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Identification of Nonlinear
Systems Through Time-frequency
Filtering Technique
In the previous paper, a class of nonlinear system is mapped to a so-called skeleton
model (SLM) based on the joint time-frequency analysis method. Behavior of the n
ear system may be indicated quantitatively by the variance of the coefficients of
versus its response. Using this model we propose an identification method for non
systems based on nonstationary vibration data in this paper. The key technique
identification procedure is a time-frequency filtering method by which solution of the
is extracted from the response data of the corresponding nonlinear system. Two
frequency filtering methods are discussed here. One is based on the quadratic
frequency distribution and its inverse transform, the other is based on the quad
time-frequency distribution and the wavelet transform. Both numerical examples an
experimental application are given to illustrate the validity of the technique.
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1 Introduction
The dynamic behavior of a nonlinear system generally va

with the instantaneous response. In our previous paper@1# of this
work, based on the joint time-frequency analysis@2#, a time-
frequency masking operator together with the effective tim
frequency region of the asymptotic signal is defined. Under th
mathematical foundations, we deduced a time-varying linear
tem, that is, the skeleton linear model~SLM!, for a class of non-
linear system. The dynamic behavior of SLM is similar to that
the nonlinear system. For the following nonlinear system

mÿ1F~y,ẏ!5u (1)

the corresponding SLM is

ẍ12h0ẋ1v0
2x5

1

m
u (2)

v0
25

1

pmaE0

2p

F~a cosw,2av sinw!coswdw (3)

h052
1

2pmav E
0

2p

F~a cosw,2av sinw!sinwdw (4)

where v0 and h0 denotes the instantaneous undamped nat
frequency and the instantaneous decay coefficient, respecti
They are all variables varying slowly with time.

The response of SLM~2! is the principal component of tha
of the corresponding nonlinear system~1!. And we call the regres-
sive curves,v0(a,v) andh0(a,v), the frequency skeleton curv
and the damping skeleton curve, respectively. They indicate th
main nonlinear behavior of the system in visual forms concise

In this paper we discuss the identification procedure of
skeleton curves based on the vibration data of the nonlin
system~1!. The reader is referred to Ref.@1# for necessary back
ground knowledge and details.

2 Identification of the Skeleton Curves

2.1 Choice of the Excitation Signal. The relationship be-
tween LSM and the nonlinear system, expressed by Eqs.~3! and
~4!, is only deduced under certain conditions. It is true when
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asymptotic signal takes the dominant status iny(t) and its deriva-
tives for u(t)50. The relationship is also valid when the insta
taneous frequency of the principal components iny(t) and its
derivatives approximate to that ofu(t) for an asymptotic excita-
tion signal. We should choose an appropriate excitation signa
guarantee that Eqs.~3! and ~4! hold true. We may use an impac
signal with appropriate amplitude. The impact test is very con
nient. But the precision may be poor for systems with very la
damping in which there is a lack of available testing data due
the quick decay. In this instance the forced response should
adopted. To guarantee that the harmonic component is domi
in the response, the instantaneous frequency of the excita
should approximate the resonance frequency of the system.
sides, the resonance response signal may take large ampl
even with small energy excitation. A priori knowledge about t
system is needed for the identification when the forced vibrat
testing is used.

2.2 Extracting the Response Signal of SLM from that of
the Nonlinear System. Because the asymptotic signalx(t) is
dominant in y(t), Vx can be estimated using the modulus
ry(t,v). ury(t,v)u takes the maximum valve atv(t) at any given
time t. Setting a threshold valuea, 0,a,1, we can take the
maximum zonal with midlinev(t) which satisfies

ury~ t,v!u>aury~ t,v~ t !!u (5)

as the estimation ofVx .
Thenx(t) can be extracted fromy(t) using the time-frequency

masking operator onVx . Because

x~ t !'M ~y~ t !,Vx! (6)

whereM (•,•) denotes the time-frequency masking operator
fined in reference@1#. there is

rx~ t,v!5H ry~ t,v! ~ t,v!PVx

0 ~ t,v!¹Vx
(7)

Taking the inverse transform ofrx(t,v), one yield

x~t!5
1

2p•x* ~0! E E E rx~ t,v!

f~u,t!
ejtv1 j u~ t2t/2!dtdvdu

(8)

wheref~u,t! is the kernel of the quadratic time-frequency dist
bution of Cohen class@2#.
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The computation effort and storage requirement are quite la
in the above method. Besides, there is singularity in Eq.~8!. In
section 3, a more practical time-frequency filtering techniq
based on the wavelet transformation is proposed.

2.3 Calculation of the Instantaneous Coefficients of SLM
SLM is a special time-varying linear system with coefficien
varying slowly with time. The instantaneous coefficients may
expressed by analytical functions of its instantaneous respo
Calculation of the instantaneous coefficients based on the ex
tion signal and response signal in cases of free vibration
forced vibration are discussed in detail in references@3#, @4#. For a
SLM excited by an asymptotic signal and with the harmonic co
ponent be dominant in its response signal

ẍ~ t !12h0~ t !ẋ~ t !1v0
2~ t !x~ t !5

1

m
u~ t ! (9)

the instantaneous coefficients may be calculated as follows

v0
2~ t !5v2~ t !1

a~ t !

m
2

b~ t !ȧ~ t !

ma~ t !v~ t !
2

ä~ t !

a~ t !
12

ȧ2~ t !

a2~ t !
1

ȧ~ t !v̇~ t !

a~ t !v~ t !
(10)

h0~ t !5
b~ t !

2mv~ t !
2

ȧ~ t !

a~ t !
2

v̇~ t !

2v~ t !
(11)

where

a~ t !5Ax2~ t !1 x̃2~ t ! (12)

v~ t !5
x~ t !x8 ~ t !2 x̃~ t !ẋ~ t !

x2~ t !1 x̃2~ t !
(13)

a~ t !5
x~ t !u~ t !1 x̃~ t !ũ~ t !

x2~ t !1 x̃2~ t !
(14)

b~ t !5
x~ t !ũ~ t !2 x̃~ t !u~ t !

x2~ t !1 x̃2~ t !
(15)

ũ(t) and x̃(t) are the Hilbert transform ofu(t) andx(t), respec-
tively. That is

ũ~ t !5
1

p
pvE

2`

1` u~t!

t2t
dt (16)

x̃~ t !5
1

p
pvE

2`

1` x~t!

t2t
dt (17)

Wherepv indicates the Cauchy principal value of the integral.
When the free vibration response date is used, Eqs.~10!, ~11!

becomes

v0
2~ t !5v2~ t !2

ä~ t !

a~ t !
12

ȧ2~ t !

a2~ t !
1

ȧ~ t !v̇~ t !

a~ t !v~ t !
(18)

h0~ t !52
ȧ~ t !

a~ t !
2

v̇~ t !

2v~ t !
(19)

The skeleton curves may be plotted directly once the ins
taneous response and instantaneous coefficients of the SLM
calculated.

3 Time-Frequency Filtering Algorithm
Obviously, to extractx(t) from y(t), a time-vary narrow band

filtering process should be used. The instantaneous central
quency of the filter ought to be set at the instantaneous freque
of x(t), while its instantaneous bandwidth takes the value not
than that ofx(t). And the window function should be localized i
both time and frequency domain. In section 2.2, the extractin
based on the quadratic time-frequency distribution and the ti
200 Õ Vol. 125, APRIL 2003
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frequency masking operator. But there is difficulty in calculatio
In this section a more practical technique based on the wav
transform is used.

3.1 Wavelet Transform Along the Wavelet Ridge. For the
sake of completeness and better understanding, the nece
background knowledge is introduced firstly. For more details,
reader is referred to reference@5#.

i! An analytic wavelet is called the asymptotic analytic wave
if

c̃~ t !5Ac~ t !exp~ iwc~ t !! (20)

where

Udwc~ t !

dt U@U 1

Ac~ t !U•UdAc~ t !

dt U (21)

Assuming thatZ(t) is an asymptotic signal

Z~ t !5A~ t !exp~ iw~ t !! (22)

Taking the wavelet transform ofZ(t) with an asymptotic analyz-
ing wavelet as the mother wavelet, yields

~Wc̃ Z!~a,b!5
1

Aa
E

R
Z~ t !c̃S t2b

a Ddt

5
1

Aa
E

R
Âa,b~ t !exp~ iFa,b~ t !!dt (23)

where

Âa,b~ t !5A~ t !AcS t2b

a D (24)

Fa,b~ t !5w~ t !2wcS t2b

a D (25)

Denote the stationary point of the argumentFa,b(t) by ts , that
is

Ḟa,b~ ts!50, F̈a,b~ ts!Þ0 (26)

one has

ẇ~ ts!5
1

a
ẇcS ts2b

a D (27)

Thewavelet ridge, denoted byar(b), is defined to be the set o
points (a,b) such that

ts~a,b!5b (28)

And the wavelet curve, denoted byac(b), is the curve which
passes through the point (ar(b0),b0) and satisfies

ts~a,b!5b0 (29)

As Z(t) andc̃((t2b)/a) are both asymptotic signals, Eq.~23!
represents a rapidly oscillating integral. The positive or nega
parts counteract each other at most regions except the neigh
hood ofts(a,b). According to the theory of asymptotic expansio
it is known that if there exists only one stationary pointts(a,b) at
every point in the phase plane, the first order approximation
~23! is of the form

~Wc̃ Z!~a,b!'Ap

2

eip/4 sgn~F̈a,b~ ts!!

aAuF̈a,b~ ts!u
Z~ ts!c̃S ts2b

a
D (30)

When (a,b) is along the wavelet ridge, yields

~Wc̃ Z!~ar~b!,b!'Ap

2

eip/4 sgn~F̈ar ~b!,b~ ts!!

ar~b!AuF̈ar ~b!,b~ ts!u
c̃~0!•Z~b! (31)
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Fig. 1 Grayscale view of the modulus of quadratic time-frequency distribution „in dB … „a… ry „t …Õay „t …
„b…

r ẏ „t …Õaẏ „t …
„c… r ÿ „t …Õaÿ „t …
,

u-
and when (a,b) is along the wavelet curve, there is

~Wc̃ Z!~ac~b!,b!'Ap

2

eip/4 sgn~F̈ac ,b~b0!!

ac~b!AuF̈ac ,b~b0!u
Z~b0!•c̃S b02b

ac
D

(32)
The above statements show that the value of (Wc̃Z)(a,b) is

determined only byZ(•) when (a,b) is along the wavelet ridge
and it is determined only byc̃(•) when (a,b) is along the wavelet
curve.
Vibration and Acoustics
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3.2 Time-Frequency Filtering Algorithm Based on the
Wavelet Transform. In this section we extractx(t) from y(t)
through an algorithm based on the wavelet transform ofy(t)
along the wavelet ridge ofx(t).

In general,y(t) consists of several asymptotic signals. And us
ally there is no overlap for each two of them.

y~ t !5x~ t !1Z1~ t !1Z2~ t !1¯

5A~ t !ej w~ t !1A1~ t !ej w1~ t !1A2~ t !ej w2~ t !1¯ (33)
Fig. 2 The frequency and damping skeleton curves of example 1 „identified result: dot; theoretical value: line …
APRIL 2003, Vol. 125 Õ 201
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For a given analyzing wavelet, the wavelet ridge for each co
ponent is not the same. Denote the wavelet ridge ofx(t) by ar(b).
The instantaneous frequency ofx(t), v(t), can be calculated us
ing ry(v,t). The modulus ofry(v,t) reaches the maximum valu
at v5v(t) at any given timet

ury~v~ t !,t !u5max (34)

Then the wavelet ridge ofx(t) is calculated

ar~b!5
ẇc~0!

v~b!
(35)

For example, taking the Morlet wavelet@6# as the analyzing
wavelet, its mother wavelet is

c̃~ t !5e2t2/2eiv0t (36)

so one has

ar~b!5
v0

v~b!
(37)

Furthermore, an iterative algorithm is given in reference@5# using
the nature of the wavelet curve.

To obtainx(t), taking the wavelet transform ofy(t) along the
wavelet ridge ofx(t)

Fig. 3 Grayscale view of the modulus of ry „t …Õay „t …
202 Õ Vol. 125, APRIL 2003
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Wc̃ y~ t !~ar~b!,b!

5Wc̃ x~ t !~ar~b!,b!1(
j 51

`

Wc̃ Zj~ t !~ar~b!,b!

5
1

Aar~b!
E

R
x~ t !c̃S t2b

ar~b!
D dt

1(
j 51

`
1

Aar~b!
E

R
Zj~ t !c̃S t2b

ar~b!
D dt

'Ap

2

eip/4 sgn~F̈ar ~b!~ ts!!

ar~b!AuF̈ar ~b!~ ts!u
x~ ts!c̃S ts2b

ar~b!
D

1(
j 51

` Ap

2

eip/4 sgn~F̈ar
i
~b!~ ts

j !!

ar
i ~b!AuF̈a

r
i ~b!~ ts

j !u
Zj~ ts

j !c̃S ts
j 2b

ar
i ~b!

D (38)

where ts denotes the stationary point ofx(t) with respect to the
point (ar(b),b) in the phase plane, andts

j is that ofZj (t).

ts
j Þts5b (39)

As a function with compact support,c̃(t) reaches the maximum
value at t50, and decays to zero quickly asutu increases. The
following equation yields as long as the instantaneous freque
of the other components is not close to that ofx(t).

Fig. 5 Cross-section of the damper
Fig. 4 The frequency and damping skeleton curves of example 2 „identified result: dot; theoretical value: line …
Transactions of the ASME
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c̃S ts
j 2b

a D'0 (40)

thus

Wcy~ t !~ar~b!,b!'Ap

2

eip/4 sgn~F̈ar ~b!~ ts!!

ar~b!AuF̈ar ~b!,b~ ts!u
c̃~0!•x~b!

(41)

where

F̈ar ~b!,b~ ts!52
1

@ar~b!#2 @ ȧr~b!ẇc~0!1ẅc~0!# (42)

So x can be calculated through the wavelet transform ofy along
the wavelet ridge ofx

x~b!5Ap

2
Auȧr~b!ẇc~0!1ẅc~0!u•

Wcy~ t !~ar~b!,b!

Ac~0!

•e2 ip/4 sgn$2ȧr ~b!ẇc~0!1ẅc~0!/@ar ~b!#2% (43)

The preceding result can be explained as follows: The wav
function is localized in both time domain and frequency doma
As c̃(t2b/ar(b)) is located atb in the time domain, and a
ẇc(0)/ar(b)5ẇ(b)5v(b) in the frequency domain, it acts as
time-frequency filter. Its instantaneous central frequency isv(b),
which is the instantaneous frequency ofx(t). And its instanta-
neous pass-band equals the effective time-frequency regio

Fig. 6 The testing system

Table 1

l (m) J (kg•m2) M (kg) l 1 (m) l 2 (m) K (N/m)

0.65 0.35 3.25 0.19 0.39 6840
Journal of Vibration and Acoustics
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x(t). So all the other components besidesx(t) in y(t) are filtered
out after the filtering procedure. Obviously, most noise is a
filtered out in the meantime.

4 Examples
We use two numerical examples to verify the technique dev

oped in this paper. The fourth order Runge-Kutta arithmetic
adopted in the numerical simulation. Then the identification te
nique is used to study the dynamic characteristic of a tors
damper.

Example 1. Consider the following system

ÿ1c1ẏ1c2u ẏu ẏ1k1y1k2y31k3y550 (44)

where

k15p2, k2533106p2, k3523109p2,

c150.8, c250.1

This is a polynomial system with hard spring, viscous friction a
square friction. The skeleton curves are

v0~a!5Fk11
3

4
k2a21

5

8
k3a4G1/2

(45)

h0~av!5
c1

2
1

4

3p
c2av (46)

The identification is based on the free vibration data with
following initial condition.

y~0!50.05, ẏ~0!50, ÿ~0!50

Modulus of the quadratic time-frequency distribution of the d
placement, velocity and acceleration are plotted in Fig. 1. For
sake of clarity, the signals are normalized by their instantane
amplitudes. It is seen that the displacement signal and velo
signal are almost perfect asymptotic signals in which the h
monic components cannot be found. But in the acceleration
nal, the third order harmonic component is too significant to
neglected. In this example, the instantaneous frequency of
principal component varies from 15 Hz to 54 Hz, while that of t
third-order harmonic component varies from 45 Hz to 162 H
The skeleton curves identified together with theoretical values
shown in Fig. 2.

In this example the advantage of the time-frequency filter
technique is revealed. Because the frequency range of the
ciple component and the harmonic component overlap, the
components are not parted completely in the Fourier spectr
Thus the principal component could not be extracted accura
from the response signal by using the narrow-band filtering te
Fig. 7 The dynamic parameters versus the amplitude of response
APRIL 2003, Vol. 125 Õ 203
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nique proposed in references@3,4#. In such instances, the resu
obtained by the narrow-band filtering technique may be far fr
the accurate value.

Example 2. Consider the following system

ÿ1cẏ1M•sign~ ẏ!1F~y!50 (47)

whereF(y) is the elastic force of a bilinear spring

F~y!5H k1y uyu<y0

k2y1sign~y!~k12k2!y0 uyu.y0

The system is with viscous damping and dry friction. The para
eters are

k15900p2, k257300p2, y050.5

c50.3p, M55p

The frequency skeleton curve and damping skeleton curve ar

v0~a!

5H Fk21
2~k12k2!

p
S sin21S y0

a D1
y0

a
A12

y0
2

a2D G1/2

a>y0

Ak1 a,y0

(48)

h0~av!5
c

2
1

2

p
M•@av#21 (49)

We use the free vibration response with the following init
condition.

y~0!515, ẏ~0!50, ÿ~0!50

The instantaneous frequency of the displacement signal ve
time can be seen in Fig. 3. Although this system is with a h
level of nonlinearity in the common point of view, the response
almost an asymptotic signal. So the method proposed in this p
may be applied to this system. The skeleton curves identified
shown in Fig. 4.

From the preceding examples we could see that the result i
tified though the approach developed in this paper is in g
agreement with the theoretical value.

Example 3. The dynamic characteristic of a type of torsio
damper is studied through the SLM and the time-frequency fil
ing technique in this section. The cross section of the dampe
shown as Fig. 5. The interior of the damper is filled with silic
oil. The parameters are listed in Table 1, whereJ denotes the
moment of inertia.l denotes length of the beam.K denotes the
equivalent stiffness coefficient of the spring,M is a lumped mass

The testing system is shown as Fig. 6. It can be described
the following S.D.O.F. system

~J1Ml 2
2!ü1Ctu̇1@Kl 1

21Kt#u5F~ t !l 3 (50)

whereKt and Ct are the torsion stiffness coefficient and torsi
damping coefficient provided by the damper.

The corresponding skeleton linear model is:

ü12h0~Au̇ !u̇1v0
2~Au!u5

1

Me
F~ t !l 3 (51)

whereMe5J1Ml 2
2. A0 and Au̇ are the instantaneous amplitud

of u(t) and u̇(t).
The impulse response data is used for the identification.

acceleration sensor is placed on the lumped massM. The principal
204 Õ Vol. 125, APRIL 2003
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componentÿ(t) is extracted from the measured acceleration s
nal. ẏ and y are obtained from the integral procedure. Within
small displacement, there is

u~ t !'
y~ t !

l 2
, u̇~ t !'

ẏ~ t !

l 2
, ü~ t !'

ÿ~ t !

l 2

We geth0(t) andv0(t) by substitutingu(t), u̇(t), ü(t) into Eqs.
~18! and ~19!. Then the torsion stiffness and torsion damping
the damper can be calculated as follows:

Ct~ t !52Meh0~ t !51.6887h0~ t ! (52)

Kt~ t !5Mev0
2~ t !2Kl 1

250.8443v0
2~ t !2246.9240 (53)

The curve ofKt(t) versusAu(t), together with that ofCt(t)
versusAu̇(t) are plotted at each moment in Fig. 7. From them
could see the dynamic characteristic of the damper. Figure~a!
shows that the torsion stiffness coefficient decreases withAu(t)
when Au(t) is less than 2 radian. WithinAu52;6 radian the
torsion stiffness may be taken as linear becauseKt is almost a
constant. And Fig. 7~b! shows that the torsion damping increas
with the amplitude of the rotation velocity. The nonlinearity in th
torsion damping is rather high.

5 Conclusions
In general, the behavior of nonlinear systems varies with

instantaneous response. The nonlinearity is studied quantitati
based on the nonstationary vibration response by using the t
frequency filtering method in this paper.

In the previous paper@1# of our work, based on the quadrati
time-frequency distribution of Cohen class, the skeleton lin
model ~SLM! and skeleton curves are constructed for a class
nonlinear system. Characteristics of the stiffness and dampin
the nonlinear system may be described quantificationally w
them.

In this paper the identification procedure of the skeleton cur
is studied through the time-frequency filtering technique. T
time-frequency filtering methods are discussed. One is base
the quadratic time-frequency distribution and its inverse tra
form, the other is based on the quadratic time-frequency distr
tion and the wavelet transform. Both numerical examples and
experimental application are given to illustrate the validity of t
technique.

By comparison with other methods, the method developed h
appears very interesting in regard to precision, formulation, t
ing work, and computational time. The numerical results are
good agreement with theoretical predictions. Further study is
pected in the future.
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