D

(F )
m,m+2l

D
(f)
m,m+2l

)

e
(1)
1,24 = 0 (n = 0, 1, 2, . . .)

(43)



· 148 · ACTA MECHANICA SOLIDA SINICA 2006

Similarly for σθr = 0, m = 0, 1, 2, . . . , we get

n
∑

l=0

(

+
A

(F )
m,m+2l+1

A
(f)
m,m+2l+1

)

e
(1)
1,41 +

(

+
B

(F )
m,m+2l+1

B
(f)
m,m+2l+1

)

e
(1)
1,42

+

(

+
C

(F )
m,m+2l

C
(f)
m,m+2l

)

e
(1)
1,43 +

(

+
D

(F )
m,m+2l+1

D
(f)
m,m+2l+1

)

e
(1)
1,44 = 0 (n = 0, 1, 2, . . .) (44)

For σθϕ = 0, m = 0, 1, 2, . . . , we get

n
∑

l=0

(

+
A

(F )
m,m+2l+1

A
(f)
m,m+2l+1

)

e
(1)
1,61 +

(

+
B

(F )
m,m+2l+1

B
(f)
m,m+2l+1

)

e
(1)
1,62

+

(

+
C

(F )
m,m+2l

C
(f)
m,m+2l

)

e
(1)
1,63 +

(

+
D

(F )
m,m+2l+1

D
(f)
m,m+2l+1

)

e
(1)
1,64 = 0 (n = 0, 1, 2, . . .) (45)

where e
(k)
1,ij are series expansion coefficients for the saturated porous media calculated in the same way

as above. For the permeable boundary conditions at r ≤ a, 0 ≤ ϕ ≤ 2π, θ = π/2, for m = 0, 1, 2, . . . ,

σ
(1)
l,rr = 0, we get

n
∑

l=0

(

+
A

(F )
m,m+2l

A
(f)
m,m+2l

)

e
(1)
l1 +

(

+
B

(F )
m,m+2l

B
(f)
m,m+2l

)

e
(1)
l2 = 0 (n = 0, 1, 2, . . .) (46)

where e
(k)
l,j are series expansion coefficients when calculating the permeability of the saturated soil.

The above Eqs.(39)∼(46) constitute a system of homogeneous linear equations with the unknown

coefficients
{

A
(1)
mn, B

(1)
mn, C

(1)
mn

}

,
{

A
(2)
mn, B

(2)
mn, C

(2)
mn

}

in the half-space and
{

A
(F )
mn , B

(F )
mn , C

(F )
mn , D

(F )
mn

}

in

the soft valley. Symbolically, the system of equations can be represented by

∞
∑

j=0

µi,jxj = ni (i = 0, 1, 2, . . .) (47)

where µij represents the unknown coefficients of an infinite matrix , xj represents the unknown infinite
sequence, and ni represents a known infinite sequence. Equations (47) are infinite for i from 1 to ∞,
and each equation for definite i consists of the infinite sums. Therefore, the system of equations can be
solved by means of truncating the infinite sums into finite sums. Then a finite matrix will be obtained.
The number of terms considered should be large enough for satisfying the required accuracy.

IV. RESULTS AND DISCUSSION
In this section, the effects of the wavelength and the angle of incidence of P-wave and the porosity

of sediments in the hemispherical valley on the surface displacement response will be investigated. As
the wave potentials are represented by the spherical coordinate as Eqs.(4), the displacements can be
denoted by the spherical coordinate[15]. The amplitudes of the displacement vector (ur, uθ, uϕ) can be
obtained from Eq.(14) and the potentials in Eqs.(19),(22) and (23). For the convenience of parametric
study, a dimensionless frequency η is introduced:

η =
2a

λ0
=
h0 a

π
(48)

where λ 0 is the wavelength of the incident P-wave. The properties of the saturated hemispherical alluvial
valley and the elastic half-space are listed in Table 1, where A, N , R,Q are Biot parameters[12], ρs and
ρf are the mass densities of solid and liquid components, respectively, and n is the porosity of soil, λ
and µ are Lame parameters of elastic material, and ρ is the mass density of the half space.

Typical distributions of vertical surface displacement in the vicinity of the hemispherical alluvial
valley induced by incident P-wave at various angles of incidence and dimensionless frequencies are shown
in Figs.3. In Figs.3, the z-axis represents the vertical displacement magnification, i.e. Mz = uz

/∣

∣ui
∣

∣,
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Table 1. The properties of the saturated hemispherical alluvial valley and the elastic half space

saturated hemispherical alluvial valley

A (Pa) N (Pa) R (Pa) Q (Pa) n ρs (kgm−3) ρf (kgm−3)
4.45×109 2.76×109 3.26×108 7.43×108 0.66 2.6×103 1.0×103

elastic half-space

λ (Pa) µ (Pa) ρ (kgm−3)
22.4×109 29.9×109 2.65×103

Fig. 3. The vertical displacement magnifications around the surface of saturated hemispherical alluvial valley induced by
P-waves.

where uz is the vertical displacement of the surface induced by P-wave, and
∣

∣ui
∣

∣ = a0 is the displacement
amplitude of incident P-wave. It can be seen from the figures that the displacement field becomes much
more complicated for the presence of the hemispherical alluvial valley. For a fixed value of dimensionless
frequency of incidentwave, e.g. η=0.5 or 1.5,with an increase of the angle of incidence, the influential zone
of the maximum displacement magnifications transfers from the center to the edge of the hemispherical
alluvial valley. The magnification effects at η = 1.5 is become slightly smaller than those at η = 0.5.
Thus, the incidence angle and the dimensionless frequency of P-wave have much influence on the pattern
and amplitude of the surface displacements of the hemispherical alluvial valley.
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The distributions of horizontal displacement at the surface of the hemispherical alluvial valley induced
by incident P-wave with the incidence angle γ = 300 and the dimensionless frequency η = 1.5 are shown
in Fig.4. Similar to the magnifications of the vertical displacement, the displacement magnifications in
the x- and y-directions can be expressed as Mx(= ux

/
∣

∣ui
∣

∣) and My(= uy

/
∣

∣ui
∣

∣) respectively, where ux

and uy are the P-wave induced surface displacements in the x- and y-directions. Compared with the
magnifications of vertical displacement (see Fig.3(d)), the displacements in x- and y-directions are at
an equal level of magnitude in the case of oblique incidence of P-waves.

Fig. 4. The magnification of x- and y-component of displacements around the surface of saturated hemispherical alluvial
valley for γ = 30◦ and η = 1.5.

It is also interesting to investigate the effects of the
sediments porosity of the hemispherical valley on the sur-
face displacement response. To this end, various values of
the porosity of sediments in the hemispherical valley n are
chosen, i.e. n = 0.2, 0.4, 0.6, 0.8. The dimensionless fre-
quency η = 1.5 and the values of other parameters of the
two media remain the same as listed in Table 1. Figure
5 shows the variation of the maximum values of vertical
displacement magnifications Mz max with the porosity of
sediments n for normal incidence of P-wave. It is indicated
that themaximummagnifications of vertical displacements
become higher with the increase of soil porosity.

Fig. 5 The variation of the maximum values of ver-
tical displacement magnifications with the porosity
of sediments in a hemispherical alluvial valley for the
normal incidence of P-waves (η = 1.5).

Unlike Lee[9], who stated that the displacement magnification at the surface of the alluvial valley,
which was simulated by single-phase elastic theory, is not greater than that at the surface of elastic
half-space (which is 2.0), the above investigations show that the displacement magnification effects
will be much more obvious, especially for the sediment with high porosity, when the soil deposits in
the hemispherical alluvial valley are simulated by Biot’s dynamic theory. Therefore, it would be more
reasonable to employ Biot’s dynamic theory to simulate the saturated hemispherical alluvial valley
when evaluating the P-wave induced displacement responses.

V. CONCLUSIONS
Based on Biot’s dynamic theory for saturated porous media, an analytical solution for three-

dimensional scattering and diffraction of plane P-wave by a hemispherical alluvial valley with saturated
soil deposits is obtained by means of wave functions expansion technique. Based on this, the surface
displacements around the soft alluvial valley are further analyzed. Numerical results show that the
incidence angle and the dimensionless frequency of P-wave have significent influence on the P-wave
induced displacement field, including its pattern and amplitude. The magnification effects of the surface
displacement for higher dimensionless frequencies (e.g. η = 1.5) is slightly smaller than those at smaller
ones (e.g. η = 0.5). With the increase of the porosity of sediments, the displacement magnifications
of the surface of alluvial valley become higher. When the hemispherical alluvial valley is assumed as
a saturated porous medium, its displacement magnifications are much larger than those when it is



Vol. 19, No. 2 Zhao Chenggang et al.: An Analytical Solution for Three-dimensional Diffraction · 151 ·

assumed as a single-phase elastic medium. Therefore, for engineering practice, it is more reasonable to
assume the alluvial valley a two-phase saturated porous medium, especially for the sediment with high
porosity when analyzing the P-wave induced displacement response of an alluvial valley.
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