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A B S T R A C T :  In the present paper the rarefied gas flow caused by the sudden 
change of the wall temperature and the Rayleigh problem are simulated by the DSMC 
method which has been validated by experiments both in global flow field and velocity 
distribution function level. The comparison of the simulated results with the accurate 
numerical solutions of the B-G-K model equation shows that near equilibrium the B- 
G-K equation with corrected collision frequency can give accurate result but as farther 
away from equilibrium the B-G-K equation is not accurate. This is for the first time 
that the error caused by the B-G-K model equation has been revealed. 

K E Y  W O R D S :  BGK model equation, DSMC method, rarefied gas flow, Rayleigh 
problem 

1 I N T R O D U C T I O N  

The basic equation of the kinetic theory, i.e. the Boltzmann equation 

0 n /  u 2 (n f )  + c .  (n f )  + F .  ~c ( ) = ( f ' f ;  - ffl)cradY2dCl (1) 
o o  

is difficult to be solved because of its complicated right hand side collision term. P.L.Bhatnagar,  

E. P. Gross, and M. Krook [1] put forward the following equation 

~ t ( n f ) + C . ~ r ( n f ) + F . f f - ~ ( n f ) = n ~ ( f o - f )  (2) 

to replace the Bol tzmann equation. Here f is the velocity distribution function, f0 is the 

equilibrium or the Maxwellian distribution function, ~ is the collision frequency, r is the 

space coordinate, c is the molecular velocity, cl is the velocity of another molecule of the 

colliding pair, F is the external force per unit mass, f l  is the distribution function of 

cl, f* is the distribution function of post-collision velocities. This equation (2) is the so 

called BGK (Bhatnagar-Grass-Krook) equation, and it is also named as Krook equation or 

BKW (Boltzmann-Krook-Welander [~]) equation. It is widely used in place of the Boltzmann 

equation to solve the molecular gas dynamics problems in transition regime. There are a lot 
of papers and chapters and sections of textbooks discussing the mathemat ica l  and numerical 

solutions of this model equation. But the error caused by replacing a physically realistic 
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collision operator wil,h an aplm)xinlatc term is unknown and is not predictable generally. 
Recently the Dirc'ct Simulation Monte Carlo (DSMC) method has been developed (see [3,4]) 
to solve molecular gas dynamics problem in the transit.ion regime. And the DSMC method 

has been validated by the strict e.xperimental tests bo~h in the aspects of t.l~e global flow field 
and of the fine structure including the molecular velocity distribution function (see [5]). In 

this paper, we use the Direct Simulation Monte Carlo (DSMC) method to evaluate the BGK 

model by calculating the ftow circumstances deviated far away Dora the equilibrium, and 

reveal the error of BGK model. To be specific, the iarefied gas flow caused by the sudden 
change of the wall teInperature and the Rayleigh protlIem are chosen and the results obtained 

by Direct Sinmlation Monte Carlo method are compared with those by BGK equation to 

exam the error caused by the BGK equation in solving the flow eases deviated far from 

equilibrium. 

2 R A R E F I E D  GAS FLOW C A U S E D  B Y  TH E S U D D E N  C H A N G E  OF TH E 

WALL T E M P E R A T U R E  

Aoki et al. [6] calculated the one-dimension rarefied gas flow caused by the sudden 

change of the wall temperature by using the accurate, numerical solution of the BGK model 
equation (2) and presented the gas temperature and pressure distribution normal to the wall 

in the following instants after the sudden rise of the wall temperature to twice tile initial 

temperature To 

t/to = 1.0, 2.0, 4.0, 8.0, 20.0 (3) 

where to = v@tc/2 is tile time factor introduced by Aoki et al. that is proportional to the 
collision time, t~ = ~/~ is the collision time, e is the average thermal speed at the initial 

temperature, k is the molecular mean fl'ee path. In order to compare with the result in the 

time instants (3) in [6] , our DSMC simulation gives the gas temperature and pressure (see 
Fig.l) in the following time instants after the sudden temperature rise 

t/tc = 2.15,4.3,8.6, 17.21,43.0 (4) 

The reason that we select these time instants is that the BGK model can reflect the physical 

reality only after the adjustment of the collision frequency u. Then (3) and (4) are completely 

corresponding to each other and are the same physical instants (see the explanation in the 

next paragraph ). To, P0 in Fig.1 are the temperature and pressure at the initial time instant 

t = 0 (cf. our previous paper [7]). 

In our DSMC simulation the wall is completely diffusely reflecting as in [6]. At the 
same time, we use the VHS molecular model [4] with rl = 5 - -  namely, the Maxwell molec- 
ular model, because it is consistent with tlie assumption of the BGK model that collision 

frequency is independent of the molecular velocity (in this case the second terms of the 
right hand sides of (1) and (2) are exactly equal). And it is well known that  one needs to 
adjust the collision frequency v in Eq.(2) in concrete problems in order that the BGK model 
reflects physical reality and that the heat exchange coefficient K or the viscosity coefficient 
p has the correct expression. In this problem the heat transfer is essential, so the collision 

frequency in the BGK equation is to be modified as 
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(b) 
Fig.1 The result of direct numerical test of the BGK model equation by the DSMC 

method. The gas temperature (a) and pressure (b) curves at different time 
instants after the sudden temperature rise to twice its initial temperature. The 
dot lines are the simulation results of DSMC and the solid lines are the numerical 
results of the BGK model. 

= (7r/5.988) ~ (5) 

ensuring the K have the correct expression (see [8]) 

15 k 
K = ----(0.499p~A) (6) 

4 m  

Here k is the Boltzmann constant, m is the molecular mass. Thus the result obtained by 
Aoki et al. [6] must be modified and this is why we have selected the instants (4) to correspond 

with the time instants (3) for presenting the results in [6]. In fact, the values of (3) have 
been multiplied by 5.988/7r for modifying u, and then multiplied by 2 / v ~  for changing the 
normalization magnitude from to to tc to reach the values of (4). And for the same reason, 
we have stretched 1.906(= 5.988/n) times the x coordinates in [6]. We can see that after 
modifying the time and x coordinates, the accurate numerical results of the BGK model in 
[6] are in good agreement with our DSMC simulation results after short time intervals, but 
after large time intervals, their difference becomes more and more distinguishable. 
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Aoki et al. also gave the numerical result for the reduced distribution function of 
molecular velocity ( = cl/(2RTo) U2 in the above problem by using BGK model equation 

9("/:'t'~) = (2Rro)l/2tZOl / t - ~  f(Xl't'ci)dc2d(::~ (T) 

in the following tinie instants and spatial coordinates 

t/to = 0.5 Xi/lo = 0 ,0 .1 ,0 .2 ,0 .3 ,0 .4 ,0 .5 ,0 .8 ,  1,2.2 (8) 

t/to = 2.0 X1/lo = 0, 0.5, 1, 1.5, 2, 8.2 (9) 

where 10 is the mean fi'ee path defined in [6]. 
In order to compare tile result presented in [6], we calculated the reduced velocity 

distribution function by DSMC method in the following time instants (those in (8) and (9) 
multiplied by 5.988 x 2/7r 3/2) and spatial coordinates (those in (8) and (9) multiplied by 
5.988/7r) (see Fig.2) 
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(a) Result from the BGK model equation [6] 
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(b) Result from the DSMC method 
Fig.2 Comparison between the results of the reduced velocity distribution function 

at time instant t/to = 0.5(t/tc = 1.08) 
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t/tc = 1.08 X1/A =0,0.19,0.38,0.57,0.76,0.95,1.53,1.91,4.19 (10) 

t/tc = 4.30 X 1/A = O, 0.95, 1.91, 2.86, 3.81, 15.63 (11) 

We can see that  the reduced velocity distribution functions in space coordinates obtained 
by the two different methods are close to each other within one collision time, but after four 

average collision times comparably large difference occurs (see Fig.3). 
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(b) Result from the DSMC method 
Comparison between the results of the reduced velocity distribution function 

at time instant t/to = 2,0(t/tc = 4.30) 

All these results show clearly that  in both the macroscopic value level (temperature, 
pressure) and the microscopic level (molecular velocity distribution function) the BGK model 
equation after the modification of the collision frequency can yield accurate results for flow 
cases not far from equilibrium (within 1~2 collision times), but for flow situation far from 

equilibrium BGK model is incorrect. 
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3 R A Y L E I G H  P R O B L E M  

Rayleigh problem studies the gas flow in one side of a fiat plate caused by its sudden 
sliding in its own plane. Chu solved numerically the Rayleigh problem using tile BGK 

model equation for higher Mach number[ 9]. In his paper he gives the flow field numerical 
result at the time instant t/tc = 10.0 when the start-up velocity uw of the plate is twice 

the initial equilibrium most probably speed ~0 and the wall temperature T,,, is tile gas static 
temperature To at the initial equilibrium instant. 

In our DSMC simulation for testing the BGK model equation, the wall reflecting model 

is again the diffuse reflection model and the VHS model with r] = 5 is used. Because in the 

Rayleigh problem the transfer of momentum is essential, the collision frequency in the BGK 

equation is modified as 

, - ( 1 2 )  
3.992 s 

to ensure the viscous coefficient # have the correct expression (see [8]) 

# = 0.499pea (13) 

and this means that Chu's result should be modified. The t/tc = 10.0 in his paper re- 

ally should be t/tc = 12.7, i.e. should be multiplied by 3.992/rr to take into account the 

modification of u. 

Meanwhile, in order to compare with the curves in [9], the z coordinates in the result 
of DSMC have been shrunken 1.27(= 3.992/rr) times. After the transformation, comparison 

of the BGK model [91 result and our DSMC simulation result shows that these two methods 

have distinct diversity (see Fig.4) after a long time interval (12.7 collision times). 

4 D I S C U S S I O N  

BGK model equation has been widely used in simulating tile transition regime prob- 

lems in rarefied gas dynamics. But it is actually only an approximation of the physically 
realistic Boltzmann equation, and the academic community gave too much attention to the 

BGK model. ~DSMC method's accuracy has been validated by the macro- and microscopic 
examination. The results obtained by the DSMC method in simulating the gas flow caused 
by the sudden rise of the wall temperature and the Rayleigh problem show that  the BGK 
model equation yields rather exact results in the time range of the order of one collision time 
but yields results in the subsequent time interval more and more deviated from the results 
by the DSMC method. This should be taken into account when using the results obtained 
by the BGK model equation as well as the BGK equation as the basis of investigation. 
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Fig.4 Comparison between the numerical test results of BGK model and those of the 
DSMC method. From the top down the figure gives the comparison of tangential 
velocity, number density, normal velocity, temperature and pressure for the 
Rayleigh problem at time instant t = 12.7tc; The plate velocity is u~ = 2~o, 
the wall temperature is T~ = To 
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