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Abstract The three-dimensional compressible Navier-Stokes equations ar< approximated by a fifth
order upwind compact and a sixth order symmetrical compact dihierence relations combined with three-
stage Ronge-Kutta method. The compviec results ars presented for convective Mach number Mc =
0.8 and Re =200 with initial data which have &qual and opposite oblique waves. From the computed
results we can see the vaiiation ol coharent structures with time integration and full process of instabili-
ty, formation of A -vottices, aouble horseshoe vortices and mushroom structures. The large structures
break into small and smaller vortex structures. Finally, the movement of small structure becomes dom-
inant, and flow field turns into turbulence. It is noted that production of small vortex structures is com-
bined with turning of symmetrical structures to unsymmetrical ones. It is shown in the present computa-
tion that the flow field turns into turbulence directly from initial instability and there is not vortex pairing in
process of transition. It means that for large convective Mach number the transition mechanism for
compressible mixing layer differs from that in incompressible mixing layer.
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Compressible mixing layer is a good model for studying turbulence. It also is a fundamental
subject for understanding and solving many practical problems. For example, it is a basic re-
search subject for improving the combustion efficiency in supersonic scramjet. Lots of research
work have been done on incompressible mixing layers by experiments, theoretical analysis, and
numerical simulations. Study on compressible mixing layer started just recently. In many investi-
gations the numerical results were given only for the early stage of mixing, and many problems
need to be solved.

In the early time Sandham and Reynoldsm

investigated temporary developing compressible
mixing layer for Mc = 0.8, and obtained process from initial instability to formation of A -vor-
tices. They supposed that vortex pairing will follow the formation of A -vortices. Later Luo and
Sandham'?! showed that the mechanism of transition in compressible mixing layer differs from that
in incompressible mixing layer. They noted that the transition to turbulence starts directly from
initial instability, and there is not second instability and vortex pairing. In their computation it is
supposed that in process of transition the coherent structures for Mc = 0.8 are symmetrical in z-
direction. This restriction is too strong for simulation of turbulence. Many problems remain to be
solved in future, such as the mechanism of transition, effect of compressibility, and the reason

for decreasing growth rate with the increasing convective Mach number.
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In the present paper the high order accurate method developed in ref. [3] is used to ap-
proximate the three-dimensional compressible Navier-Stokes equations and simulate the temporary
developing mixing layer with convective Mach number Mc = 0.8 and Re =200. The convective
Mach number is defined by Mc = (u; — u3)/(c; + ¢c3), where u;,u; and ¢, c, are upper and
lower incoming velocity and sound speed respectively. Full process from initial instability to tran-
sition and to turbulence is obtained. From the computed results it can be seen that the coherent

structures are turning from early stage
U symmetry to later stage unsymmetry. The
flow structures differ from that in incom-
pressible mixing layer. With initial con-
ditions used in the present paper the

transition to turkuience starts directly
froin initia! instability without vortex pair-
ing.

'S i1 $overning equations and numeri-
1 cal methods
[
-l > x The schematic diagram of temporary
— > developing mixing layer is shown in fig.
L 1. In order to get fine mesh grid near the

central part of domain a coordinate trans-

Fig. 1. . . . . .
8 formation is used in the normal direction.

Schematic diagram.

For complete gas the dimensionless Navier-Stokes equations after coordinate transformation in vec-
tor form are as follows:
U M S

Uy _ 9F, 9F
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where

1
U = N[‘o,‘ou,pv,pw,E,pg]T,

fi = %l:pu,pu2 + pypuv,puw,u(E + p),pogul’,
fr =
1 2 T
fs = ylow, pwu, owv, ow” + p,w(E + p),pgw]’,
E = p[ CT + (u? + o* + w?)/2],
where p,p,u,v,w and T are density, pressure, three velocity components and temperature.
They are normalized by po, po U, Uw, Uws Ueo and To respectively. The subscript
shows that the flow parameters are in free incoming conditions. F,, F,, F;on right hand side in
equations are the viscous terms. In dimensionless form we have
p=pT/tM%,Cv = 1/[r(r - )M%L],
where r is the ratio of specific heats, and M ,, is the incoming Mach number. The viscosity coeffi-
cient 4 is computed by using the Sutherlands relation. The Reynolds number Re is defined by Re

_ P= U o Ouo

(ov,puv,pov® + p,ovw,v(E + p),pgv]”,

, where 8, is the initial vorticity thickness. The quantity pg in eq. (1) can be re-
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garded as the concentration per unit volume of a trace species.
The method used in the paper basically is the same as in ref. [3], but the group velocity
control is not used because there are no shocks for the case Mc =0.8. The fifth order accurate

upwind compact difference relation developed by the author'*) is used to approximate the convec-

(5] is used to approximate the

tion terms, and a sixth order symmetrical compact difference relation
viscous terms, and a three-stage Rung-Kutta method is used in advance of time. In x and z di-

rections periodical boundary conditions are used, and nonreflection condition is used in y direc-

tion.
For simplicity consider the following model equation:
v of
9t + ay = 0. (2)

After flux splitting we have

W o, A

3t T oy T, =0
Suppose that the boundaries in y direction are far away from the perturbation region. The second
order nonreflection boundary condition, for example at j = i, is as follows:

. N | - - _
jo=1F = 0.F = 03l - f;) - (e - fiuD L. (3)
At the point naxt 10 the boundary the following third order approximation is used:
j = 2: F;-l = 0,
aF} = a(ff - f7) + 6(ff - fi=1), (4)
where a = %, a = %, b = %, and F} /A y is approximation of df* /3y . In the same way we

can get approximation at upper boundary .
2 Direct simulation of compressible mixing layer

2.1 Initial conditions
The initial flow field consists of mean flow plus perturbations: f = f+ ', f = p,u,v,w,
T. The streamwise mean velocity profile is a hyperbolic tangent function
u = A[B + tanh(By)1,8 > 0,
v=W=0, (5)
A= (uy - up)/2,B = (uy + uy)/2,
where u| and u, are upper and lower incoming steamwise velocity components (fig. 1). In com-
putation u; = - u; = 1,8 = 2, Pr = 1. The initial mean temperature profile is
T=1+m5 0w, (6)
where M, is the upper incoming Mach number. The initial pressure distribution is assumed to be
constant, and the density is obtained from the equation of state.

(6] we know that the most unstable waves are three-dimensional

From linear stability analysis
oblique waves for compressible mixing layer for the case Mc = 0.8. The initial perturbation in the

present paper is as follows:

A . A .
f' = aRelf (a,p)e*% 4 f(a, - B)e=""},
fl=p,u,v,u,T. (7)
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A , A .
In the above expression Re{f (a ,B)e'(“’”’g’) + f(a, - ﬂ)e‘(‘”“p‘)} means the real part in the

bracket, a , 3 are wave numbers in x and
eigenfunctions corresponding to the most
[6]. In the present computation Mc = 0.

Fluctuation of energy

» A S —
0.00 50.00 100.C0
t

Fig. 2. Varation of I,{a,f) 5. t.

which is defined as
Ec ( a, ﬁ) =

1
LL,

E(x,y,2)

g’;,-(a 9,3’9’) =

A A
z directions respectively, f (a,3) and f (a, - B) are
unstable waves obtained from linear theory from ref.
8, Re = putta®uo/pt =200,y = (uy - uy)/2,
. For the case Mc =

and 8y = (u1 - ;)

0.8,Re = 200, we have @ = 8 = 0.47 from linear
theory. The domain of computation is 0 < x <
2r/a; - 15 ¥y < 15; 0 € z < 2%/f5.

du
dy

2.2 Results and analysis

The mesh grid points iniiially in (x,y,2) di-
rections are 64 x 22i x 54 With turning to small
scale structure dominance ine mesh grid is refined
sequentially to 160 x 245 x 200. For keeping accura-
ey a sixih order Lagrange interpolation is used in
mesh refinement. In fig. 2 are given the two-dimen-
sional averaged spectra of total fluctuation of energy,

lj"‘y A,
2Ly _L’Ec(a’ﬁvy)dy)

L(L .
J,Janrc(x’y’z)e-2ur(ax+ﬁz)dxdz ,
0

1
= E(u'z"' 1)'2 + wr2)’

where f = f + f', and f is the Fevre average and f = of/ p- The upper “—” means Reynolds
average. In fig. 2 the wave numbers are normalized by the basic wave number. From this figure

we can see that in early time the perturbations have
high wave numbers equal zero. With flow
development the energy for small scale structures gets
exited, and then the peturbation energy in a wide
range of scales turns to quantity with almost equal or-
der. It means that the small structures can get energy
from averaged large scale structures in order to keep
their movement. This is indirect validation of the pre-
sent computed results. In fig. 3 are given the maxi-
mum and minimum pressure P_,, and P, as a func-
tionyof time. From this figure we can see the process
of transition. The minimal P, in advance of time
corresponds to different stage of flow development. In
fig. 4 are given the surfaces of constant pressure

200

0.50

1 1
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t

Fig. 3. Variation of P, and P,; ve. ¢.



No. 4 COMPRESSIBLE MIXING LAYER 425

©

A B

Fig. 4. A, Surface with constant pressure at t = 36.63. (a) 3D constant surface; (b)front view;

(¢)top view. B, Contours of passive function at ¢ = 36.63. (a) Plane y = 0; (b) Plane x = %L,;

(c)plane x = —;-'L‘.

(fig.4A(a), (b)) and mixture fraction field (fig.4B, the passive function g) at time ¢ = 36.63
which corresponds to the time when P;,(¢) reaches its first minimal point. From the surfaces of
constant pressure we can see formation of /\ -vortices. These structures much like the A -vortices
for H-type transition in the boundary layer. In the mixing layer formation of A -vortices is from
primary instability, but in the boundary layer its formation is from instability for subharmonic
(secondary instability) . These results agree well with those from refs. [1, 2] in which a spectral
method combined with finite difference method is used ( see fig.13binref . [1]and fig . 2in



426 SCIENCE IN CHINA (Series A) Vol. 43

ref. [2]). The contours of passive function g (fig. 4B(a)—(c)) characterize the property of
mixture. Computed mushroom structure in the mixing layer which is observed first in experiment
agrees well with the results in ref. [1] (see fig. 15 inref. [1]). In ref. [1] are only given the
results in the period from initial instability to formation of A -vortices, and it is supposed that
vortex pairing follows the formation of A -vortices. In the present computation it is shown that
with development of flow structures the ends of A -vortices start to incline in normal direction. In
process of inclining we can see periodical fast growth of the mixing layer. At the time when the
A\ -vortices starts to incline (¢ ~ 42) we can see sudden growth of momentum thickness (fig. 5
(a)). The variation of maximum spanwise vorticity w, versus time is given in fig. 5(b). From
the figure we see that w, is negative for ¢ < 36. Formation of A -vortices is combined by sudden
growth of positive vorticities. This means that the nonlinear effect is an impurtant factor for forma-
tion of large scale three-dimensional coherent structures. With continuation of flow development
due to inclination of A -vortices and interaction between them dovble horseshoe structures are
formed at ¢ =52.37. In fig. 6(a) are given smtaces of constant pressure which show the coher-
ent structures. These structures apree well with those in ref. [2] (fig. 2 in ref. [2]). The com-
puted results tell us that there is no vortex pairing. The same conclusion is given in ref, [2].
This conclision show: that the transition mechanism for compressible mixing layer differs from
mechanism for 1ncompressible mixing layer. For the incompessible mixing layer the vortex pairing
is a key factor in transition, and it also is an important factor for increasing the growth rate of
mixing layer. For the compressible mixing layer there is no vortex pairing, and the mixing layer
combined with inclination of A -vortices periodically grows very fast. The flow turns to turbulence
directly from initial instability, and there is no secondary instabitity. It should be noted that in
ref. [2] in z-direction they only took half period of basic hormenic as the computational domain,
and another half period is supposed to be symmetrical. It is obvious that flow symmetry is not cor-
rect for turbulent flow. In the present computation in z-direction a full period is taken as the
length of domain and periodic condition is used at boundaries in z-direction. In computation we
see that the flow structures are symmetrical in z-direction for ¢ <67, and they agree well with
symmetrical results in ref. [2]. With break of large scale structures and formation of small scale
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Fig. 5. (a) Variation of 8, vs. ¢; (b) variation of w,,,, vs. ¢
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Fig. 6.

view.
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Surface of constant pressure. (a) 3D constant surface; (b) front view; (c) side view; (d) top
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structures unsymmetry in z-direction is obtained. In fig. 6 are given surfaces of constant pressure
at different time, from which we can see the full process of flow development from large scale
structures to smaller and smaller scale structures. With movement of horseshoe structures away a-
long the normal direction after its formation (¢ = 52.37), the bow vortices are formed, and break
into small scale structures in the central region. At this moment unsymmetrical structures are ex-
hibited in z-direction (see fig. 6(b), 6(d) at t =68.11). At ¢t = 72.17 each bow vortex breaks
into two small vortices, and the space in which exist small scale structures is enlarged. At this
moment the flow structures still keep unsymmetry (fig. 6). From the computed results we can see
the full process of flow development: stretching of large scale structures, their deformation and
formation of small scale structures. Finally, with further flow development the flow tums into tur-
bulence, and movement of small scale structures becomes dominant. In fiz. 7 are gmven the sur-

faces of constant spanwise vorticity w, and streamwise vorticity =0, at ¢t = 116 .84 . The Reynolds

~

stress R|; = — u'v" and the turbulence Mach numb=r i, = (u'u';)”*/¢ at different time are giv-

(a) (b)

Fig. 7. Constant surface of pressure for w,(a) and w, (b) at ¢ = 116.84.
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Fig. 8. Variation of R}, and M, (b) in different time.
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en in fig. 8. Here upper” ~ "means Favre average. Variation of R, and M, shows characteristics
of flow structures in different stage of development. During the time of formation of A -vortices
the stress R, as a function of y has a single peak; during the time of formation of horseshoe vor-
tices R, has a pair of peaks, its production is due to shear stress caused by double horseshoe
vortices. When the flow turns into turbulence R, has multipeak and becomes flatter. The turbu-
lence Mach number has similar property. It should be noted that the Reynolds number in the pre-
sent computation is lower. Although the small structures trend to isotropy, but full developed tur-

bulence has not been reached.
3 Conclusion

The three-dimensional compressible mixing layer is simulated directly with a high order ac-
curate method. The full process of flow development from initiai instahility, transition and early
stage of turbulence are given. It is noted that during transition production of smal! scale structures
is combined with turning of flow to unsymmetry. Thzse results show that for larger convective
Mach number in compressible mixing layer the mechanism «f iransition differs from that for in-
compressible mixing layer. The flew aevelopment witi given initial conditions in the present paper
is direct from initial instzbility to turbulence, and there are no paring and second instability .
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