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Abstract
The pull-in instability of two nanotubes under van der Waals force is
studied. The cantilever beam with large deformation model is used. The
influence of nanotube parameters such as the interior radius, the gap
distance between the two nanotubes, etc, on the pull-in instability is studied.
The critical nanotube length is determined for each specific set of nanotube
parameters. The Galerkin method is applied to discretize the governing
equations, and it shows good convergence.

Nomenclature

A Hamaker constant, A = π2Cρ1ρ2

A1, A2 nanotube cross-section areas, A1 = π
(
r2

2 − r2
1

)
and A2 = π

(
r2

4 − r2
3

)
C coefficient in the atom–atom pair potential
D distance between the two nanotubes’ edges
E nanotube Young’s modulus
I1, I2 moments of inertia of the nanotubes, I1 =

π
(
r4

2 − r4
1

)/
4 and I2 = π

(
r4

4 − r4
3

)/
4

r1, r3 nanotube interior radii
r2, r4 nanotube exterior radii
L nanotube length
N1, N2 axial forces on the two nanotubes
T distance between the two nanotubes neutral axes,

T = D + r2 + r4
t nanotube thickness
u1, u2 nanotube deflections
U1, U2 nanotube dimensionless deflections
ρ1, ρ2 number of atoms per unit volume in the two bodies

Dimensionless ratios:

R2 = r2/r1, R3 = r3/r1, R4 = r4/r1, β = r1
T

, η =
AL4

2
√

2E(r1T )7/2

1. Introduction

The rapid growth of micro/nanoscale fabrication
technologies in recent years has led to the development
of various micro/nanoelectromechanical systems (MEMS/

NEMS). Cantilever-based MEMS/NEMS structures such
as microcantilever sensors [1, 2], microaccelerometers [3],
atomic force microscopes (AFM) [4–6], microswitches
[7, 8] etc are widely used. Since their discovery, carbon
nanotubes have generated various application ideas due to
their remarkable properties. Nanotweezers are one of the
carbon nanotube applications. Kim and Lieber [9] were
the first to attach two carbon nanotube bundles to a tapered
glass structure to fabricate nanoscale tweezers. Voltage is
applied to the electrode to open and close the free ends
of the cantilever nanotubes. Akita et al [10] attached two
carbon nanotubes to the metal electrodes patterned on a
conventional Si tip to fabricate such nanotweezers. As the
structure scale reaches the micro/nano level, the forces such
as Casimir [11] and van der Waals (vdW) [12, 13] have
a lot of influence on the structures. Dequesnes et al [13]
studied the cantilever nanotube pull-in instability under the
influence of vdW and electrical forces. Their vdW force
is the nanotube–substrate force, which is not applied to
nanotweezers’ nanotube–nanotube structure. During their
derivation of vdW force, the single-wall carbon nanotube
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Figure 1. Schematic diagram of the two nanotubes and the
coordinate system.

structure is modelled as a solid structure, which may not
be applicable to the nanotube structure with relatively large
interior radius. This paper presents a more general model,
which calculates the vdW force by considering the influence
of the nanotube interior and exterior radii and modelling
the nanotube as a continuous system. Rotkin [14] obtains
the analytical solution of the nanotube–substrate system by
modelling the system as a one degree of freedom system
and setting the first and second derivatives of the system’s
total energy to be zero. As the nanotube–substrate structure
also forms a capacitance-like structure, the electrical force
together with vdW force is included in Rotkin’s model.

The model presented in this paper is the pull-in instability
study of the nanotube–nanotube structure, which is a more
suitable model for nanotweezers’ structure. Dequesnes’s
pull-in criterion is based on the study of a system with
one degree of freedom, which is not true for a continuous
system. In this paper, the pull-in instability is found
by studying the structure deflection curve slope. In this
paper, vdW force is the sole force causing pull-in instability.
For nanotweezers without an electrical actuation, vdW
force is the dominant force. The critical design data
can be obtained for nanotweezers by studying the pull-in
instability under vdW force. The nanotube is modelled
as a cantilever beam structure. The influence of the gap
distance between the two nanotubes and the different interior
and exterior radii on the pull-in instability is studied. The
pull-in instability of several nanotube structures is compared.

2. Model development

2.1. Equilibrium equation

Consider the two cantilevered carbon nanotubes under vdW
force in figure 1. The total vdW energy is computed
by the double volume integral of the Lennard–Jones

potential [13, 15, 16],

EvdW(r) =
∫

V1

∫
V2

Cρ1ρ2

r6
dV1 dV2,

where V1 and V2 are the two (volume) domains of the
integration, ρ1, ρ2 are the number of atoms per unit volume
in the two bodies and r is the distance between any points in
bodies V1 and V2. For the two-nanotube shell-like structure,
EvdW is obtained by superposing the four-solid-cylinder vdW
energy [17] as

EvdW(shell1, shell2) = EvdW(sc2, sc4) − EvdW(sc2, sc3)

− EvdW(sc1, sc4) + EvdW(sc1, sc3).

Here shell1 is the (hollow) cylinder with interior radius r1 and
exterior radius r2, shell2 is the (hollow) cylinder with interior
radius r3 and exterior radius r4. sc1 is the solid cylinder with
radius r1, sc2 is the solid cylinder with radius r2, sc3 is the solid
cylinder with radius r3 and sc4 is the solid cylinder with radius
r4. Thus, the two nanotubes’ vdW energy EvdW is computed
by using the formula given by Israelachvili [16] for the solid
cylinder as

EvdW = − AL

12
√

2

[
1

(D − u1 − u2)3/2

(
r2r4

r2 + r4

)1/2

− 1

(D + t − u1 − u2)3/2

(
r2r3

r2 + r3

)1/2

− 1

(D + t − u1 − u2)3/2

(
r1r4

r1 + r4

)1/2

+
1

(D + 2t − u1 − u2)3/2

(
r1r3

r1 + r3

)1/2
]

,

where A is the Hamaker constant, L is the nanotube cylinder
length, D is the distance between the two nanotubes’ edges.
Here the two nanotubes are assumed to have the same thickness
and length. u1, u2 are the two nanotubes’ deflections and it
is worth pointing out that u1 is the coordinate of the first
nanotube and u2 is not the coordinate of the second nanotube as
the coordinate system in the schematics of figure 1 shows. The
coordinate of the second nanotube is T −u2 and u2 is a positive
number. The vdW force fvdW (per unit length) between
the two nanotubes can be derived by taking the derivative
d(EvdW/L)/dD [13, 16]

fvdW = d(EvdW/L)

dD
= A

8
√

2

[
1

(D − u1 − u2)5/2

(
r2r4

r2 + r4

)1/2

− 1

(D + t − u1 − u2)5/2

(
r2r3

r2 + r3

)1/2

− 1

(D + t − u1 − u2)5/2

(
r1r4

r1 + r4

)1/2

+
1

(D + 2t − u1 − u2)5/2

(
r1r3

r1 + r3

)1/2
]

.

The vdW force fvdW(u1, u2) is a coupled nonlinear equation.
Here the governing equation is developed individually

for each nanotube for reasons of brevity. The equilibrium
equations derived by this method are no different from the
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equations derived by writing the system energy together. For
nanotube 1, the elastic bending energy UB1 is

UB1 = EI1

2

∫ L

0

(
∂2u1

∂x2

)2

dx,

where EI1 is the bending stiffness for nanotube 1. And the
elastic stretching energy Us1 due to the axial force N1 is

Us1 = N1

2

∫ L

0

(
∂2u1

∂x2

)2

dx.

For the case of the nanotube studied here, there is no axial
force, i.e. N1 = 0, Us1 = 0. The nanotube elastic stretching
energy UN1 due to the large deformation is [18]

UN1 = A1E

2L

[
1

2

∫ L

0

(
∂u1

∂x

)2

dx

]2

,

where A1 is the cross-section area of nanotube 1, E is the
nanotube Young’s modulus. The work WvdW1 done by the
vdW forcefvdW is

WvdW1 =
∫ L

0

∫ u1

0
fvdW du dx.

By using the principle of virtual work (PVW) δ(UB1 + Us1 +
UN1 − WvdW1) = 0, the governing equation is derived as

EI1
∂4u1

∂x4
= EA1

2L

∂2u1

∂x2

∫ L

0

(
∂u1

∂x

)2

dx + fvdW(u1, u2). (1)

Similarly, the equilibrium equation for the second nanotube is
derived as

EI2
∂4u2

∂x4
= EA2

2L

∂2u2

∂x2

∫ L

0

(
∂u2

∂x

)2

dx + fvdW(u1, u2). (2)

Once again, it is pointed out that u2 is not the coordinate of
the second nanotube. Equations (1) and (2) do obey Newton’s
third law that the vdW force fvdW acting on nanotube 1 has
the same magnitude as the vdW force acting on nanotube 2
but the opposite direction. For the cantilever beam structure,
the boundary conditions are

u1(0) = 0,
∂u1(0)

∂x
= 0,

∂2u1(L)

∂x2
= 0,

∂3u1(L)

∂x3
= 0,

(3)

and

u2(0) = 0,
∂u2(0)

∂x
= 0,

∂2u2(L)

∂x2
= 0,

∂3u2(L)

∂x3
= 0.

(4)

2.2. Nondimensionalization

To nondimensionalize equations (1) and (2), the following
dimensionless numbers are introduced

ξ = x

L
, U1 = u1

T
, U2 = u2

T
, β = r1

T
.

Equations (1) and (2) are nondimensionalized as

U
(4)
1 = 2(

R2
2 + 1

)
β2

U ′′
1

∫ 1

0
(U1)

′2 dξ +
η

R4
2 − 1

FvdW(U1, U2).

(5)

Here ( )′ = ∂
∂ξ

, ( )(4) = ∂4

∂ξ 4 and FvdW(U1, U2) is defined as

FvdW = 1

(1 − βR2 − βR4 − U1 − U2)5/2

(
R2R4

R2 + R4

)1/2

− 1

(1 − βR2 − βR3 − U1 − U2)5/2

(
R2R3

R2 + R3

)1/2

− 1

(1 − β − βR4 − U1 − U2)5/2

(
R4

1 + R4

)1/2

+
1

(1 − β − βR3 − U1 − U2)5/2

(
R3

1 + R3

)1/2

,

and

U
(4)
2 = 2(

R2
3 + R2

4

)
β2

U ′′
2

∫ 1

0
(U2)

′2 dξ

+
η

R4
4 − R4

3

FvdW(U1, U2), (6)

where 2
(R2

2 +1)β2 and 2
(R2

3 +R2
4 )β2 are the parameters indicating the

nonlinear stretching part contribution to the total nanotube
bending deflection. β is the parameter indicating the
relationship between the nanotube size and distance between
the two nanotubes (the nanotube thickness here is assumed
to be fixed). In all the examples computed in this paper, β

is a very small number. So the nonlinear part contribution
to the governing equation may be relatively important. Its
contribution also depends on U ′′

i and (U ′
i )

2 (i = 1, 2), which
are unknown. The vdW energy has the order of [16]
EvdW ∝ AL

D3/2 r
1/2
1 , and the nanotube bending energy has the

order of Ebending ∝ EI
∫ L

0

(
d2u
dx2

)2
dz ∝ Er4

1

(
D
L2

)2
L = Er4

1
D2

L3 ,
so the ratio is as follows:

EvdW

Ebending
∝ AL

D3/2
r

1/2
1

L3

Er4
1 D2

= AL4

E(r1D)7/2
∝ η.

Here η only indicates the order of the ratio of the two energies,
not the actual ratio because the critical parameter, the thickness
is not shown in η.

The boundary conditions are also nondimensionalized as

U1(0) = 0, U ′
1(0) = 0,

U ′′
1 (1) = 0, U ′′′

1 (1) = 0,
(7)

and
U2(0) = 0, U ′

2(0) = 0,

U ′′
2 (1) = 0, U ′′′

2 (1) = 0.
(8)

2.3. Galerkin method

In order to compute the coupled nonlinear equations (5) and
(6), the Galerkin method is applied to discretize the two
equilibrium equations. U1 and U2 are assumed to have the
following expansions,

U1(ξ) =
N∑

i=1

aiφi(ξ), (9)

and

U2(ξ) =
N∑

i=1

biφi(ξ), (10)

where N is the mode number and ai , bi are the unknown
constants to be determined. φi(ξ) is the cantilever beam
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Figure 2. Convergence study as the mode number changes. r1 = r3 = 1.33 nm, t = 0.34 nm and D = 50 nm.

mode shape given by Craig and Chang [19]. The asymptotic
approximation and simpler expression of φi(ξ) are given by
Dowell [20] and Dugundji [21]. In this paper, Craig and
Chang’s mode shape is used. By substituting U1, U2 in
equations (9) and (10) into equations (5) and (6), multiplying
equations (5), (6) by φi(ξ) and then integrating from 0 to 1,
the equilibrium equations are changed as



∫ 1
0 φ1

{∑N
i=1 aiφ

(4)
i −

[
2

(R2
2 +1)β2

∫ 1
0

(∑N
i=1 biφ

′
i

)2
dξ

∑N
i=1 aiφ

′′
i + η

R4
2−1

FvdW

]}
dξ = 0

∫ 1
0 φ2

{∑N
i=1 aiφ

(4)
i −

[
2

(R2
2 +1)β2

∫ 1
0

(∑N
i=1 biφ

′
i

)2
dξ

∑N
i=1 aiφ

′′
i + η

R4
2−1

FvdW

]}
dξ = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·∫ 1
0 φN

{∑N
i=1 aiφ

(4)
i −

[
2

(R2
2 +1)β2

∫ 1
0

(∑N
i=1 biφ

′
i

)2
dξ

∑N
i=1 aiφ

′′
i + η

R4
2−1

FvdW

]}
dξ = 0

∫ 1
0 φ1

{∑N
i=1 biφ

(4)
i −

[
2

(R2
3 +R2

4)β2

∫ 1
0

(∑N
i=1 biφ

′
i

)2
dξ

∑N
i=1 biφ

′′
i + η

R4
4−R4

3
FvdW

]}
dξ = 0

∫ 1
0 φ2

{∑N
i=1 biφ

(4)
i −

[
2

(R2
3 +R2

4)β2

∫ 1
0

(∑N
i=1 biφ

′
i

)2
dξ

∑N
i=1 biφ

′′
i + η

R4
4−R4

3
FvdW

]}
dξ = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·∫ 1
0 φN

{∑N
i=1 biφ

(4)
i −

[
2

(R2
3 +R2

4)β2

∫ 1
0

(∑N
i=1 biφ

′
i

)2
dξ

∑N
i=1 biφ

′′
i + η

R4
4−R4

3
FvdW

]}
dξ = 0.

(11)

There are 2 × N equations and 2 × N unknowns (ai , bi , i =
1 to N ). The Newton–Rhapson method is applied to solve the
nonlinear equations.

3. Results and discussion

Figure 2 shows the convergence study of different mode
numbers on the computation. D is taken as 50 nm, r1 =
r3 = 1.33 nm, E = 1 TPa and t = 0.34 nm. As the mode
number is chosen as 1, 3 and 5, the pull-in η is 35, 40 and 40.5
respectively. The pull-in η value converges at 40.5 with further
mode number increasing. The physical meaning of parameter

η is mentioned above as the order of the two energies’
(vdW and bending energies) ratio. From the definition of
η

(
η = AL4

2
√

2E(r1T )7/2

)
in the nomenclature, η can be changed by

changing the Hamaker constant (A), or nanotube length (L), or
Young’s modulus (E) or nanotube interior radius (r1), or the
distance between the two nanotubes’ neutral axes (T ). If the

material properties of the nanotubes (A, L, E, r1) are fixed,
the only and direct way of changing η is to change the
distance between the two nanotubes’ neutral axes (T ) and
η ∝ 1/T 7/2. We also change η by changing T, r1 and L together
(see figures 6 and 7) to achieve pull-in values. Because
in figure 2 the two nanotubes have the same interior radii,
thickness, length and Young’s modulus, U1 has the same value
as U2. Clearly the pull-in nanotube tip deflections U1(1) and
U2(1) do not converge well as the mode number increases.
Increasing mode number does not improve the convergence of
U1 and U2. As the system approaches the pull-in point, the
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Figure 3. The two nanotubes’ neutral axes deflection at the pull-in. η = 40.5, r1 = r3 = 1.33 nm, t = 0.34 nm.

Figure 4. Pull-in study of two nanotubes with different interior radii. r1 = 1.33 nm, r3 = 2.63 nm, t = 0.34 nm and D = 50 nm.

Figure 5. The two neutral axes pull-in deflection of the nanotubes with different interior radii at η = 66.6. r1 = 1.33 nm, r3 = 2.63 nm, t =
0.34 nm and D = 50 nm.
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Figure 6. β and pull-in η for the two nanotube system with the same interior radii, with changing D.

Figure 7. Pull-in nanotube length L for the two nanotube system with the same interior radii, with changing D.

curve slope increases dramatically. When the slope is infinite,
pull-in happens [22]. There is also the numerical difficulty of
finding the pull-in displacement. Any small η change around
the pull-in point will cause large Ui (i = 1, 2) change. The
critical pull-in Ui (i = 1, 2) largely depends on the step size
of η. In this paper, all the computation results are obtained by
using five mode shapes. Because most researchers adopt E =
1 TPa and t = 0.34 nm for single-wall carbon nanotubes [23],
this paper assumes such Young’s modulus and thickness unless
other Young’s modulus and thickness are specified. Figure 3
shows the two nanotubes’ neutral axes deflection at the critical
pull-in point η = 40.5 obtained from figure 2. Figure 4
shows the two nanotubes with different radii, r1 = 1.33 nm

and r3 = 2.63 nm. For the nanotube with larger interior radius
(the two nanotubes have the same thickness), its larger bending
stiffness (EI ) will cause smaller deflection because the vdW
force acting on the two nanotubes has the same magnitude but
the opposite direction. Figure 5 shows the deflection of the
two nanotubes’ neutral axes at the pull-in η = 66.6.

Figure 6 shows β and pull-in η of the nanotubes with
the same interior radii as D changes. The interior radii r1

and r3 are chosen as 2.63 nm, 1.33 nm [24], 0.28 nm [25]
and 0.18 nm [26]. D starts from 50 nm to 780 nm. From
figure 6, β decreases monotonically but pull-in η does not as
D increases. Figure 7 shows the pull-in nanotube length L,
which is computed from pull-in η, as D changes. Here the
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Hamaker constant A is taken as 23.8 × 10−20 J [27]. Clearly
in figure 7, the pull-in length L increases monotonically as D
increases. As D increases, the vdW force reduces and for each
individual set of nanotubes, the thickness and interior radii do
not change, thus, the nanotube cross-section bending stiffness
(EI ) does not change, either. In such a case, increasing the
nanotube length, which reduces the system flexibility, is the
only way to let the carbon nanotube system reach the pull-in
instability.

4. Conclusion

The pull-in instability of a tweezer-like nanostructure is
studied. The pull-in points of the two-nanotube system are
found by studying the nanotube neutral axes deflection curve
as its slope approaches infinity. The influence of the two
nanotubes’ distance and interior radii on the pull-in instability
is analysed. For the nanotubes with the different interior radii,
the pull-in nanotube length is given. This pull-in instability
study offers data on the nanotube gap size and length for
nanotweezers design. The model accounts for the large
deformation as a nonlinear part in the governing equations,
which can be easily extended to the study of other structures
under the vdW force influence. However, during the derivation
of vdW force, the model does not account for the nanotube
interlayer interaction. Thus the model may not be applied
to the analysis of a multi-wall nanotube structure under vdW
force.
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Flöter A and Kohn E 2002 Diamond microwave relay
Diam. Rel. Mater. 11 672–6

[8] Ruan M, Shen J and Wheeler C B 2001 Latching
microelectromagnetic relays Sensors Actuators A 91
346–50

[9] Kim P and Lieber C M 1999 Nanotube nanotweezers Science
286 2148–50

[10] Akita S, Nakayama Y, Mizooka S, Takano Y, Okawa T,
Miyatake Y, Yamanaka S, Tsuji M and Nosaka T 2001
Nanotweezers consisting of carbon nanotubes operating in
an atomic force microscope Appl. Phys. Lett. 79 1691–3

[11] Buks E and Roukes M 2001 Stiction, adhesion energy and the
Casimir effect in micromechanical systems Phys. Rev. B 63
033402

[12] Lin W H and Zhao Y P 2003 Dynamics behavior of nanoscale
electrostatic actuators Chin. Phys. Lett. 20 2070–3

[13] Dequesnes M, Rotkin S V and Aluru N R 2002 Calculation of
pull-in voltages for carbon-nanotube-based
nanoelectromechanical switches Nanotechnology 13
120–31

[14] Rotkin S V 2003 Theory of Nanotube Nanodevices
Nanostructured Materials and Coatings for Biomedical and
Sensor Applications ed Y G Gogotsi and I V Uvarova
(Dordrecht: Kluwer) pp 257–77

[15] Girifalco L A 1992 Molecular properties of C60 in the gas and
solid phases J. Phys. Chem. 96 858–61

[16] Israelachvili J N 1985 Intermolecular and Surface Forces with
Applications to Colloidal and Biological Systems
(New York: Academic) p 138

[17] Tadmor R 2001 The London–van der Waals interaction energy
between objects of various geometries J. Phys.: Condens.
Matter 13 L195–L202

[18] McDonald P H Jr 1955 Nonlinear dynamic coupling in a beam
vibration J. Appl. Mech. 22 573–8

[19] Chang T C and Craig R R Jr 1969 Normal modes of uniform
beams J. Eng. Mech. Div. ASCE 195 1027–31

[20] Dowell E H 1984 On asymptotic approximations to beam
model shapes J. Appl. Mech. 51 439

[21] Dugundji J 1988 Simple expression for higher vibration modes
of uniform Euler beams AIAA J. 26 8 1013–4

[22] Zhang X M, Chau F S, Quan C, Lam Y L and Liu A Q 2001 A
study of the static characteristics of a torsional micromirror
Sensors Actuators A 90 73–81

[23] Ru C Q 2004 Elastic models for carbon nanotubes
Encyclopedia of Nanoscience and Nanotechnology
ed H S Nalwa (Stevenson Ranch, CA: American Scientific
Publishers) (at press)

[24] Lebedkin S, Schweiss P, Renker B, Malik S, Hennrich F,
Neumaier M, Stoermer C and Kappes M M 2002
Single-wall carbon nanotubes with diameters approaching
6 nm obtained by laser vaporization Carbon 40 417–23

[25] Strong K L, Anderson D P, Lafdi K and Kuhn J N 2003
Purification process for single-wall carbon nanotubes
Carbon 41 1477–88

[26] Ajayan P M and Iijima S 1992 Smallest carbon nanotube
Nature 358 23

[27] Peukert W, Mehler C and Götzinger M 2002 Novel concepts
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