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Can stress–strain relationships be obtained from indentation
curves using conical and pyramidal indenters?
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Applying the scaling relationships developed recently for conical indentation in
elastic–plastic solids with work-hardening, we examine the question of whether
stress–strain relationships of such solids can be uniquely determined by matching the
calculated loading and unloading curves with that measured experimentally. We show
that there can be multiple stress–strain curves for a given set of loading and unloading
curves. Consequently, stress–strain relationships may not be uniquely determined from
loading and unloading curves alone using a conical or pyramidal indenter.

For nearly 100 years, indentation experiments have
been performed to obtain the hardness of materials.1 Re-
cent years have seen significant improvements in inden-
tation equipment and a growing need for measuring the
mechanical properties of materials on small scales.2,3

With these improvements, it is now possible to monitor,
with high precision and accuracy, both the load and dis-
placement of an indenter during indentation experiments.
From the loading–unloading curves, the hardness and
elastic modulus of materials can be obtained using the
methods proposed by Doerner and Nix,4 Oliver and
Pharr,5 or Cheng and Cheng.6 Recently, a number of
papers have also suggested the possibility of extracting
the mechanical properties of materials by matching the
loading and unloading curves calculated using finite el-
ement methods with that measured experimentally.7–9

However, the question remains as to whether the stress–
strain relationships can be uniquely determined from the
loading–unloading curves alone.

In this paper, we first examine the essential features of
indentation loading and unloading curves using the scal-
ing relationships for conical indentation in elastic–plastic
solids.10,11Using these features, we show that essentially
the same loading–unloading curves can be constructed
form different stress–strain relationships. Consequently,
stress–strain relationships may not be uniquely deter-
mined from loading and unloading curves alone using a
conical or pyramidal indenter.

We consider a three dimensional, frictionless, rigid
conical indenter of a given half angle,u, indenting nor-
mally into an elastic–plastic solid with work-hardening.
The stress–strain (s–«) curves of the solids under uni-
axial tension are assumed to be given by

s = E « , for « #
Y

E
,

s = K «n , for « $
Y

E
,

(1)

whereE is Young’s modulus,Y is initial yield stress,K
is strength coefficient, andn is work-hardening expo-
nent.12 To ensure continuity, we noteK 4 Y[E/Y]n.
Consequently,E, Y, n,and Poisson’s ratio,n, are suffi-
cient to describe the stress–strain relationship. Whenn
is zero, Eq. (1) becomes the model for elastic–perfectly
plastic solids. For most metalsn has a value between
0.1 and 0.5.13

From geometric self-similarity, the equations describ-
ing the relationships between force,F, and indenter dis-
placement,h, can be written as

F = Eh2PaSY

E
,n,n,uD , for loading, (2)

F = Eh2PgSY

E
,
h

hm
,n,n,uD , for unloading,

(28)

wherePa andPg are two dimensionless functions, and
hm is the maximum depth the indenter reaches immedi-
ately before unloading.
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From these equations, the essential features of loading–
unloading curves can be obtained. For example, the initial
unloading slope,dF/dh|h4hm

, is given by

1

Ehm

dF

dhUh=hm

= P8gSY

E
,1,n,n,uD + 2PgSY

E
,1,n,n,uD

≡ PdSY

E
,n,n,uD , (3)

wherePd is a dimensionless function ofY/E,n, n, andu.
The final depth,hf , at which the force on the indenter
reaches zero during unloading is a solution of Eq. (28) for
F 4 0 and can, therefore, be written as

hf

hm
= PfSY

E
,n,n,uD , (4)

wherePf is a dimensionless function.
From Eq. (2), the total work done by the indenter,Wtot,

to cause elastic and plastic deformation when the indenter
reaches the maximum depth,hm, is given by

Wtot = *
0

hm
Fdh =

Ehm
3

3
PaSY

E
,n,n,uD . (5)

The work done by the solid to the indenter during unload-
ing, Wu, can be expressed, using Eq. (28), as

Wu = *
hf

hm
Fdh = Ehm

3 *hf

hm

1
x2PgSY

E
,x,n,n,uDdx .

(6)

Using Eq. (4), the integral in Eq. (6) is independent of
displacement. Consequently, the ratio of (Wtot − Wu)/Wtot

is independent ofhm,

Wtot − Wu

Wtot
= PvSY

E
,n,n,uD , (7)

i.e., a dimensionless function ofY/E, n, n, andu.
The dimensionless functionsPi(Y/E,v,n,u)(i 4

a,d,f,v) have been calculated using ABAQUS14 finite
element analysis. The finite element model has been dis-
cussed in detail previously.10,11,15The rate-independent,
incremental theory of plasticity in ABAQUS was used
for the finite element calculations. In particular, the plas-
ticity theory uses the Mises yield surface model with
associated plastic flow rule. The hardening rule used was
that of isotropic hardening and the hardening curves were
given by Eq. (1). The frequently used half angle of 68°
for the rigid indenter and a typical Poisson’s ratio of 0.3
for the solid are chosen to illustrate the essential physics
of conical indentation in elastic–plastic solids with work-
hardening. To simplify notation,Pi(Y/E,n) (i 4 a,d,f,v)
is used instead ofPi(Y/E,0.3,n,68°) (i 4 a,d,f,v). These
scaling functions are shown in Figs. 1(a) to 1(d).

An inspection of Figs. 1(c) and 1(d) suggests that the
two quantities,Pf(Y/E,n) 4 hf /h and Pv(Y/E,n) 4
(Wtot − Wu)/Wtot, are strongly correlated within our range
of calculations. An approximately linear dependence be-
tween the two is shown in Fig. 2. In fact, Loubetet al.16

was the first to suggest, based on experimental observa-
tions, a linear relationship between (Wtot − Wu)/Wtot and

FIG. 1. Scaling relationships for (a)F/Eh2, (b) (1/Eh)dF/dh, (c) hf /h, and (d) (Wtot − Wu)/Wtot.
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hf /h. The present extensive finite element results (Fig. 2)
corroborate their empirical observation. Consequently,
Eqs. (2), (3), and (4) [or (7)] and the respective Figs. 1(a),
1(b), and 1(c) [or 1(d)] can be used to describe the
essential features of indentation loading and unload-
ing curves.

For a given set of basic mechanical properties,E, n, Y,
and n, the essential features such as the loading curve,
dF/dh|h4hm

, and hf /hm [or (Wtot − Wu)/Wtot] can be de-
termined from Eqs. (2), (3), and (4) [or (7)]. Conversely,
these scaling functions can be used to find the appropri-
ate values ofE, n, Y, andn for a known set of essential
features. However, this inverse problem is not unique.

The non-uniqueness is demonstrated as follows. For a
givenn, the Young’s modulus,E, can be uniquely deter-
mined from loading–unloading curves using, for ex-
ample, the method of Cheng and Cheng.6 Now with
knownE andn, we first find values ofY andn that result
in the same loading curves. This is accomplished by
drawing a straight line in Fig. 1(a) parallel to the hori-
zontal axis (i.e., theY/E axis). Those values ofY andn
corresponding to the intersects of the horizontal line and
Pa(Y/E,n) lead to the same loading curves. Similarly, the
values ofYandn that generate the same initial unloading
slopes and final depths can be obtained from Figs. 1(b)
and 1(c). In fact, the range of values ofY and n found
from Figs. 1(a)–1(c) overlaps with each other. Conse-
quently, the values ofY andn that satisfy all three con-
ditions in Figs. 1(a)–1(c) can be found. Following this
procedure, two sets of essentially the same loading and
unloading curves calculated using ABAQUS are shown
in Figs. 3(a) and 3(b) for the cases of large and smallY/E,
respectively. It is evident that the loading and unloading
curves are indistinguishable if the essential features such
as the initial unloading slope, final depth, and maximum
load are the same. Therefore, loading and unloading
curves from conical indentation alone cannot uniquely
determine stress–strain relationships.

Because pyramidal indenters are also geometrically
self-similar, scaling relationships such as those for coni-
cal indenters exist.11 Furthermore, because previous nu-
merical work has shown that the loading and unloading
curves are the same for pyramidal and conical indenta-
tion, provided that the volume-to-depth relationships are
the same for the two types of indenters.17 Consequently,
loading and unloading curves from pyramidal indenta-
tion alone also cannot uniquely determine stress–strain
relationships.

We have shown that the stress–strain relationships
may not be uniquely determined from indentation load-
ing and unloading curves obtained using a conical or
pyramidal indenter. Hardness and elastic modulus, how-
ever, can be obtained from these curves alone.4–6 Al-
though the above conclusions were obtained for ideally
sharp conical and pyramidal indenters, they should be
applicable to those indenters with rounded tips, provided
that the indentation depth is sufficiently large and the

FIG. 2. A relationship between (Wtot − Wu)/Wtot andhf /h for 0 <hf /h< 1.0.

FIG. 3. Examples of overlapping loading and unloading curves for
(a) highly elastic solids (i.e., large Y/E) and for highly plastic solids
(b) (i.e., small Y/E). The Poisson’s ratio is 0.3 for these cases. The
calculated hardness values are (a) 31.7, 32.6, 31.4, and 32.1 GPa for
the respective four cases (n, h, L, ands) and (b) 6.0, 6.5, and 7.4
GPa for the respective three cases (n, h, andL).
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loading and unloading curves approach those obtained
using the ideally sharp indenters. A discussion on the
effects of tip rounding on the shape of indentation load-
ing curves has recently appeared.18 When the indentation
depth is small or when spherical indenters are used, the
question of whether stress–strain relationships of solids
can be uniquely determined by matching the calculated
loading and unloading curves with the measured ones
remains to be investigated. The possibilities of using sev-
eral conical indenters of different angles to obtain stress–
strain relationships should also be investigated both
experimentally and theoretically.
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