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Abstract – A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory
and involves a single material length scalelcs . In the present theory three rotational degrees of freedomωi are introduced, which denote part of the
material angular displacementθi and are induced accompanying the plastic deformation.ωi has no direct dependence uponui while θ = (1/2)curlu.
The strain energy densityw is assumed to consist of two parts: one is a function of the strain tensorεij and the curvature tensorχij , whereχij ≡ ωi,j ;
the other is a function of the relative rotation tensorαij . αij = eijk(ωk − θk) plays the role of elastic rotation tensor. The anti-symmetric part of
Cauchy stressτij is only the function ofαij andαij has no effect on the symmetric part of Cauchy stressσij and the couple stressmij . A minimum
potential principle is developed for the strain gradient deformation theory. In the limit of vanishinglcs , it reduces to the conventional counterparts:
J2 deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relation
between the anti-symmetric part of Cauchy stressτij , andαij is established and only one elastic constant exists between the two tensors. Combining
the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thin metallic wire
torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the stretching gradient, a new
hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is also given. 2001 Éditions
scientifiques et médicales Elsevier SAS

strain gradient / crystalline solids / couple stress / hardening law

1. Introduction

There is accumulating experimental evidence for the existence of material size effects in plasticity, with the
feature that the smaller the imposed geometric length scale relative to some material length scales, the stronger
the material in its plastic response. In the experiments of measuring micro-indentation hardness of metallic
materials the square of the hardness increases linearly as the depth of indentation decreases (Nix, 1989; Ma and
Clarke, 1995; Poole et al., 1996; McElhaney et al., 1998). In reinforced metal matrix composites, small particles
give rise to an enhanced rate of strain hardening compared to the same volume fraction of larger particles
(Kelly and Nicholson, 1963; Ebeling and Ashby, 1966; Lloyd, 1994). The overall properties of a polycrystal
are functions ofl/a, which reflects the grain size effect, wherel is the intrinsic length scale introduced into
crystal’s constitutive law by the gradient effects anda is the grain size (Smyshlyaev and Fleck, 1996). The most
compelling experimental evidence that strong size effects exist have been provided by Fleck et al. (1994) and
Stolken and Evans (1998). The former is to measure the scaled shear strength while twisting thin wires with
different diameters and the latter is to measure the bend moments while bending ultra-thin beams with different
thickness.

In recent years several theories (Dillon et al. (1970); Fleck and Hutchinson (1993); Fleck et al. (1994, 1997);
Gao et al. (1999)) on strain gradient effects have been proposed. Among them, Fleck and Hutchinson (1993)
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and Fleck et al. (1994) developed a phenomenological strain gradient theory of plasticity, which models the
hardening due to both statistically stored and geometrically necessary dislocations. Their theory fits neatly
within the general framework of the reduced couple stress theory. There are a lot of works about couple stress
theory, such as those of Toupin (1962), Mindlin (1963, 1964), Schaefer (1967) and Eringen (1968). Green,
Mcinnis and Naghdi (1968) proposed a dipolar theory of plasticity in the presence of simple force and stress
dipoles. Naghdi and Srinivasa (1993-a, 1993-b, 1994) developed a Cosserat theory with three directors and
solved problems involving the evolution of dislocations.

In contrast, no work conjugate of strain gradient has been defined in the alternative gradient theories
(Aifantis, 1984; Muhlhaus and Aifantis, 1991). Retaining the essential structure of conventional plasticity and
obeying thermodynamic restrictions, Acharya and Bassani (1995) concludes that the only possible formulation
is a flow theory with strain gradient effects represented as an internal variable, which acts to increase the current
tangent-hardening modulus. However, there has not been a systematic way of constructing the tangent modulus
so as to validate this framework.

Shizawa and Zbib (1999) developed a thermodynamic theory of gradient elastoplasticity by introducing the
concept of the dislocation density tensor.

Chen and Wang (2000) established a new hardening law based on the incremental version of conventionalJ2

deformation theory, in which the effective strain gradient is only a parameter to influence the tangent modulus.

In the present paper, a new phenomenological strain gradient theory for crystalline solid is proposed based
on the general couple stress theory. Independent variableωi , which is the angular displacement accompanying
plastic deformation is introduced. Using the same hardening law as that in Fleck et al. (1994), thin metallic
wire torsion and ultra-thin metallic beam bend, are investigated. Furthermore, a new hardening law including
the stretch gradient is proposed to analyze the same two problems. In the current paper, finite strain effects
are neglected: no distinction is made between the initial undeformed configuration and the current deformed
configuration.

A brief review on general couple stress theory is given in Section 2. A new strain gradient deformation
theory is given in Section 3. In Section 4, the problem of thin wire torsion is analyzed using the new strain
gradient deformation theory with the same hardening law as that proposed by Fleck and Hutchinson (1993) and
ultra-thin beam bend is analyzed in Section 5. A new hardening law including the stretch gradient is given in
Section 6. The corresponding flow theory version for the new theory is given in Section 7.

2. Review of the general couple stress theory

In the general couple stress theory (Mindlin, 1963, 1964),ω is called micro-rotation and is treated as an
independent kinematic quantity with no direct dependence uponu and distinct from the material rotation,
θ ≡ (1/2)curlu. σ denotes the symmetric part of the Cauchy stress andτ denotes the anti-symmetric part of
the Cauchy stress,m denotes the couple stress tensor.

Neglecting the body forces and body couples, the equilibrium relation of forces within body gives:

tij,j = σij,j + τij,j = 0, (1)

and moment equilibrium implies:

τjk = 1

2
eijkmip,p. (2)
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Here, a comma indicates a partial derivative with respect to a Cartesian coordinate and a repeated suffix denotes
summation over 1 to 3. A subscript index can take the value of 1, 2 or 3 andeijk denotes the usual permutation
symbol.

Traction equilibrium on the surfaceS of the body is:

Ti = (σij + τij )nj , qi = mij nj , (3)

whereTi andqi are the surface traction and surface torque per unit area;ni is the ith component of the unit
normal vectorn at the surface of the body.

The principle of virtual work for the general couple stress theory is:∫
V

[
(σij + τij )δγij + mij δχij

]
dV =

∫
S

[Tiδui + qiδωi]dS, (4)

whereχij = ωi,j is the micro-curvature tensor andγij = ui,j +eijkωk is called the relative displacement gradient
tensor.

The above virtual work statement can be rearranged to the form:∫
V

[
σij δεij + τij δαij +mij δχij

]
dV =

∫
S

[Tiδui + qiδωi]dS, (5)

where the symmetric tensorεij is the conventional strain tensor:

εij = (ui,j + uj,i)/2, (6)

and the anti-symmetric tensorαij is the relative rotation tensor:

αij = eijkωk − (uj,i − ui,j )/2= eijk(ωk − θk). (7)

The strain energy density functionw in the general couple stress theory depends upon the strain tensorε, the
curvature tensorχ and the relative rotationα according to:

w(ε,χ ,α) =
∫ εij

0
σij dεij +

∫ χij

0
mij dχij +

∫ αij

0
τij dαij . (8)

Then, the constitutive relations are:

σij = ∂w

∂εij
, mij = ∂w

∂χij

, τij = ∂w

∂αij

. (9)

3. Strain gradient deformation theory

As we know the gradient of displacementβij can be written as:

βij = ∂iuj , (10)

and it can be divided into two parts: strain tensor and rotation tensor:

βij = εij −Wij . (11)
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For crystalline solid, the rotation tensorWij can be decomposed into two parts:

Wij = We
ij +W

p
ij , (12)

whereWe
ij is the elastic rotation tensor andWp

ij is the plastic rotation tensor.

The angular displacement accompanying the plastic deformation can be chosen as an independent rotation
vectorωi , which is directly related to the plastic rotation tensorW

p
ij according to the following formula:

W
p
ij = −eijkωk. (13)

The rotation vectorθi corresponding toWij denotes the material angular displacement,θ ≡ (1/2)curlu. The
relative curvature tensor isαij = eijk(ωk − θk) = We

ij , which is an anti-symmetric tensor and directly relates
to the rotation vector accompanying elastic deformation. Sinceωi is independent and has no relation with the
displacement vectorui, αij does not vanish, which is different from the theory proposed by Fleck et al. (1994)
and Fleck and Hutchinson (1993).

We define the symmetric part of Cauchy stress,σij , as the work conjugate of the strain tensorεij ; the couple
stress tensormij as the work conjugate of the curvature tensorχij , whereχij = ωi,j . The anti-symmetric part
of Cauchy stressτij , is the work conjugate of the relative curvature tensorαij . The deviatoric partsij of the
Cauchy stress and the deviatoric partm′

ij of the couple stress are defined as the work conjugates ofε′
ij , χ

′
ij

respectively;σm andmm are defined as the work conjugates ofεm andχm respectively, then one can obtain:

δw = sij δε
′
ij +m′

ij δχ
′
ij + σmδεm +mmδχm + τij δαij , (14)

wheresij ≡ σij − (1/3)δij σkk,m
′
ij ≡ mij − (1/3)δijmkk and the termτij δαij plays the role of the work produced

by elastic curvature tensor.

Equation (14) enables one to determinesij ,m
′
ij , σm,mm andτij in terms of the strain and curvature tensor

states of the solid as:

sij = ∂w

∂ε′
ij

, m′
ij = ∂w

∂χ ′
ij

, σm = ∂w

∂εm
, mm = ∂w

∂χm

, τij = ∂w

∂αij

. (15)

In the present paper, we assume that the strain energy densityw can be expressed as:

w(ε,χ,α) = w0(ε,χ) +w1(α). (16)

It means that the anti-symmetric stressτij depends only on the relative rotation tensorαij . In other words,τij is
only the function of elastic rotation vector. Meanwhile the relative rotation tensorαij has no effect onσij and
mij .

For isotropic material,w1 should be the isotropic scalar function of the tensorαij . Sinceαij is an anti-
symmetric tensor, according to Spencer (1971),αij has only one independent invariant,αijαji . Hence we have:

w1(αij ) = w1(J2), (17)

where

J2 = αijαij . (18)
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Substituting equations (16) and (17) into (15), one can obtain:

σij = ∂w0

∂εij
, mij = ∂w0

∂χij

, τij = ∂w1

∂J2
· ∂J2

∂αij

= 2w′
1(J2)αij . (19)

According to the work by Fleck and Hutchinson (1993) and Fleck et al. (1994), it is mathematically convenient
to assume that the strain energy densityw0 depends only upon the single scalar strain measureEe, where:

E2
e = ε2

e + l2csχ
2
e . (20)

The length scalelcs is a material length scale related with rotation gradient and required on dimensional
grounds,ε2

e = 2
3ε

′
ij ε

′
ij , χ2

e = 2
3χ

′
ij χ

′
ij .

An effective stress measure&e is defined as the work conjugate ofEe, which is proposed by Fleck and
Hutchinson (1993) and the hardening relation between&e andEe is:

&e = dw0(Ee)

dEe

= f (Ee), (21)

then

sij = 2&e

3Ee

ε′
ij , m′

ij = 2

3
l2cs

&e

Ee

χ ′
ij , σm = 1

3
σkk, mm = 1

3
mkk, (22)

and

&e = (
σ 2
e + l−2

cs m2
e

)1/2
, (23)

where

σ 2
e = 3

2
sij sij , m2

e = 3

2
m′

ijm
′
ij ,

ε2
e = 2

3
ε′
ij ε

′
ij , χ2

e = 2

3
χ ′
ij χ

′
ij .

(24)

Consider a body of volumeV and surfaceS comprised of non-linear elastic solid: the solid satisfies the
constitutive law (19). Stress tractionT 0

i acts on a portionST of the surface of the body, on the remaining
portionsSu the displacement is prescribed asu0

i and couple stress tractionq0
i acts on a portionSq , on the

remaining portionsSω of the surface the rotation is prescribed asω0
i . Then the following principle of minimum

potential energy may be stated:

Consider all admissible displacement fieldsui and rotation vector fieldsωi which satisfyui = u0
i and

ωi = ω0
i on the part of the boundariesSu andSω, respectively. The real displacement fields and the real rotation

vector fields render the potential energyP(u,ω) to be minimum. The potential energyP(u,ω) is expressed as
following:

P(u,ω) =
∫
V

w(ε,χ,α)dV −
(∫

ST

T 0
i ui dS +

∫
Sq

q0
i ωi dS

)
. (25)

The strain gradient theory proposed by Fleck and Hutchinson (1993) and Fleck et al. (1994) falls within the
classification of reduced couple stress theory. The pertinent kinematic quantities in reduced couple stress theory
are the displacementu and the overall rotationθ ≡ (1/2)curlu. The relative rotation tensorα vanishes for
the particular choiceω ≡ θ and the curvature tensorχij = θi,j , χii = 0. The force equilibrium and moment
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equilibrium is the same as equations (1) and (2), respectively, but the momentm is only the deviatoric part and
the spherical partmm can not enter the equilibrium equations.

In this paper, the rotation vectorω is independent and has no relation with the displacementu. χij = ωi,j

and its work conjugate, the couple stressmij , includes the deviatoric partm′
ij and the spherical partmm.

The spherical part of couple stress is not zero in the present paper since the independent rotation vectorω

is introduced and different from other theories. The spherical part of couple stress plays an important role in
obtaining the boundary conditions. Details about the importance of the spherical part’s existence can be found
in the paper by Green, Mcinnis and Naghdi (1968).

4. Thin wire torsion

As a typical example, we assume that:

w1 = C1J2, (26)

whereC1 is a material constant.

From equation (19), it follows:

τij = 2C1αij . (27)

In this section, torsion of thin copper wires with different diameters is analyzed using the present theory. A
Cartesian coordinate system (x1, x2, x3) and a cylindrical polar coordinate system (r, θ, x3) are introduced as
shown infigure 1andx3 axis is parallel to the axis of the wire. The radius of the wire isa. κ is the twist per
unit length of the wire and taken to be positive without loss of generality.

The equilibrium equations for stresses and couple stresses are:

tij,j = σij,j + τij,j = 0; (28)

τjk = 1

2
eijkmip,p; (29)

τij = 2C1αij = 2C1eijk(ωk − θk). (30)

Figure 1. Coordinate systems(x1, x2, x3) and(r, θ, x3)on a thin wire.
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Now we introduceK1, which is called the volumetric modulus of bend-torsion, then we have:

mm = K1l
2
csχm, (31)

whereχm = 1
3χii andmm denotes the spherical part of couple stress, i.e.mij = m′

ij +mmδij .

In order to compare the results of the present theory and that proposed by Fleck and Hutchinson (1993)
reasonably, the hardening relation, the traction boundary conditions and the displacement boundary conditions
are taken to be the same as that used in Fleck et al. (1994). The solid is assumed to be incompressible for strain
tensor.

The boundary conditions for couple stresses on the lateral face can be expressed as follows (details in Fleck
et al. (1994)):

mθr = mzr = 0 onr = a; (32)

q̄r = 0 onr = a, (33a)

where the definition of̄qr can be found in Fleck et al. (1994). An alternative boundary condition instead of
equation (33a) is:

mrr = 0 onr = a. (33b)

On the end faces there are the following boundary conditions:

ur = 0, uθ = 0, uz = 0 onz = 0; (34)

ur = 0, uθ = κrL, uz = 0 onz = L; (35)

mrz = mθz = 0, m′
zz = 2

3
l2cs&0κ

n

(
r2

3
+ l2cs

) n−1
2

on z = 0; (36)

mrz = mθz = 0, m′
zz = 2

3
l2cs&0κ

n

(
r2

3
+ l2cs

) n−1
2

on z = L, (37)

whereL is the total length of the thin wire as shown infigure 1.

4.1. K1 → ∞
If the solid is assumed to be incompressible for bend-torsion, thusK1 → ∞, we can find that the

corresponding solutions to the above boundary value problem is:

u1 = −κx2x3, u2 = κx1x3, u3 = 0; (38)

ωr = −1

2
κr, ωθ = 0, ωz = κz. (39)

It is verified as following:

From the displacement field, we have the non-vanishing components of strain:

ε′
13 = ε′

31 = −1

2
κx2, ε′

23 = ε′
32 = 1

2
κx1, εe = 1√

3
κr, (40)

and the non-vanishing deviatoric components of curvature tensor are:

χ ′
11 = χ ′

22 = −1

2
κ, χ ′

33 = κ, χe = κ. (41)
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The spherical part of curvature tensor is:

χm = 1

3
χkk = 0. (42)

Here, the simple power law relationship between&e andEe using in Fleck et al. (1994) is adopted also:

&e = &0E
n
e . (43)

The non-vanishing component of Cauchy stress only is:

σθz = sθz = 1

3
&0κE

n−1
e r. (44)

The non-vanishing deviatoric components of couple stress are:

m′
rr = −1

3
l2cs&0κE

n−1
e , m′

θθ = −1

3
l2cs&0κE

n−1
e , m′

zz = 2

3
l2cs&0κE

n−1
e , (45)

where

Ee = κ

(
r2

3
+ l2cs

)1/2

. (46)

From equation (44), we find that the non-vanishing component of Cauchy stress is only related withr , the
equilibrium equations of stress, i.e., equation (28) are met.

Since the components of couple stress in (45) are only related withr , (29) can be reduced:

∂mrr

∂r
+ mrr − mθθ

r
= 0,

1

r

∂mm

∂θ
= 0, (47)

∂mm

∂z
= 0,

mm can not be determined from (31) and becomes an independent unknown variable. Combining the boundary
condition, equation (33b), we obtain:

mm = 1

3
l2csκ

n&0

(
1

3
r2 + l2cs

) n−1
2

. (48)

The torque produced by the spherical part of moment in the present theory is:

Q1 =
∫ 2π

0

∫ a

0
mmr dr dθ = 2πl2cs&0κ

n

n + 1

[(
a2

3
+ l2cs

) n+1
2 − ln+1

cs

]
. (49)

The overall torque produced byσθz,m
′
zz,mm on the end face is:

Q = 6π&0κ
n

n + 3

[(
a2

3
+ l2cs

) n+3
2 − ln+3

cs

]
. (50)
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Figure 2. Plots of torque against the surface strain for copper wires with different diameters andK1 → ∞. The solid lines denote the theoretical results
in the present paper and the dotted lines denote the experiment results (Fleck et al., 1994).

The above equation is the same as equation (6.9) in Fleck et al. (1994). From simulating the tensile curves of
experiment we taken = 0.22. If we choose a torsional response curve of 2a = 15 µm as a calibration curve,
we getlcs = 4.5 µm. Comparisons with the experimenta results are shown infigure 2.

From above we proved thatωi = θi is the corresponding solution to the special boundary conditions of
equations (32)–(37). If we take another set of boundary conditions, for example:

ur = 0, uθ = 0, uz = 0 onz = 0; (51)

ur = 0, uθ = κrL, uz = 0 onz = L; (52)

mrz = mθz = 0, ωz = 0 onz = 0; (53)

mrz = mθz = 0, ωz = 0 onz = L; (54)

mθr = mzr = 0 onr = a; (55)

mrr = 0 onr = a. (56)

One can find another set of solutionωi �= θi to the above set of boundary conditions and here it is omitted.

4.2. K1 has a limit value

If K1 has a limit value, one will know also thatωi = θi is no longer a solution to the boundary conditions of
equations (32)–(37) andαij �= 0. The anti-symmetric stressτij will not vanish.

We can prove that the displacement field in (38) is the correct displacement solution. From the displacement
field the material rotation field can be obtained:

θr = −1

2
κr, θθ = 0, θz = κz. (57)

The non-vanishing components of strain tensor and the effective strain are:

εθz = εzθ = 1

2
κr, ε2

e = κ2r2

3
. (58)

We assume thatχij is only related tor andωθ = θθ ,ωz = θz, then one can obtain the following special solutions
for the boundary value problem:

ωr = −1

2
κr + ω̃r(r), ωθ = 0, ωz = κz. (59)
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Now ω̃r(r) is to be determined as following:

From (59), the non-vanishing deviatoric parts of curvature tensor are:

χ ′
rr = −1

2
κ + 2

3
ω̃′

r − 1

3

ω̃r

r
,

χ ′
θθ = −1

2
κ + 2

3

ω̃r

r
− 1

3
ω̃′

r , (60)

χ ′
zz = κ − 1

3

ω̃r

r
− 1

3
ω̃′

r ,

and the effective rotation gradient is:

χ2
e = 2

3

[
(χ ′

rr)
2 + (χ ′

θθ )
2 + (χ ′

zz)
2], (61)

then

E2
e = κ2r2

3
+ 2

3
l2cs

[(
−κ

2
+ 2

3
ω̃′

r − 1

3

ω̃r

r

)2

+
(

−κ

2
+ 2

3

ω̃r

r
− 1

3
ω̃′

r

)2

+
(
κ − 1

3
ω̃′

r − 1

3

ω̃r

r

)2]
. (62)

The non-vanishing anti-symmetric stresses are:

τθz = −τzθ = 2C1ω̃r . (63)

The non-vanishing components of Cauchy stress are:

tθz = &0κ

3
En−1

e r + 2C1ω̃r, tzθ = &0κ

3
En−1

e r − 2C1ω̃r . (64)

The non-vanishing components of couple stress are:

mrr = m′
rr + mm = 2

3
&0E

n−1
e l2cs

(
−κ

2
+ 2

3
ω̃′

r − 1

3

ω̃r

r

)
+ K1l

2
cs

3

(
ω̃′

r + ω̃r

r

)
,

mθθ = m′
θθ + mm = 2

3
&0E

n−1
e l2cs

(
−κ

2
+ 2

3

ω̃r

r
− 1

3
ω̃′

r

)
+ K1l

2
cs

3

(
ω̃′

r + ω̃r

r

)
, (65)

mzz = m′
zz +mm = 2

3
&0E

n−1
e l2cs

(
κ − 1

3
ω̃′

r − 1

3

ω̃r

r

)
+ K1l

2
cs

3

(
ω̃′

r + ω̃r

r

)
.

Now, from equation (64) we can find that the non-vanishing components are only related tor , so equation (28)
is satisfied.

Substituting equations (63) and (65) into (29), one can find that the second and third equations in (29) are
met automatically and from the first equation in (29) we can obtain:

2(n − 1)En−2
e l2cs&0

(
−κ

2
+ 2

3
ω̃′

r − 1

3

ω̃r

r

)
E′

e + 2En−1
e l2cs&0

(
2

3
ω̃′′

r − 1

3

ω̃′
r

r
+ 1

3

ω̃r

r2

)
+ 2En−1

e l2cs&0
(
ω̃′

rr
−1 − ω̃rr

−2) + K1l
2
cs

(
ω̃′′

r + ω̃′
rr

−1 − ω̃rr
−2) = 12C1ω̃r,

(66)
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and ω̃r can be solved from the above equation through numerical calculation and it must meet the following
conditions:

ω̃r |r=0 = 0, mrr |r=a = 0. (67)

The corresponding overall torque produced bytθz andmzz can be expressed as:

Q =
∫ 2π

0

∫ a

0
tθzr

2 dr dθ +
∫ 2π

0

∫ a

0
mzzr dr dθ. (68)

The numerical results are shown infigures 3and 4 for a set of parameters,&0 = 237 MPa,n = 0.22,
lcs = 4.5 µm, 2a = 15 µm, κ = 1/15, &0/K1 = 0.01, C1/K1 = 0.1. Fromfigures 3and4 we find that the

Figure 3. Relation curve ofr ∼ ω̃r for &0 = 237 MPa, &0/K1 = 0.01,C1/K1 = 0.1.

Figure 4. Relation curve ofr ∼ mrr for &0 = 237 MPa,&0/K1 = 0.01,C1/K1 = 0.1.

Figure 5. Plot of torque against the surface strain for copper wire with diameter 2a = 15µm andK1 is a finite value. The solid line denotes the theoretical
result and the dotted line denotes the experiment result (Fleck et al., 1994).
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boundary conditions in (67) are met and for this kind of case one can find thatωi �= θi . The curve ofκa versus
Q/a3 for 2a = 15µm is shown infigure 5. Fromfigure 5one can find that the present results are quite consistent
with the experiments results. Comparing with the theoretical curve of 2a = 15µm in figure 2, one can find that
the finite value ofK1 has little influence on the overall torque. It means that ifK1 is large enough compared
with &0, the predictions based onK1 → ∞ are correct.

5. Ultra-thin beam bend

Stolken and Evans (1998) did the bend experiment and observed a strong effect whereby thin beams display
much stronger plastic work hardening than thick ones and no size dependence was observed in the tension test.

In this section ultra-thin beam bending with different thickness is analyzed using the theory in the present
paper. Cartesian(x1, x2,x3) coordinates are adopted as shown infigure 6. κ is the curvature,h is the beam’s
thickness andb is the beam’s width.

The classical displacement fields are:

u1 = κx1x2, u2 = −κ
(
x2

1 + x2
2

)
/2, u3 = 0. (69)

The non-vanishing strain components are:

ε11 = −ε22 = κx2. (70)

The components of the overall rotation vector are:

θ1 = 0, θ2 = 0, θ3 = −κx1. (71)

From simulating the tensile test results of thin beams, the relation between the stress and plastic strain can be
expressed as (Stolken and Evans, 1998):

σ = &0 + εplEp, (72)

where&0 is the yield strength,εpl is the plastic strain andEp the hardening coefficient.

The hardening relation including the effect of strain gradient plasticity is:

&e =
√

3

2
&0 + 3

4
EpEe, Ee =

√
ε2
e + l2csχ

2
e . (73)

Figure 6. Coordinate system(x1, x2, x3) on an ultra-thin beam.
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The non-vanishing components of Cauchy stress and the moment in Stolken and Evans (1998) are:

σ11 = 4&e

3Ee

κx2, σ33 = 2&e

3Ee

κx2, m31 = −2&e

3Ee

l2csκ, (74)

and

τij = 0 (i, j = 1,2,3). (75)

The boundary conditions on the lateral faces are:

σ12 = σ22 = σ32 = 0, m12 = m22 = m32 = 0 onx2 = ±h/2; (76)

σ13 = σ23 = 0, m13 = m23 = m33 = 0 onx3 = ±b/2; (77)

σ33 = 2&e

3Ee

κx2 onx3 = ±b/2. (78)

The boundary conditions on the end faces are:

σ11 = 4&e

3Ee

κx2, t21 = t31 = 0, onx1 = ±L/2; (79)

m11 = m21 = 0, m31 = −2&e

3Ee

l2csκ onx1 = ±L/2. (80)

whereEe =
√

4
3κ

2x2
2 + 2

3κ
2 .

Since τij specially vanishes for the ultra-thin beam bend with the theory proposed by Fleck and
Hutchinson (1993), we can easily find that while using the present strain gradient theory to investigate the
same problem with the same boundary conditions and same hardening law as Stolken and Evans (1998), the
solutions to this special boundary conditions are as following:

u1 = κx1x2, u2 = −κ
(
x2

1 + x2
2

)
/2, u3 = 0; (81)

ω1 = 0, ω2 = 0, ω3 = −κx1. (82)

The equilibrium equations of equations (28)–(30) are all met.

It must be noted that if the boundary conditions change the solution will change also, i.e.,ωi �= θi .

6. A new hardening law

In the above, the hardening law proposed by Fleck and Hutchinson (1993) is used to analyze the two
examples. Now, another new hardening relation, in which not only the rotation gradient but also the stretch
gradient is considered, is proposed as following. Since the stretch gradient is considered and it is the second
differential of displacement, in order to avoid a higher order differential of displacement emerging in the
equilibrium equations, the new hardening law is in the incremental form and at each incremental stepη1 is
only a parameter to influence the tangent modulus. The concrete hardening law is expressed as following:

&̇e = f ′(Ee)

(
1+ l1η1

Ee

)1/2

Ėe, (83)

η1 in the above equation denotes the effective stretching gradient and can be expressed as:

η1 =
√

η
(1)
ijkη

(1)
ijk, (84)
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whereη
(1)
ijk denotes the stretching gradient tensor and can be obtained from the second differential of the

displacement vector, which can be found in Chen and Wang (2000).l1 is the length scale related with the
stretch gradient.

The corresponding constitutive relations in the incremental form are as follows:

ṡij = 2&̇e

3Ee

ε′
ij − 2&e

3E2
e

ε′
ij Ėe + 2&e

3Ee

ε̇′
ij ; (85)

ṁ′
ij = 2

3
l2cs

&̇e

Ee

χ ′
ij − 2l2cs&e

3E2
e

χ ′
ij Ėe + 2l2cs&e

3Ee

χ̇ ′
ij ; (86)

σ̇m = 1

3
σ̇kk, ṁm = 1

3
ṁkk. (87)

6.1. Thin wire torsion

In this section the new hardening law, equation (83), is adopted to analyze the torsion of thin wires with
different diameters. From the above section we know that equations (38) and (39) are the true field for the
special boundary conditions (32)–(37). Here we take (38) and (39) to check the overall torque produced by the
new hardening law.

The anti-symmetric stress vanishes. The non-vanishing components of strain and the deviatoric components
of curvature tensor are the same as equations (40)–(41).

From the displacement field, the stretching gradient can be obtained:

η
(1)
ijkη

(1)
ijk = 0, (88)

then

η1 = 0. (89)

Substituting the effective strain, effective rotation gradient and the effective stretching gradient into the
hardening law, equation (83), then:

&̇e = n&0E
n−1
e Ėe. (90)

After integrating (90) one can obtain the following equation:

&e = &0E
n
e . (91)

Thus, it is reasonable and convenient to use (91) to solve the problem of thin wire torsion and from above
Section 4.1, we can easily obtain the overall torque.

6.2. Ultra-thin beam bending

In this section the new hardening law, equation (83), is adopted to analyze bending of ultra-thin beams with
different thickness. From above, we know that equations (81) and (82) are the true field for the special boundary
conditions (76)–(80). Here we take equations (81) and (82) to check the overall moment produced by the new
hardening law.
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The anti-symmetric stress vanishes. The non-vanishing components of strain are the same as equation (70)
and the deviatoric components of curvature tensor are:

χ31 = −κ, χe =
√

2

3
κ. (92)

From the displacement field, the stretching gradient can be obtained:

η
(1)
ijkη

(1)
ijk = 76

75
κ2. (93)

Substituting the effective strain and effective strain gradient into the hardening law, equation (83), then:

&̇e = 3

4
Ep

[
1+

√
38l1

5(2x2
2 + l2cs)

1/2

]1/2

Ėe. (94)

From (94), we find that the term reflecting the effect of strain gradient has no relation with the deformation
history, so for the problem of ultra-thin beam bend, after integrating (94) one obtains the following equation:

&e =
(√

3

2
&0 + 3

4
EpEe

)[
1+

√
38l1

5(2x2
2 + l2cs)

1/2

]1/2

. (95)

Thus, it is reasonable and convenient to use (95) to solve the problem. Here the overall moments at the end
faces are taken into account:

The non-vanishing stress components and couple stress components at the end faces are:

σ11 = 2S11 = 4&e

3Ee

ε′
11 =

[
&0√

2

(
l2cs + 2x2

2

)−1/2 + κEp

][
1+

√
38l1

5(2x2
2 + l2cs)

1/2

]1/2

x2; (96)

m31 = 2&e

3Ee

l2csχ31 =
[−l2cs&0√

2

(
l2cs + 2x2

2

)−1/2 − l2csκ

2
Ep

][
1+

√
38l1

5(2x2
2 + l2cs)

1/2

]1/2

. (97)

Figure 7. Plots of bending moment against the surface strain for three beams with different thickness. The dotted lines denote the theoretical
results by Fleck and Hutchinson (1997) and the solid lines denote the present results, the various symbols denote the experiment results

(Stolken and Evans, 1998).
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Then the overall moments produced by the stresses and couple stresses at the end faces are

M = 2
∫ h/2

0
σ11bx2 dx2 − 2

∫ h/2

0
m31bdx2. (98)

The comparisons of equation (98) with the test results for Ni beam bend with different thickness (Stolken and
Evans, 1998) are shown infigure 7, wherel1 = 0.1lcs similar to Stolken and Evans (1998). Fromfigure 7we
can find that all curves predicted by (98) for different thickness are quite consistent with the test results and
herelcs = 7 µm.

7. Flow theory

In this section theJ2 flow theory version of the present theory for crystalline solids is given briefly following
Section 3, in which the strain gradient deformation theory is given.

The strain tensor consists of elastic and plastic parts. The curvature tensor also consists of the two
corresponding parts. Thus the strain rate and the curvature tensor rate can be expressed:

ε̇ij = ε̇e
ij + ε̇

p
ij , χ̇

p
ij = ω̇i,j . (99)

Assuming the existence of couple stresses in the elastic-plastic body. The elastic strain stateεe
ij is obtained:

εe
ij = µijklσkl, (100)

whereµijkl is the elastic compliance tensor.

Since the angular displacementωi is directly related to the plastic curvature tensorχ
p
ij , hence we only need

to address the constitutive equation forχ
p
ij .

The yield surface7 can be written as:

7 = 7(σe,me, Y ), (101)

whereσe =
√

3
2sij sij is the Von Mises effective stress,me =

√
3
2m

′
ijm

′
ij is the effective couple stress, andY is

the current flow stress.

Plastic flow is normal to the yield surface such that:

ε̇
p
ij = λ̇

∂7

∂σij

, lcs χ̇
p
ij = l−1

cs λ̇
∂7

∂mij

. (102)

According to Fleck and Hutchinson (1993),&e is called the overall effective stress defined by equation (23)

and the overall effective plastic strain rate is defined asĖp
e =

√
(ε̇

p
e )2 + (lcs χ̇

p
e )2, where the effective strain

rate isε̇p
e =

√
2
3ε̇

p
ij ε̇

p
ij and the effective curvature tensor rate isχ̇p

e =
√

2
3χ̇

p
ij χ̇

p
ij . Then the yield surface (101)

generalizes to:

7(&e,Y ) = &e − Y = 0. (103)
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The plastic strain rate and the plastic curvature tensor rate can be given

ε̇
p
ij = 3

2h(&e)

sij

&e

&̇e, lcs χ̇
p
ij = 3

2h(&e)

l−1
cs m′

ij

&e

&̇e. (104)

According to the hardening law proposed by Fleck et al. (1994) and Fleck and Hutchinson (1993):

&̇e = f ′(Ep
e

)
Ėp

e = A
(
Ep

e

)
Ėp

e ; (105)

&̇e = 3

2

sij

&e

ṡij + 3

2

l−1
cs m′

ij

&e

l−1
cs ṁ′

ij . (106)

For this kind of hardening law, the tangent modulush of the stress&e versus plastic strainEp
e curve in simple

tension ish = &̇e/Ė
p
e = A(Ep

e ). While considering the stretching gradient, only the tangent modulush changes
andh = A(Ep

e )(1+ l1η1
E

p
e
)1/2.

The constitutive equation for the anti-symmetric stress rate is:

τ̇ij = 2C1α̇ij = 2C1eijk(ω̇k − θ̇k). (107)

8. Conclusions

(1) The present strain gradient theory for crystalline solid fits within the mathematical framework of the
general couple stress theory. But the present theory differs from the reduced couple stress theory. In the present
theory,ωi plays the role of the plastic rotation.

(2) In the new strain gradient theory,ωi is different fromθi , generally speaking thatαij �= 0. The equilibrium
equations for Cauchy stresses and couple stresses are second order differential of displacementui and angular
displacementωi respectively and no higher order terms are introduced.

(3) The strain energy densityw is assumed to consist of two partsw0 andw1, the former is a function of
the strain tensorεij and the curvature tensorχij , the latter is a function of the relative rotation tensorαij ,
which means that the anti-symmetric stressτij is only the function of the elastic rotation vector and the relative
rotation tensorαij has no effect onσij andmij .

(4) A simple linear elastic relation betweenαij and τij is used to analyze the torsion of thin wires and
bending of ultra-thin beams. The elastic modulus isC1. WhileC1 equals zero, the Cauchy stress tensor becomes
symmetric and the Cauchy stresses and couple stresses in their own equilibrium equations are one to one
correspondences.

(5) Sinceωi �= θi , χkk �= 0, the volumetric modulus of bend-torsionK1 can be naturally introduced and the
spherical part of couple stress can be determined according to the boundary conditions.

(6) Using the new strain gradient theory, the moment on the free boundary can be met exactly and the
spherical part of the moment can be obtained.

(7) The rotation,ωi, is treated as an independent kinematic quantity with no direct dependence uponui , this
enables the use ofC0 continuous elements in a finite element formulation, which will give great benefit to the
finite element calculation to avoid dramatic sensitivity to the element formulation.

(8) A new hardening law is introduced in an incremental form, in which not only the rotation gradient
but also the stretch gradient is considered. The equilibrium equations are still second-order differentials of
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displacement and angular displacement. The effective stretching gradientη1 is only a parameter to influence
the tangent modulus. Using the new hardening law to analyze torsion of thin wires and bending of ultra-thin
beams, the analytical results are fairly consistent with the experiment results.
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