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Transonic aeroelastic numerical simulation in aeronautical
engineering

GUOWEI YANG*

LHD of the Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100080, P. R. China

(Received 2 August 2005; in final form 19 July 2006)

A lower–upper symmetric Gauss–Seidel (LU-SGS) subiteration scheme is constructed for time-
marching of the fluid equations. The Harten–Lax–van Leer–Einfeldt–Wada (HLLEW) scheme is
used for the spatial discretization. The same subiteration formulation is applied directly to the structural
equations of motion in generalized coordinates. Through subiteration between the fluid and structural
equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure
interaction. To improve the ability for application to complex configurations, a multiblock grid is used
for the flow field calculation and transfinite interpolation (TFI) is employed for the adaptive moving
grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the
data transformation between the fluid and structure. The developed code was first validated through the
comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing.
Then, the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of
a complex aircraft configuration were predicted.

Keywords: Aeronautical engineering; Fluid structure; Aeroelasticity; Flutter

1. Introduction

Until the last decade, aeroelastic analyses mainly used

linear methods to calculate the unsteady fluid loads and

to solve the structural equation of motion. When

structural deformation becomes large, the structural

nonlinear character needs to be considered. However, for

the flutter analyses of vehicle design, only the flutter

boundaries are concerned, the linear assumption for the

structural deformation is reasonable. Under the con-

ditions of low Mach number and small angle of attack,

aerodynamic loads can be obtained by the linear theory.

For the transonic flow, in the presence of a strong shock

wave and shock induced flow separation, only the

unsteady Euler and Navier–Stokes fluid governing

equations can predict the aerodynamic loads correctly.

In the last decade, with the development of compu-

tational methods, numerical analyses of nonlinear

transonic fluid/structure interaction have become reality

(Lee-Rausch and Batina 1996, Gordnier and Melville

2000, Yang et al. 2003 and Guruswamy 1990). Since the

flutter analyses concern mainly the fluid/structural

interaction at small angles of attack, in order to improve

the computational efficiency, the inviscid Euler

equations were chosen as the fluid governing equations

for the many of flutter computations (Goura et al. 2001a

and Liu et al. 2001).

For steady flow simulation, due to only the solution of

time independence concerned, many higher accuracy

schemes of spatial discretization were developed. The

implicit time-marching scheme was developed for the

increase of time-step size and the improvement of

computational efficiency. Therefore, most of the implicit

time-marching schemes have only first order accuracy.

For unsteady flutter calculations, the computational

time-accuracy is of the same importance as the spatial

discretization accuracy. Even the use of a higher order

accurate scheme for the time-marching, if the flow

governing equations are only loosely coupled with

structural equations of motion, namely, after the

aerodynamic loads are determined by solving the flow

governing equations, the structural model is used to update

the position of body. The coupling contains the error of one

time step, thus the whole calculations are always only
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first-order accurate in time regardless of the temporal

accuracy of the individual solvers of the flow and

structural equations. The loosely coupled methods were

used for most of the present flutter simulations.

A fully implicit aeroelastic approach was first put

forward by Alonso and Jameson (1994) for 2D Euler

aeroelastic simulation, called the dual-time implicit–

explicit method. In each real time step, the time-accurate

solution is solved by explicit Runge–Kutta time-marching

method for a steady problem, so all convergence

acceleration techniques such as multigrid, residual

averaging and local time-step can be implemented in the

calculation. In general, about 100 pseudo-time steps are

needed for the explicit iterations to ensure adequate

convergence, thus the method is still very time-consuming,

so far as the authors know only 3D Euler results were

reported (Liu et al. 2001). Based on the same thought,

Goura et al. (2001a) constructed a first-order implicit time-

marching scheme as well as only first-order spatial

discretization in the implicit side for the solution of a

pseudo steady flow. The second-order temporal and spatial

accuracy is obtained at pseudo steady flow convergence.

Melville et al. (1997) proposed a fully implicit aeroelastic

solver between the fluids and structures, in which a second-

order approximate factorization scheme with subiterations

was performed for the flow governing equations and the

structural equationswere cast in an iterative form. Since the

restricted number of iterations cannot remove sequencing

effects and factorization errors completely at every time

step, a relatively small time step was used in their

calculation. Nevertheless, a fully implicit aeroelastic

Navier–Stokes solver with three subiterations has

succeeded in the flutter simulation for an aeroelastic wing

(Gordnier and Melville 2000). The authors constructed a

subiteration scheme based on lower–upper symmetric

Gauss–Seidel (LU-SGS) scheme, a fully implicit multi-

block solver was developed for the predictions of flutter

boundaries and aileron buzz for a supersonic transport

model (Yang et al. 2003).

In the flutter calculation, due to the deformation of the

aeroelastic configuration, adaptive dynamic grids need to

be generated at each time step. At present, many aeroelastic

calculations are only done for an isolated wing with single-

block grid topology. For the simple flexible geometry, the

grid can be completely regenerated with an algebraic

method or a simple grid deformation approach. For the

complicated aerodynamic configurations, multiblock grids

are usually generated with elaborate elliptical method for

steady flow simulation. However, for aeroelastic appli-

cation, it is impossible to regenerate multiblock grids with

the elaborate method at each time step due to the limitation

of computational cost. Multiblock grid deformation

approach needs to be used. Wong et al. (2000) established

a multiblock moving mesh algorithm. The spring network

approach is utilized only to determine the motion of the

corner points of the blocks and the transfinite interpolation

(TFI) method is applied to the edge, surface and volume

grid deformations. Potsdam and Guruswamy (2001) also

put forward amultiblockmoving grid approach,which uses

a blending method of a surface spline approximation and

nearest surface point movement for block boundaries and

TFI for the volume grid deformation.

Structural models may be given by a plate model, but the

flow calculations are carried out for the full geometry. The

interpolation between fluid and structure grids is required.

Infinite and finite surface splines (Harder and Desmarais

1972 and Appa 1989) developed for the plate aero-

dynamics and plate structural model are still main

interpolation tools, only the aerodynamic grid needs to

be projected on the surface of the structural grid before

interpolation. Goura et al. (2001b) suggested an interp-

olation method of constant volume transformation (CVT)

for the data exchange between fluids and structures based

on the local grid information.

In this paper, a fully implicit multiblock Navier–Stokes

aeroelastic solver implemented by the authors was used

for predictions of flutter phenomena on more complex

configurations. One is the tail wing with control surface and

another is a wing/body/tail aircraft model. The purpose of

this work is to study the ability of the developed code for

complex engineering problems. The comparison between

calculation and experiment for the AGARD 445.6 standard

aeroelastic wing (Yates 1988) is also shown in this paper.

2. Structural equation of motion

The second-order linear structural dynamic governing

equation of motion can be written as

½M�{ €dðtÞ}þ ½C�{_dðtÞ}þ ½K�{dðtÞ} ¼ {FðtÞ} ð1Þ

where [M ], [C ], [K ] are mass, damping and stiffness

matrices, respectively. Here, {d(t)} is a displacement vector,

and {F(t)} is the aerodynamic load, which represents the

coupling of the unsteady aerodynamic and inertial loads with

the structural dynamics. This allows great flexibility in the

choice of methods that can be used to model the system. For

example, for linear structural models, themass, damping and

stiffness are constant with time or structure, which remains

true independent of the aerodynamics. If the aerodynamic

methods are linear, the structural equation of motion reduces

to computation of the complex eigenvalues of the stability

matrix in the frequency domain, whose values determine the

stability of the system. If aerodynamics and/or structures are

nonlinear, computations can only be performed in the time

domain,which tends tocomplicate theprocessofdetermining

system stability. In this paper, aerodynamic loads are solved

by the nonlinear Navier–Stokes equations and the structural

deformation is based on the linear assumption.

In order to solve equation (1), the Rayleigh–Ritz

method is used. For a specific aerodynamic configuration,

the natural mode shapes and frequencies can be calculated

by the finite-element analysis or obtained from exper-

imental influence coefficient measurements. In this study,

the data of natural mode shapes and frequencies are
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calculated by finite-element analysis. In general, only the

first Nmodes are considered. With these first Nmodes, we

have an approximate description of the displacement

vector of the system given by

{dðtÞ} ¼ ½F�{qðtÞ}: ð2Þ

Since the natural modes are orthogonal with respect to both

the mass and stiffness matrices, premultiplying equation

(1) by ½F�T yields structural equations in generalized

coordinates

€qiðtÞ þ 2zivi _qiðtÞ þ v2
i qiðtÞ ¼

q1
Þ
S

Ð
F½ �Ti DCpi dS

Mi

ð3Þ

where

v2
i ¼ F½ �Ti {K}½F�; Mi ¼ F½ �Ti {M}½F�;

diðtÞ ¼
XN
i¼1

qiðtÞ½F�:
ð4Þ

The equation (3) can be written as a first-order system by

defining ~S ¼ ½q; _q�

_~S ¼ ~P ¼ 2
0 21

v2
i 2vizi

" #
~Sþ

0

q1

Þ
S

Ð
F½ �Ti DCpi dS

Mi

2
4

3
5: ð5Þ

The equation can be discretized by a second-order scheme

with subiteration based on Melville et al. (1997) as

1 2f iDt

f iDtv2
i 1 þ 2f iviziDt

2
4

3
5D~S

¼ 2f i ð1þ fÞ~Sp 2 ð1þ 2fÞ~Sn þ f~Sn21 þ Dt~P
n o

ð6Þ

where D~S ¼ ~S ðpþ1Þ 2 ~S ðpÞ, f i ¼ 1=ð1 þ fÞ.

When f ¼ 0:5 and p!1, equation (6) has second

order time accuracy.

3. Aerodynamic equations

Aerodynamic governing equations are the unsteady, 3D

thin layer Navier–Stokes equations in strong conservation

law form, which can be written in curvilinear space j;h; z
and t in non-dimensional form as

›tQ̂þ ›jF þ ›hGþ ›zH ¼ Re21›zHv þ SGCL: ð7Þ

In the formulation, the viscosity coefficient m in Hv is

computed as the sum of laminar and turbulent viscosity

coefficients, which are evaluated by the Sutherland’s law

and Baldwin–Lomax model with the Degani–Schiff

modification. Viscous term Hv is discretized by the second

order central scheme and inviscid terms F, G, H are

discretized by the HLLE scheme (Einfeldt et al. 1991)

and higher order interpolation of the primitive variables

for the left and right states at the cell interface (Anderson

et al. 1985) is used. The source term SGCL in equation (1)

is obtained from the geometric conservation law

(Thomas and Lombard 1979) for moving mesh, which is

defined as

SGCL ¼ Q b›tJ
21 þ

jt

J

� �
j

þ
ht

J

� �
h
þ

zt

J

� �
z

c: ð8Þ

LU-SGS method (Yoon and Jameson 1988) is

reconstructed containing subiteration as the time-march-

ing scheme. Second-order temporal accuracy is obtained

by utilizing three-point backward difference in the

subiteration procedure. The numerical algorithm can be

deduced as

LD21UDQ ¼2 f i ð1þ fÞQp 2 ð1þ 2fÞQn
f

þfQn21 2 JDtQpS
p

GCL

þJDt djF
p þ dhG

p þ dz Hp 2 Hp
v

� �� ��
ð9Þ

where

L ¼ �rI þ f iJDt Aþ
i21; j; k þ Bþ

i; j21; k þ Cþ
i; j; k21

� �
;

D ¼ �rI

U ¼ �rI 2 f iJDt A2
iþ1; j; k þ B2

i; jþ1; k þ C2
i; j; kþ1

� �
and

�r ¼ 1þ f iJDtð �r ðAÞ þ �r ðBÞ þ �r ðCÞÞ; f i ¼
1

ð1þ fÞ
;

DQ ¼ Qpþ1 2 Qp:

Here, f ¼ 0:5 and p denote the subiteration number. The

deduced subiteration scheme reverts to the standard LU-

SGS scheme as f ¼ 0 and p ¼ 1. In fact, regardless of the

temporal accuracy of the left hand of equation (9), second-

order time accuracy is maintained when the subiteration

number tends to infinity.

In the multiblock-grid method, the Navier–Stokes

equations are solved in each block separately. The

calculation of convective and viscous fluxes at block

boundaries needs flowfield values of two grid points in

abutting blocks, so the lagged flowfield always exists due

to the lagged block boundary condition. Rizzetta and

Visbal (1993) considered that the subiteration can

eliminate errors from linearization, factorization, lagged

boundary conditions and lagged turbulence models.

For the unsteady flutter calculation, at each real time

step, through subiteration between fluid and structural
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equations (6) and (9), the time accuracy of the whole

computation has second order. Therefore, the subiteration

method is very important not only for eliminating the

lagged flowfield induced by lagged multiblock boundary

condition but also for removing the sequencing effects

between the fluid and structure. In addition, in practical

application, the number of subiterations is commonly

taken as a fixed value. Since the restricted number of

iterations does not remove sequencing effects and

factorization errors at every time step completely, a

proper time-step size needs to be evaluated by numerical

tests. Similarly, the fixed time-step size is used for these

calculations.

4. Multiblock moving grid deformation

For a complex aerodynamic configuration, the multi-

block grid-generation is a major challenge. Grid

topology may be further limited due to the technique

of moving grid deformation. In the paper, one of the

aircraft configurations calculated is shown in figure 1.

The surface grid is first distributed, which contains 5

zones, 3 zones for fuselage and 2 zones for the main

wing and the horizontal wing, respectively. A total of

10 zones are distributed on the whole surface. An H-

type multiblock grid with 40 blocks is depicted. To

save computational time and allow the grid deformation

more easily, multiblock grid generated guarantees block

boundaries in the k direction located in the surface of

the wall and far field. Then the grid deformation on

the far grid boundary can be set to be zero and the

deformations on the wall surface are obtained using the

structural equation of motion. The deformation values

in the inner grid are interpolated with the TFI method.

The deformations are added to the original grid to

obtain the new adaptive multiblock grid. For the small

and moderate aeroelastic deformation, this method

maintains the grid quality of the original grid and

maximizes the re-usability of the original grid.

5. Data transformation

For these aeroelastic calculations, the structural model

data are provided using a plate model and only normal

deformation is considered. However, the real geometry is

used for the fluid solution. Then the problem of passing

information between the fluid and structural grids

becomes very complicated. The fluid grid is first projected

to the surface of the structural grid and the deformations

on the projected fluid grid points are interpolated by the

infinite plate spline (IPS) and the principal of virtual work,

which can guarantee the conservation of energy between

the fluid and structural systems.

6. Results and discussions

6.1 Standard aeroelastic wing

Aeroelastic wind-tunnel experiments are intrinsically

destructive and hence much more expensive than a similar

rigid-body experiment. Suitable experimental data to

validate the aeroelastic solver is scarce. A complete

aeroelastic experiment is available for the AGARD 445.6

standard aeroelastic wing, which has been used to validate

flutter simulations in most publications. The disadvantage

of this case is that the nonlinear character is relatively

weak due to a thin wing, in the absence of a better

experiment data, the experiment is used to evaluate the

current method.

The AGARD 445.6 wing model has an aspect ratio

1.6525, a taper ratio of 0.6576, a quarter-chord swept

angle of 45 deg and a NACA 65A004 airfoil section. The

first four structural modes and natural frequencies

provided in Yates (1988) are used directly for these

computations. The number of total grid cells is about

744.000, which distributes 81 £ 39 grid lines on the lower

and upper surfaces, respectively, and 63 grid lines in the

normal direction. Structural damping coefficient is set as

zero and the time-step size is taken as 0.01. Each Mach

number is run for several dynamic pressures to determine

the flutter point. The flutter boundary and frequency

over the Mach number range of 0.338–1.141 are

calculated and compared with experimental data in

figure 2. The typical transonic dip phenomenon is well

captured. In the subsonic and transonic range, the

calculated flutter speeds and frequencies agree well with

experimental data, however, in the supersonic range, the

present calculation overpredicts the experimental flutter

points similar to other computations.

6.2 A tail wing with control surface

The structural model contains the main tail wing and the

tail control surface, which distribute 3 zones which

contain 51 £ 37, 71 £ 20, 21 £ 30 grid lines on each

zone. Flutter characters of the configuration with two

structural modes for the design points of Mach number 0.6

X Y

Z

1

2

3 4

5

Figure 1. Surface grid.
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and 0.95 are analyzed. The first 10 structural mode shapes

and frequencies for the 0.95 design point are shown in

figure 3(a–j). The varying density method is used to

determine the flutter boundary, the time histories of

generalized displacements with different density can be

calculated. Based on the divergence and convergence of

the time responses of the generalized displacement, the

flutter dynamic pressure and frequencies are determined.

Figure 4(a–d) only shows several typical results at Mach

numbers of 0.8, 0.95, 0.98 and 1.3. For example, at Mach

number of 0.95, the time history tends to convergence at

varying density coefficient of c ¼ 0.89 and divergence at

c ¼ 0.90. After Mach number of 1.3, the time history of

the first mode is still converging but its third mode

divergences. At this time, the flutter boundary should be

determined based on the time history of generalized

displacement of the third mode. Flutter dynamic pressure

and frequencies for the two tail wing structural models at

the design points of Mach numbers of 0.95 and 0.6 are

shown in figure 5. Transonic flutter dip is found at the

Mach number of 1.02, comparing the Mach number of 0.9,

the dynamic pressure and frequency at flutter dip decrease

40 and 20% for the structural model of the design point

M ¼ 0.95 and 35% and 16% for the structural model of the

design point M ¼ 0.6, respectively.

6.3 A complex aircraft model

The final calculation is taken for the configuration of

figure 1. The first seven modes are considered. For this

case, flutter is analyzed with the varying structural

stiffness, namely, the freestream density and temperature

are assumed unchanged sea level values, then dynamic

pressure can be calculated for a different Mach number.

Under the fixed Mach number and dynamic pressure, a

stiffness coefficient of fi is introduced into the structural

equation of motion of equation (3). Equation (3) becomes

€qiðtÞ þ 2zivi _qiðtÞ þ f ivi

� �2
qiðtÞ

¼
q1

Þ
S

Ð
F½ �Ti DCpi dS

Mi

: ð10Þ

Such as for f i ¼ 0:7, it is indicated that the structural

stiffness calculated is only 70% of the original stiffness.

For different stiffness coefficient, the dynamic responses

may be convergent or divergent and if the value of

stiffness coefficient at the flutter boundary is interpolated,

then flutter dynamic pressure and frequency for the

original aircraft can be calculated with qf ¼ q1=f and
vf ¼ v=

ffiffiffi
f

p
. Figure 6 shows the flutter boundaries of

dynamic pressure and frequency vs. the Mach numbers.

In the figure, the real line represents the results of this

calculation and the dash line is the result of Lu et al.

(2003). The frequencies are in good agreement with each

other except at supersonic Mach numbers of 1.1 and 1.3.

The error of dynamic pressure is about 12%. The results

show, for the aircraft, there is no obvious transonic dip for

dynamic pressure in the whole Mach number ranges and

only a small decrease in frequency at the around Mach

number of 0.9.

7. Conclusions

A fully implicit aeroelastic solver has been developed for

fluid/structure interaction on complex configuration

through the tightly coupled solution of the Navier–Stokes

equations and the structural equations of motion. Navier–

Stokes equations are discretized with a LU-SGS

subiteration algorithm and the HLLEW scheme. Struc-

tural equations of motion are discretized directly by a

second scheme with subiteration in generalized coordi-

nates. Multiblock grid deformation is performed with the

TFI method. IPS and the principle of virtual work are used

for data transformation of deformation and force between
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Figure 2. (a) Flutter speed and (b) flutter frequency for the AGARD
standard aeroelastic wing.
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X Y

Z

Structural Model (M∞ = 0.95)
(a) The first mode

fm1 = 16.59Hz
X Y

Z

Structural Model (M∞ = 0.95)
(b) The second mode

fm2 = 24.44Hz

X Y

Z

Structural Model (M∞ = 0.95)
(c) The third mode

fm3 = 52.90Hz

X Y

Z

Structural Model (M∞ = 0.95)
(d) The fourth mode

fm4 = 55.58Hz

X Y

Z

Structural Model (M∞ = 0.95)

fm6 = 105.40Hz

X Y

Z

Structural Model (M∞ = 0.95)
(e) The fifth mode (f) The sixth mode

fm6 = 105.40Hz

X Y

Z

Structural Model (M∞ = 0.95)
(g) The seventh mode

fm7 = 108.02Hz

X Y

Z

Structural Model (M∞ = 0.95)
(h) The eighth mode

fm7 = 108.02Hz

X Y

Z

Structural Model (M∞ = 0.95)

fm9 = 118.75Hz

X Y

Z

Structural Model (M∞ = 0.95)
(i) The ninth mode (j)The tenth mode

fm10 = 123.54Hz

Figure 3. First 10 modes and natural frequencies for the structural model of M ¼ 0.9. (a) The first mode, (b) the second mode, (c) the third mode, (d) the
fourth mode, (e) the fifth mode, (f) the sixth mode, (g) the seventh mode, (h) the eighth mode, (i) the ninth mode, and (j) the tenth mode.
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the fluids and the structures. The experiment of the

AGARD 445.6 standard aeroelastic wing was used to

validate the code. For the tail wing with the control

surface, the flutter boundaries on two structural models at

design points of Mach number 0.95 and 0.6 were

calculated. For this case, when the Mach number is larger

than 1.3, the time histories of the third modes would

diverge first. Finally, a complex aircraft configuration has
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Figure 4. Time histories of the generalized displacement for the design model of M ¼ 0.95. (a) M ¼ 0.8, (b) M ¼ 0.95, (c) M ¼ 0.98, (d) M ¼ 1.5.
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been simulated with the solver. There is no obvious

transonic dip in the whole Mach number range. Through

the above three calculations, we can find, for different

configurations, the position of the transonic dip locates in

the different range of Mach number. All of the results

indicate the developed code can treat the problems of

complex unsteady fluid/structure interaction.
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