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In the previous paper, a class of nonlinear system is mapped to a so-called skeleton linear

model (SLM) based on the joint time-frequency analysis method. Behavior of the nonlin-

Jinghui Zhang ear system may be indicated quantitatively by the variance of the coefficients of SLM
versus its response. Using this model we propose an identification method for nonlinear
Chao Wang systems based on nonstationary vibration data in this paper. The key technique in the
identification procedure is a time-frequency filtering method by which solution of the SLM
Shiyue Hu is extracted from the response data of the corresponding nonlinear system. Two time-
frequency filtering methods are discussed here. One is based on the quadratic time-
Civil College, frequency distribution and its inverse transform, the other is based on the quadratic
Xi'an Jiaotong University, time-frequency distribution and the wavelet transform. Both numerical examples and an
Xian, PR. China experimental application are given to illustrate the validity of the technique.
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1 Introduction asymptotic signal takes the dominant statug(it) and its deriva-

The dynamic behavior of a nonlinear system generally vari%’es foru(t)=0. The relationship is also valid when the instan-

with the instantaneous response. In our previous pgidesf this der:?vcz);:i?/ ef;eguernoc%n?;t;h% ?ﬁg‘tcf(?l) (f:g:n;nogin?/(tn:))ti?g?(clit;-
work, based on the joint time-frequency analyg®, a time- pp ymp

frequency masking operator together with the effective timé'—on signal. We should choose an appropriate excitation signal to

frequency region of the asymptotic signal is defined. Under thi%%?]rgllnvtveiti tgg:) r%gﬁ’a;)t :r;%:?itz(c)ilg '[_II’_LE](Z. i\r/nvganc:tatye gtsies 32 rlymcpoic\}e-
mathematical foundations, we deduced a time-varying linear sys? e : X
tem, that is, the skeleton linear mod&LM), for a class of non- ient. But the precision may be poor for systems with very large

linear system. The dynamic behavior of SLM is similar to that 9 1mpL?gk|':jg¥:2ChI:1h$k:ﬁsIisngt;i(z:ke OtL:V%Irigf :::t'gﬁsdeat;gﬂﬁ tge
the nonlinear system. For the following nonlinear system d Y- P

adopted. To guarantee that the harmonic component is dominant
my+F(y,y)=u (1) in the response, the instantaneous frequency of the excitation
should approximate the resonance frequency of the system. Be-
sides, the resonance response signal may take large amplitude
) ) 1 even with small energy excitation. A priori knowledge about the
X+ 2hox+ wéx: EU (2) system is needed for the identification when the forced vibration
testing is used.

the corresponding SLM is

1 2
wi=—— F(a cose,—aw Sin¢)cosed 3
¢ mma, ( ¢ plcospde © 2.2 Extracting the Response Signal of SLM from that of
1 the Nonlinear System. Because the asymptotic signe(t) is
(4) dominant iny(t), Q, can be estimated using the modulus of
2mmaw py(t,®). |py(t,w)| takes the maximum valve ai(t) at any given

. time t. Setting a threshold value, 0<a<1, we can take the
where w, and hy denotes the instantaneous undamped naturalvimum zonal with midlinas(t) which satisfies

frequency and the instantaneous decay coefficient, respectively.
They are all variables varying slowly with time. lpy(t,@)[=a|p,(t,o(1))] (5)
The response of SLM2) is the principal component of that
of the corresponding nonlinear systéi. And we call the regres-
sive curveswg(a,w) andhg(a, ), the frequency skeleton curve
and the damping skeleton curveespectively. They indicate the
main nonlinear behavior of the system in visual forms concisely. X()~M(y(t),Qy) (6)
In this paper we discuss the identification procedure of the ) .
skeleton curves based on the vibration data of the nonlinedhereM(-,-) denotes the time-frequency masking operator de-
system(1). The reader is referred to Réll] for necessary back- fined in referenc¢l]. there is
ground knowledge and details. py(to) (to)el,

0 (t,w) & Oy

Taking the inverse transform @f(t,»), one yield
2.1 Choice of the Excitation Signal. The relationship be-
tween LSM and the nonlinear system, expressed by &ysand 1 f f f px(t,w)

(4), is only deduced under certain conditions. It is true when an x(7)= 27-X*(0) ¢(0,7)

2
hy=— f F(acose,—aw sing)sinede
0

as the estimation of), .
Thenx(t) can be extracted from(t) using the time-frequency
masking operator of), . Because

Px(t:w)_[ (7)

2 ldentification of the Skeleton Curves

ejtw+j 9(t—7/2)dtdwd0

- ®)
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The computation effort and storage requirement are quite larffequency masking operator. But there is difficulty in calculation.
in the above method. Besides, there is singularity in 8g.In In this section a more practical technique based on the wavelet
section 3, a more practical time-frequency filtering techniqugansform is used.

based on th let transf tion i d. .
ased on fhe wavelet fransiormation 1S propose 3.1 Wavelet Transform Along the Wavelet Ridge. For the

) o sake of completeness and better understanding, the necessary

2.3 Calculation of the Instantaneous Coefficients of SLM packground knowledge is introduced firstly. For more details, the
SLM is a special time-varying linear system with coefficientgegder is referred to referenfs).
varying slowly with time. The instantaneous coefficients may be ) An analytic wavelet is called the asymptotic analytic wavelet
expressed by analytical functions of its instantaneous responge.
Calculation of the instantaneous coefficients based on the excita- -
tion signal and response signal in cases of free vibration and W) =A,(t)explie,(1)) (20)
forced vibration are discussed in detail in refereri@g4]. For a where
SLM excited by an asymptotic signal and with the harmonic com-

ponent be dominant in its response signal dgpw(t)| _ ‘ 1 |“dA.,,(t) 21)
X()+ 2hy(DX()+ @2OX(D = = u(t) 9) a Piawll et |
m Assuming thaZ(t) is an asymptotic signal

the instantaneous coefficients may be calculated as follows Z(t)=A(t)expie(t)) (22)

2 o a(t)y  Bhat) a(t) _a%t) a(t)w(t) Taking the wavelet transform &(t) with an asymptotic analyz-
wp(t) =w™(t)+ m matot) WJF aZ(t) + a(hw(t) ing wavelet as the mother wavelet, yields

(10) 1 ~[t—Db
OB alt) () (W 2)(a,b)= —= f zmw( T)dt
ho(t)= 2mo(t) a(t) 2w(t) (11) Vale
1 "
where “ % f Aap(t)expi®, p(t)dt  (29)
a(t) = Vx3(1) +x3(1) 12) R
XKD -XOX() where
RO ) A, =AMA 22
Aap(t)=A(DA, a (24)
x(t)u(t) +X(t)u(t)
a(t)=——5 =3 (14) t—h
XDy Pap(D)=(0)~ %( T) (25)
X(HT(H) =X(Hu(t)
t)= TROAD (15)  Denote the stationary point of the argumdn ,(t) by t,, that
is
U(t) andx(t) are the Hilbert transform adi(t) andx(t), respec- . .
tively. That is D, p(ts) =0, DPyp(ts)#0 (26)
~ 1 +u(r) one has
u(t)=;pvJ' t_TdT (16) 1 t.—b
B o(t) ==y = (27)
_ + x(7)
X(t)=— pvf a7 (17)  Thewavelet ridge denoted bya,(b), is defined to be the set of
- points (@,b) such that
Wherepu indicates the Cauchy principal value of the integral. t(a,b)=b (28)

When the free vibration response date is used, Ed3, (11)
becomes And the wavelet curve denoted bya.(b), i_s _the curve which
A(t) A2 am) passes through the poing(bg),by) and satisfies

206V 204 _ AT
@O= 0 5m P20 Tamen P t(2b)=bo 29
at)  w) As Z(t) andT/x((tf b)/a) are both asymptotic signals, E@3)

ho(t)=— —~— (19) represents a rapidly oscillating integral. The positive or negative

at)  2o(1) parts counteract each other at most regions except the neighbor-
The skeleton curves may be plotted directly once the instaheod ofti(a,b). According to the theory of asymptotic expansion
taneous response and instantaneous coefficients of the SLM iaie known that if there exists only one stationary pdige,b) at

calculated. every point in the phase plane, the first order approximation to
(293) is of the form
3 Time-Frequency Filtering Algorithm mel T Pan(ls) - t—b
. . Wy Z2)(a,b)~\/ = = Z(ts) g (30)
Obviously, to extrack(t) from y(t), a time-vary narrow band 2 44 /|<I>a b(to)] a

filtering process should be used. The instantaneous central fre- ) ] )
quency of the filter ought to be set at the instantaneous frequer¥iien @,b) is along the wavelet ridge, yields
of x(t), while its instantaneous bandwidth takes the value not less

. . X ; i 7/4 sgrid t
than that ofx(t). And the window function should be localized in g 74 S0 Pa ()0t

#(0)-Z(b) (31)

e

both time and frequency domain. In section 2.2, the extracting iéWTﬂ Z)(a(b),b)~ 2 a(b \/@7
based on the quadratic time-frequency distribution and the time- a(b) | ar<b>vb(ts)|
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Fig. 1 Grayscale view of the modulus of quadratic time-frequency distribution (in dB) (a) Pyt o) (b)
Py(yiay ©) Pytragn
and when 4,b) is along the wavelet curve, there is 3.2 Time-Frequency Filtering Algorithm Based on the

(ra s (b ————  Wavelet Transform. In this section we extract(t) from y(t)
7 el m4san®, p(bo) ~(bo—b through an algorithm based on the wavelet transformy()
Wy Z)(ag(b),b)~\/ = Z(bo)- ¢
2

- along the wavelet ridge of(t).
ag(b) /| @, p(bo)l &

In generaly(t) consists of several asymptotic signals. And usu-
The above statements show that the value \Wf,Z)(a,b) is

(32)  ally there is no overlap for each two of them.

dete.rrr.nned only byZ(-) when @a,b) is along the wavelet ridge, YO =X(1) + Z4(t) + Zy(t) +---
and it is determined only by(-) when (@,b) is along the wavelet _ _ )
curve. =A)e*V+A (1)e W+ Ay (t)el 2V 4. (33)
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Fig. 2 The frequency and damping skeleton curves of example 1 (identified result: dot; theoretical value: line )
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Fig. 5 Cross-section of the damper

Fig. 3 Grayscale view of the modulus of Pyvia

. . _ Wy y(t)(a(b),b)
For a given analyzing wavelet, the wavelet ridge for each com-
ponent is not the same. Denote the wavelet ridge(tf by a,(b).
The instantaneous frequency xft), w(t), can be calculated us- =Wy x(t)(a,(b),b) +2 Wy, Z;(t)(a,(b),b)
ing py(w,t). The modulus op,(w,t) reaches the maximum value
at w=w(t) at any given time

lpy(w(t),t)]=max (34) \/a (b) f )w(a (b)

Then the wavelet ridge of(t) is calculated

%

dt

\/—J J()tﬂ

_ a (b)
<P¢(o)
ar(b) = 7&)('3) (35) T ei l4 Sgﬂ‘l’a((b)(ts)) _ tsi b
~ E%X(ts)d/ PTSY
i i ar(b) |q)a b (ts)| ar( )
For example, taking the Morlet wavelgh] as the analyzing r(b)
wavelet, its mother wavelet is " — . i
\/77 e wl4 Sgr(d)alr(b)([s)) tJ —b
s + 7)Y | (38)
Wt =e t2giwot (36) =1 2 a(b) |(I)a'r(b)(tjs)| (b)
so one has wheretg denotes the stationary point &t) with respect to the
point (a,(b),b) in the phase plane, ard is that of Z;(t).
3(b)= (b) (37) titt=b (39)
Furthermore, an iterative algorithm is given in refereffglusing As a function with compact supponNn(t) reaches the maximum
the nature of the wavelet curve. value att=0, and decays to zero quickly 3t increases. The
To obtainx(t), taking the wavelet transform gf(t) along the following equation yields as long as the instantaneous frequency
wavelet ridge ofx(t) of the other components is not close to thaix¢t).
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Fig. 4 The frequency and damping skeleton curves of example 2 (identified result: dot; theoretical value: line )
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Table 1

I'(m) J (kg-m?) M (kg) I1(m) I2(m) K (N/m)
0.65 0.35 3.25 0.19 0.39 6840
[4
{s
{ {e
F(t) ‘ ~ kz
M { olCt
N s
Fig. 6 The testing system
~[ti—b
a ~0 (40)
thus
\/; QA SIND, ()t
W,y (t)(ar(b),b)~\/~ - #(0)-x(b)
2 a,(0) /| P4, (), p(ts)]
(41)
where
. 1 . . .
D@y (b b(ts) =~ = [a (D)@, (0) + ¢, (0)]  (42)

[a(b)]*

Sox can be calculated through the wavelet transforny afong
the wavelet ridge ok

W,y(t)(a,(b),b)

L@ iml4 g~ a, ()¢, (0)+ ¢ y(0)/[a, ()17 (43)

X(t). So all the other components besidgs) in y(t) are filtered
out after the filtering procedure. Obviously, most noise is also
filtered out in the meantime.

4 Examples

We use two numerical examples to verify the technique devel-
oped in this paper. The fourth order Runge-Kutta arithmetic is
adopted in the numerical simulation. Then the identification tech-
nique is used to study the dynamic characteristic of a torsion
damper.

Example 1 Consider the following system

Y+ C1y+Coly|y+ Ky +kay3 +kay®=0 (44)
where
ki=m?, k,=3x10f7?, kz=2X10°%?,
c,=0.8, c,=0.1

This is a polynomial system with hard spring, viscous friction and
square friction. The skeleton curves are

12

3 ., .5 .,
wo(a)=|k;+ Zkza +§k3a (45)

o &, 4
olaw)= > T3 Craw
The identification is based on the free vibration data with the
following initial condition.

y(0)=0.05, y(0)=0, ¥(0)=0

Modulus of the quadratic time-frequency distribution of the dis-
placement, velocity and acceleration are plotted in Fig. 1. For the
sake of clarity, the signals are normalized by their instantaneous
amplitudes. It is seen that the displacement signal and velocity
signal are almost perfect asymptotic signals in which the har-
monic components cannot be found. But in the acceleration sig-
nal, the third order harmonic component is too significant to be
neglected. In this example, the instantaneous frequency of the
principal component varies from 15 Hz to 54 Hz, while that of the
third-order harmonic component varies from 45 Hz to 162 Hz.
The skeleton curves identified together with theoretical values are

(46)

The preceding result can be explained as follows: The wavelg{own in Fig. 2.
function is localized in both time domain and frequency domain. In this examp|e the advantage of the time_frequency f||ter|ng

As (t—b/a,(b)) is located atb in the time domain, and at technique is revealed. Because the frequency range of the prin-
¢¢,(0)/ar(b):£p(b):w(b) in the frequency domain, it acts as aciple component and the harmonic component overlap, the two
time-frequency filter. Its instantaneous central frequenay(is), components are not parted completely in the Fourier spectrum.
which is the instantaneous frequency>dtt). And its instanta- Thus the principal component could not be extracted accurately
neous pass-band equals the effective time-frequency regionfi@m the response signal by using the narrow-band filtering tech-

13 8
125 7t
K, /((Nm) e C, /(Nms)
120 6
115 5t :
i 4 i
1100 2 4 6 0 1 2 3
A, /rad) A;/(rad/s)

(a) (b)

Fig. 7 The dynamic parameters versus the amplitude of response
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nique proposed in referencéd,4]. In such instances, the resultcomponenty(t) is extracted from the measured acceleration sig-
obtained by the narrow-band filtering technique may be far fromal. y andy are obtained from the integral procedure. Within a
the accurate value. small displacement, there is
Example 2 Consider the following system . .
i yO Y . )
y+cy+M-sign(y)+F(y)=0 47) 0(t)~—|2 , a(t)~—|2 , g(t)m_lz

whereF (y) is the elastic force of a bilinear spring We getho(t) andw(t) by substitutingd(t), é(t), b(t) into Egs.

kiy |y|<Yo (18) and (19). Then the torsion stiffness and torsion damping of
F(y)= . the damper can be calculated as follows:
koy+signly)(ki—kp)yo [yl>Yo P
The system is with viscous damping and dry friction. The param- Ci(t) =2Meho(t) = 1.688'ho(t) (52)
eters are K(t)=Mgw3(t)—KI2=0.844303(t) — 246.9240  (53)
ky=9007?, k,=73007% yo=0.5 The curve ofK(t) versusA,(t), together with that ofC(t)

c=0.37. M=5x versusAy(t) are plotted at each moment in Fig. 7. From them we
" could see the dynamic characteristic of the damper. Figtag 7

The frequency skeleton curve and damping skeleton curve areshows that the torsion stiffness coefficient decreases Wjt)

when A,(t) is less than 2 radian. Withik\,=2~6 radian the

wo(2) torsion stiffness may be taken as linear becakisés almost a
2(ky—ks) Yol Yo yé 12 constant. And Fig. (b) shows that the torsion damping increases
Kyt —— ( sinll =+ —=1\/1- = a=y, Wwiththe amplitude of the rotation velocity. The nonlinearity in the
= 7" a a torsion damping is rather high.

Vkia<yo 5 Conclusions
In general, the behavior of nonlinear systems varies with its
c 2 instantaneous response. The nonlinearity is studied quantitatively
ho(aw)=5+—M Jaw] ™ (49) based on the nonstationary vibration response by using the time-
g frequency filtering method in this paper.
We use the free vibration response with the following initial In the previous pap€rl] of our work, based on the quadratic
condition. time-frequency distribution of Cohen class, the skeleton linear
y(0)=15, y(0)=0, ¥(0)=0 mod_el (SLM) and skeleton curves are con_structed for a clags of
’ ' nonlinear system. Characteristics of the stiffness and damping of
The instantaneous frequency of the displacement signal versibe nonlinear system may be described quantificationally with
time can be seen in Fig. 3. Although this system is with a higthem.
level of nonlinearity in the common point of view, the response is In this paper the identification procedure of the skeleton curves
almost an asymptotic signal. So the method proposed in this pagerstudied through the time-frequency filtering technique. Two
may be applied to this system. The skeleton curves identified dime-frequency filtering methods are discussed. One is based on
shown in Fig. 4. the quadratic time-frequency distribution and its inverse trans-
From the preceding examples we could see that the result idéorm, the other is based on the quadratic time-frequency distribu-
tified though the approach developed in this paper is in godi®n and the wavelet transform. Both numerical examples and an
agreement with the theoretical value. experimental application are given to illustrate the validity of the
Example 3 The dynamic characteristic of a type of torsiortechnique.
damper is studied through the SLM and the time-frequency filter- By comparison with other methods, the method developed here
ing technique in this section. The cross section of the damperappears very interesting in regard to precision, formulation, test-
shown as Fig. 5. The interior of the damper is filled with silicoring work, and computational time. The numerical results are in
oil. The parameters are listed in Table 1, whérélenotes the good agreement with theoretical predictions. Further study is ex-
moment of inertial denotes length of the bearl{. denotes the pected in the future.
equivalent stiffness coefficient of the sprird,is a lumped mass.
The testing system is shown as Fig. 6. It can be described Bgeferences

(48)
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