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Abstract — A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory
and involves a single material length scéle In the present theory three rotational degrees of freedprare introduced, which denote part of the
material angular displacemefjt and are induced accompanying the plastic deformatigrhas no direct dependence upgnwhile § = (1/2) curlu.

The strain energy density is assumed to consist of two parts: one is a function of the strain teyjsand the curvature tensgg;, wherey;; = w; j;

the other is a function of the relative rotation tensgy. «;; = e;jx(wr — 6x) plays the role of elastic rotation tensor. The anti-symmetric part of
Cauchy stress;; is only the function ofy;; ande;; has no effect on the symmetric part of Cauchy steggsand the couple stress; ;. A minimum

potential principle is developed for the strain gradient deformation theory. In the limit of vanighinigj reduces to the conventional counterparts:

Jo deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relat
between the anti-symmetric part of Cauchy stregsande;; is established and only one elastic constant exists between the two tensors. Combining
the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thiremetallic w
torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the stretching geadien
hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is &lse0givedrditions
scientifiqgues et médicales Elsevier SAS

strain gradient / crystalline solids/ couple stress/ hardening law

1. Introduction

There is accumulating experimental evidence for the existence of material size effects in plasticity, with the
feature that the smaller the imposed geometric length scale relative to some material length scales, the stronger
the material in its plastic response. In the experiments of measuring micro-indentation hardness of metallic
materials the square of the hardness increases linearly as the depth of indentation decreases (Nix, 1989; Ma and
Clarke, 1995; Poole et al., 1996; McElhaney et al., 1998). In reinforced metal matrix composites, small particles
give rise to an enhanced rate of strain hardening compared to the same volume fraction of larger particles
(Kelly and Nicholson, 1963; Ebeling and Ashby, 1966; Lloyd, 1994). The overall properties of a polycrystal
are functions of /a, which reflects the grain size effect, whéres the intrinsic length scale introduced into
crystal’s constitutive law by the gradient effects anid the grain size (Smyshlyaev and Fleck, 1996). The most
compelling experimental evidence that strong size effects exist have been provided by Fleck et al. (1994) and
Stolken and Evans (1998). The former is to measure the scaled shear strength while twisting thin wires with
different diameters and the latter is to measure the bend moments while bending ultra-thin beams with different
thickness.

In recent years several theories (Dillon et al. (1970); Fleck and Hutchinson (1993); Fleck et al. (1994, 1997);
Gao et al. (1999)) on strain gradient effects have been proposed. Among them, Fleck and Hutchinson (1993)
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and Fleck et al. (1994) developed a phenomenological strain gradient theory of plasticity, which models the

hardening due to both statistically stored and geometrically necessary dislocations. Their theory fits neatly
within the general framework of the reduced couple stress theory. There are a lot of works about couple stress
theory, such as those of Toupin (1962), Mindlin (1963, 1964), Schaefer (1967) and Eringen (1968). Green,

Mcinnis and Naghdi (1968) proposed a dipolar theory of plasticity in the presence of simple force and stress

dipoles. Naghdi and Srinivasa (1993-a, 1993-b, 1994) developed a Cosserat theory with three directors and
solved problems involving the evolution of dislocations.

In contrast, no work conjugate of strain gradient has been defined in the alternative gradient theories
(Aifantis, 1984; Muhlhaus and Aifantis, 1991). Retaining the essential structure of conventional plasticity and
obeying thermodynamic restrictions, Acharya and Bassani (1995) concludes that the only possible formulation
is a flow theory with strain gradient effects represented as an internal variable, which acts to increase the current
tangent-hardening modulus. However, there has not been a systematic way of constructing the tangent modulus
So as to validate this framework.

Shizawa and Zbib (1999) developed a thermodynamic theory of gradient elastoplasticity by introducing the
concept of the dislocation density tensor.

Chen and Wang (2000) established a new hardening law based on the incremental version of conventional
deformation theory, in which the effective strain gradient is only a parameter to influence the tangent modulus.

In the present paper, a new phenomenological strain gradient theory for crystalline solid is proposed based
on the general couple stress theory. Independent varablghich is the angular displacement accompanying
plastic deformation is introduced. Using the same hardening law as that in Fleck et al. (1994), thin metallic
wire torsion and ultra-thin metallic beam bend, are investigated. Furthermore, a new hardening law including
the stretch gradient is proposed to analyze the same two problems. In the current paper, finite strain effects
are neglected: no distinction is made between the initial undeformed configuration and the current deformed
configuration.

A brief review on general couple stress theory is given in Section 2. A new strain gradient deformation
theory is given in Section 3. In Section 4, the problem of thin wire torsion is analyzed using the new strain
gradient deformation theory with the same hardening law as that proposed by Fleck and Hutchinson (1993) and
ultra-thin beam bend is analyzed in Section 5. A new hardening law including the stretch gradient is given in
Section 6. The corresponding flow theory version for the new theory is given in Section 7.

2. Review of the general couple stress theory

In the general couple stress theory (Mindlin, 1963, 1964)s called micro-rotation and is treated as an
independent kinematic quantity with no direct dependence wpand distinct from the material rotation,
0 = (1/2) curlu. ¢ denotes the symmetric part of the Cauchy stressradéenotes the anti-symmetric part of
the Cauchy stressy denotes the couple stress tensor.

Neglecting the body forces and body couples, the equilibrium relation of forces within body gives:
tijj =0ij,j + Tij,; =0, 1)

and moment equilibrium implies:

1
Tjik = Eeijkmip,p- (2
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Here, a comma indicates a partial derivative with respect to a Cartesian coordinate and a repeated suffix denotes
summation over 1 to 3. A subscript index can take the value of 1, 2 or 3;andenotes the usual permutation
symbol.

Traction equilibrium on the surfacg of the body is:
T; = (0ij + wj)nj, qi =mjn;, (3)

whereT; andg; are the surface traction and surface torque per unit ateig;theith component of the unit
normal vectom at the surface of the body.

The principle of virtual work for the general couple stress theory is:
/ [(0i; + 1ij)8yij + m;d xi;] AV = / [T;6u; + q;6w;]1dS, (4)
Vv N

wherey;; = w; ; is the micro-curvature tensor apg = u; ; +¢;jx @y is called the relative displacement gradient
tensor.

The above virtual work statement can be rearranged to the form:
/v (01j8ei; + Tij; +m;;dx; | AV = /s [T:8u; + g;dw;]1dS, (5)
where the symmetric tensey; is the conventional strain tensor:
gij = (uij+uji)/2, (6)
and the anti-symmetric tensay; is the relative rotation tensor:
aij = e — (Wj; —u;;)/2=ejr(wr — ). (7)

The strain energy density functian in the general couple stress theory depends upon the strain tertber
curvature tensog and the relative rotatioa according to:

&ij Xij aij
w(e,x,oz):/ 0jj dé‘,‘j—i‘ mi;; dX,‘j"i‘/ Tij daij. (8)
0 0 0

Then, the constitutive relations are:

ow Jw Jw
=30 Tjj =

(9)

O’l'j:

881‘]" Baij'

3. Strain gradient deformation theory
As we know the gradient of displacemes)j can be written as:
Bij = diu;, (10)
and it can be divided into two parts: strain tensor and rotation tensor:

Bij = €ij — Wi;. (11)
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For crystalline solid, the rotation tenséf;; can be decomposed into two parts:

_ e p
Wij - Wij + Wij’

12)

whereW;; is the elastic rotation tensor ar’ is the plastic rotation tensor.

The angular displacement accompanying the plastic deformation can be chosen as an independent rotation
vectorw;, which is directly related to the plastic rotation tenmf; according to the following formula:

Wi[; = —eijkwk. (13)

The rotation vectop; corresponding td¥;; denotes the material angular displacemént; (1/2) curlu. The
relative curvature tensor ig; = e;jx(wx — 6x) = W, which is an anti-symmetric tensor and directly relates
to the rotation vector accompanying elastic deformation. Sinde independent and has no relation with the
displacement vectar;, «;; does not vanish, which is different from the theory proposed by Fleck et al. (1994)
and Fleck and Hutchinson (1993).

We define the symmetric part of Cauchy stress,as the work conjugate of the strain tensgr the couple
stress tensaw;; as the work conjugate of the curvature tenggr wherey;; = w; ;. The anti-symmetric part
of Cauchy stress;;, is the work conjugate of the relative curvature tenggr The deviatoric pars;; of the
Cauchy stress and the deviatoric patf of the couple stress are defined as the work conjugates of;;
respectivelyp,, andm,, are defined as the work conjugatesgfand x,, respectively, then one can obtain:

Sw = s,-j85;j —I—mgjéxi/j + O SEm + My Xom + Tij 80t (14)

wheres,,: =o0;; — (1/3)é;jou, m;j =m;; — (1/3)8;jmi and the ternt;; é;; plays the role of the work produced
by elastic curvature tensor.

Equation (14) enables one to determm,em;j, om, m,, andr; in terms of the strain and curvature tensor
states of the solid as:

d 0 0 d d
Sijz—u/}’ m;]:—uf , o’m:—w’ mmz_w’ Tij= w . (15)
asij 3)(1] 88m aXm aaij
In the present paper, we assume that the strain energy danséy be expressed as:
w(e, x, o) =wo(e, x) + wile). (16)

It means that the anti-symmetric stregsdepends only on the relative rotation tenagr. In other wordsy;; is
only the function of elastic rotation vector. Meanwhile the relative rotation temsdras no effect om;; and
mij.

For isotropic materialw; should be the isotropic scalar function of the tensgr Sincec;; is an anti-
symmetric tensor, according to Spencer (19é})has only one independent invariaat;« ;. Hence we have:

wi(e;;) = wi(J2), (17)
where

J2 :Cl,'jO[ij. (18)
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Substituting equations (16) and (17) into (15), one can obtain:

8w0 8w0 8w1 8]2
= ) mijj = ) Tj =77 A
88ij axij 8.12 8aij

= ZUJ;_(JZ)Ol,‘j. (19)

O'ij

According to the work by Fleck and Hutchinson (1993) and Fleck et al. (1994), it is mathematically convenient
to assume that the strain energy densitydepends only upon the single scalar strain meaBuravhere:

EZ=g2+12x2. (20)

The length scald.,; is a material length scale related with rotation gradient and required on dimensional
groundsg? = gelfjelfj, x2= %Xi’jxi’j.

An effective stress measui®, is defined as the work conjugate &f, which is proposed by Fleck and
Hutchinson (1993) and the hardening relation betwEgandE, is:

_ dwO(Ee)

e = f(E,), 21
dE, f(E.) (21)
then
229 / / 2 2 Ee / 1 1
Sii = 3, i m;; = §lcs_eXijv Om = 30k, M = Mk (22)
and
Te= (o2 +157m2) ", (23)
where
3 3
Gez = 5%ijSij> mf = smjmj;,
2 2 Y 24)
2 _ g /AN 2_ S 1
fe = 3%j%) Xe = 3XijXij:

Consider a body of volumé& and surfaceS comprised of non-linear elastic solid: the solid satisfies the
constitutive law (19). Stress tractidfi® acts on a portiors; of the surface of the body, on the remaining
portions S, the displacement is prescribed @S and couple stress tractigrf acts on a portiors,, on the
remaining portionss,, of the surface the rotation is prescribed:gs Then the following principle of minimum
potential energy may be stated:

Consider all admissible displacement fieldsand rotation vector fieldg; which satisfyu; = u? and
w; = w? on the part of the boundariess ands,,, respectively. The real displacement fields and the real rotation
vector fields render the potential energyu, ») to be minimum. The potential energ¥}(u, w) is expressed as
following:

P(u,w):/ w(e, x,o)dV — (/ TiouidS—i-/ qioa)idS). (25)
1% St Sq

The strain gradient theory proposed by Fleck and Hutchinson (1993) and Fleck et al. (1994) falls within the
classification of reduced couple stress theory. The pertinent kinematic quantities in reduced couple stress theory
are the displacement and the overall rotatio® = (1/2) curlu. The relative rotation tensar vanishes for

the particular choices = 6 and the curvature tenso;; = 6; ;, x;; = 0. The force equilibrium and moment
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equilibrium is the same as equations (1) and (2), respectively, but the mamisminly the deviatoric part and
the spherical pariz,, can not enter the equilibrium equations.

In this paper, the rotation vecter is independent and has no relation with the displacerent; = w; ;
and its work conjugate, the couple stresg, includes the deviatoric part;; and the spherical part,,.
The spherical part of couple stress is not zero in the present paper since the independent rotatien vector
is introduced and different from other theories. The spherical part of couple stress plays an important role in
obtaining the boundary conditions. Details about the importance of the spherical part’s existence can be found
in the paper by Green, Mcinnis and Naghdi (1968).

4, Thinwiretorsion

As a typical example, we assume that:
wy = C1J, (26)
where(C, is a material constant.
From equation (19), it follows:
1;j = 2C1a;;. 27)

In this section, torsion of thin copper wires with different diameters is analyzed using the present theory. A
Cartesian coordinate systemy (x», x3) and a cylindrical polar coordinate systemd, x3) are introduced as
shown infigure 1andxs axis is parallel to the axis of the wire. The radius of the wirg.ig is the twist per

unit length of the wire and taken to be positive without loss of generality.

The equilibrium equations for stresses and couple stresses are:

tijj =0ij,j +1j; =0; (28)
Tjk = %eijkmip,p; (29)
T7;j = 2C10;; = 2C1€ji (0 — 6)). (30)
A X3
L QK
2a__,) le—

X1

v

X2

% X1

Figure 1. Coordinate system&, xo, x3) and(r, 6, xz)on a thin wire.
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Now we introducek;, which is called the volumetric modulus of bend-torsion, then we have:
m,y, = Kﬂixm, (31)

wherey,, = %Xi,- andm,, denotes the spherical part of couple stresspi;e= m;j + my 8.

In order to compare the results of the present theory and that proposed by Fleck and Hutchinson (1993)
reasonably, the hardening relation, the traction boundary conditions and the displacement boundary conditions
are taken to be the same as that used in Fleck et al. (1994). The solid is assumed to be incompressible for strain
tensor.

The boundary conditions for couple stresses on the lateral face can be expressed as follows (details in Fleck
et al. (1994)):

me, =my, =0 onr=a; (32)

qg-=0 onr=a, (33a)

where the definition of;, can be found in Fleck et al. (1994). An alternative boundary condition instead of
equation (33a) is:

m, =0 onr=a. (33b)
On the end faces there are the following boundary conditions:

u, =0, ug =0, u,=0 onz=0; (34)
u, =0, ug =«rL, u,=0 onz=1L; (35)

2 r2 ‘7
my, =mg; = 0, méz = élfv Tok" (5 + lfv) onz=0; (36)

2 r? 7
m,, =my, = 0, I’I”L/ZZ = §l§s20/€n (§ + li) onz=1L, (37)

whereL is the total length of the thin wire as shownfigure 1
4.1, K]_ — 0

If the solid is assumed to be incompressible for bend-torsion, #ius—> oo, we can find that the
corresponding solutions to the above boundary value problem is:

U1 = —KX2X3, Uy = KX1X3, uz3=0; (38)
1
W, = —EKI", we =0, W, =KZ. (39)

It is verified as following:
From the displacement field, we have the non-vanishing components of strain:
1 1 1
€13 = €3 = — =k X2, €93 = €5, = —KX1, £ = —=KT, (40)

2 2 /3

and the non-vanishing deviatoric components of curvature tensor are:

, 1

X11:Xé2:_§/<’ Xé:s:’(v Xe =K. (41)
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The spherical part of curvature tensor is:

1

== =0. 42
X 3ka (42)

Here, the simple power law relationship betwegnand E,. using in Fleck et al. (1994) is adopted also:
X, = XoE. (43)

The non-vanishing component of Cauchy stress only is:

1
Og; = So; = :—SZOKEZ&V- (44)

The non-vanishing deviatoric components of couple stress are:

1 1 2
m,, = —éli Yok EML Mpy = —élgY Yok EML, m,, = élgv Yok EM (45)
where
72 1/2
E, =K(§ +li~> : (46)

From equation (44), we find that the non-vanishing component of Cauchy stress is only related tivith
equilibrium equations of stress, i.e., equation (28) are met.

Since the components of couple stress in (45) are only related-wi#®) can be reduced:

amrr my, — Mgy

=0,

or r
1om,,
—"_0 47
r a6 (47)
a m
m —0,
0z
m,, can not be determined from (31) and becomes an independent unknown variable. Combining the boundary
condition, equation (33b), we obtain:

1 2 . n 1 2 2 z
m,, = §ZCSK Z() é}" +lcs . (48)

The torque produced by the spherical part of moment in the present theory is:

n+l
2

2n ra 2112 Sok™ [ [ a?
= ardrdg = —e " | z%) —1’?.*1}. 49
0= [ [ muraras =T () —n ()

The overall torque produced lay., m’_, m,, on the end face is:

2z’

n+3

67 Tok" [/ a? 2
0= n+°3 K§+1§> —zgjﬂ. (50)
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7007 — Present results
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Figure 2. Plots of torque against the surface strain for copper wires with different diametefs;apdoo. The solid lines denote the theoretical results
in the present paper and the dotted lines denote the experiment results (Fleck et al., 1994).

The above equation is the same as equation (6.9) in Fleck et al. (1994). From simulating the tensile curves of
experiment we taka = 0.22. If we choose a torsional response curve ®£215 um as a calibration curve,
we getl.; = 4.5 um. Comparisons with the experimenta results are shovigime 2.

From above we proved that; = 6; is the corresponding solution to the special boundary conditions of
equations (32)—(37). If we take another set of boundary conditions, for example:

u, =0, ug =0, u,=0 onz=0; (51)
u, =0, ug =kril, u,=0 onz=1L; (52)
m,, =my, =0, w, =0 onz=0; (53)
m,, =mgy, =0, w,=0 onz=L; (54)
me, =m, =0 onr=a; (55)
m,,=0 onr=a. (56)

One can find another set of solutian # 6; to the above set of boundary conditions and here it is omitted.

4.2. K4 has a limit value

If K, has a limit value, one will know also that = 6; is no longer a solution to the boundary conditions of
equations (32)—(37) ang; # 0. The anti-symmetric stress will not vanish.

We can prove that the displacement field in (38) is the correct displacement solution. From the displacement
field the material rotation field can be obtained:

0, = ——=«r, 6y =0, 0, =kz. (57)

The non-vanishing components of strain tensor and the effective strain are:

1 2 K%r?
Eo; =€, = E/cr, g = = (58)
We assume thay;; is only related to- andwy = 6y, w, = 6., then one can obtain the following special solutions
for the boundary value problem:

1
o, =—kr+ (), @=0. o =« (59)
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Now &, (r) is to be determined as following:
From (59), the non-vanishing deviatoric parts of curvature tensor are:

, 1 +2~/ 1&,
O A S
) 1 2& 1.,
Xog = ~ 5K + 3, 3% (60)
, 1, 1,
Hes 3, 3
and the effective rotation gradient is:
2 2 /N2 /' \2 /N2
Xe ::_3[()(”) +(X99) +(Xzz) ]’ (61)
then
K22 2 K 2 15, \? Kk 2@ 1_)\? 1 10,\2
B 3 ) () 3 e
e= 3 T3e|{T2T3> 735 ) T72T35 —3%) T\ 732737 (62)

The non-vanishing anti-symmetric stresses are:
Tgr = — Tz = 2C10,. (63)
The non-vanishing components of Cauchy stress are:

EoK

b
o= ELr +2C0, 1= %"nglr —2C1@,. (64)
The non-vanishing components of couple stress are:
L 2y E"‘llz( K+2~, ld)r>+Kllfs<~,+wr>
my,=m my = - W, — - w — |,
rr 3 0 e (&) 2 3 r 3 r 3 r r
2 Kk 2&, 1 Kql2 @
—m m:_Z En—lz(__ s =~ > LA<~/ _r>’ 65
Mg m00 +m 3 0L, lcs 2 + 3 r Swr + 3 wi’ + r ( )
, 2 1o 1., 1o\ K2/, @
mZZ:mZZ—I—mm:éEoEe IZ, K= 30— 3 + 3 a)r+7 .

Now, from equation (64) we can find that the non-vanishing components are only relatesbtequation (28)
is satisfied.

Substituting equations (63) and (65) into (29), one can find that the second and third equations in (29) are
met automatically and from the first equation in (29) we can obtain:

K2 16\ _ 2., 1d, 1&,
2(n — 1)19;12135,20(—E + :—3@; — ;%) E,+2E! 11352()(560, - 5‘% + §%>

+ 2E" 2 Yo (@lr ™t — @, 72) 4+ Kyl (&) + @t — &0 7%) = 12C16,,

(66)
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anda, can be solved from the above equation through numerical calculation and it must meet the following
conditions:

@rlr=0=0, Myrlr=a = 0. (67)
The corresponding overall torque producedfyandm ., can be expressed as:
2t pra 2r  ra
0= / / to.r2dr 46 +/ / m..rdr do. (68)
0 0 0 0

The numerical results are shown figures 3and 4 for a set of parameterssy = 237 MPa,n = 0.22,
les =45 um, 22 = 15 um, « = 1/15, X¢/K; = 0.01, C1/ K1 = 0.1. Fromfigures 3and4 we find that the

0.0030

1,=237MPa,z, /K =0.01,
0.0025{  C/K=0.1,] =4.5um,

xa=0.075,n=0.22,2a=15um

@, 000201
0.0015
0.0010
e
0.0005 - /—‘/
/
0.0000 : :
0 1.5 3.0 45 6.0 75

Figure 3. Relation curve of ~ @, for £g =237 MPa Xg/K1 =0.01, C1/K1 =0.1.

04 £,=237MPa,z /K =0.01,
C/K,=0.1,l ;=4.5um,
xa=0.075,n=0.22,2a=15um

Figure 4. Relation curve of ~ m,, for £g =237 MPa,Xg/K1 =0.01, C1/K; =0.1.

Solid line: Present result
5501 Dotted line: experiment result
(Fleck,et al.,1994)
500+
450
"’(\“ 400 1
a
3504
300 / %,=237MPa,%,/K,=0.01,C /K,=0.1
I,.=4.51m,2a=15um,n=0.22
250 -
0.0 0.2 04 06 08 10 12 14 16

Ka

Figureb5. Plot of torque against the surface strain for copper wire with diameter P5um andK is a finite value. The solid line denotes the theoretical
result and the dotted line denotes the experiment result (Fleck et al., 1994).
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boundary conditions in (67) are met and for this kind of case one can findtbab;. The curve ofca versus
Q/a® for 2a = 15um is shown irfigure 5 Fromfigure Sone can find that the present results are quite consistent
with the experiments results. Comparing with the theoretical curve ef 25 um in figure 2 one can find that

the finite value ofK; has little influence on the overall torque. It means th& {fis large enough compared
with X, the predictions based dt; — oo are correct.

5. Ultra-thin beam bend

Stolken and Evans (1998) did the bend experiment and observed a strong effect whereby thin beams display
much stronger plastic work hardening than thick ones and no size dependence was observed in the tension test.

In this section ultra-thin beam bending with different thickness is analyzed using the theory in the present
paper. Cartesiaqxi, xp x3) coordinates are adopted as showrigure 6 « is the curvaturef: is the beam’s
thickness ana is the beam’s width.

The classical displacement fields are:
— _ 2, .2 _
U1 = KX1X2, up =—k (x7 +x3)/2, uz=0. (69)
The non-vanishing strain components are:
€11 = —E€22=KX2. (70)
The components of the overall rotation vector are:
(91 = O, (92 = O, (93 = —KX1. (71)

From simulating the tensile test results of thin beams, the relation between the stress and plastic strain can be
expressed as (Stolken and Evans, 1998):
O’Zzo-i-é‘p]Ep, (72)
whereX is the yield strengths,,; is the plastic strain and, the hardening coefficient.
The hardening relation including the effect of strain gradient plasticity is:

J3_ 3
D=5 Tot gEpEe,  Ee=\[e2+I5xl. (73)
A x
141 ) > X1
+ )

Y

Figure 6. Coordinate systenxq, xp, x3) on an ultra-thin beam.
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The non-vanishing components of Cauchy stress and the moment in Stolken and Evans (1998) are:

42(3 22(3 22(2
NS gpKR2  Om=gokx  mas= —3—&135& (74)
and
Tij =0 (l’.] = l’ 2’ 3)' (75)
The boundary conditions on the lateral faces are:
012 =022=032=0, mip=mop=mzx=0 ONxz==+h/2; (76)
013=023=0, miz=moz=mzz3=0 ONxz3==+b/2; (77)
2%,
033 = 3E, Kxp ONxz= :|:b/2. (78)
The boundary conditions on the end faces are:
43,
O = Sk, tra=1t33=0, onx;==%£L/2; (79)
2%, ,
mi1=mop1 =0, msap = _3E ZCSIC 0nx1=:|:L/2. (80)

whereE, =/ 3k2x% + 2«2 .

Since 7;; specially vanishes for the ultra-thin beam bend with the theory proposed by Fleck and
Hutchinson (1993), we can easily find that while using the present strain gradient theory to investigate the
same problem with the same boundary conditions and same hardening law as Stolken and Evans (1998), the
solutions to this special boundary conditions are as following:

U1 = KX1X2, Us = —kK (xf + x%)/Z, uz=0; (81)
w1 =0, w> =0, w3 = —KX1. (82)
The equilibrium equations of equations (28)—(30) are all met.
It must be noted that if the boundary conditions change the solution will change also; #%;.

6. A new hardening law

In the above, the hardening law proposed by Fleck and Hutchinson (1993) is used to analyze the two
examples. Now, another new hardening relation, in which not only the rotation gradient but also the stretch
gradient is considered, is proposed as following. Since the stretch gradient is considered and it is the second
differential of displacement, in order to avoid a higher order differential of displacement emerging in the
equilibrium equations, the new hardening law is in the incremental form and at each incrementgl istep
only a parameter to influence the tangent modulus. The concrete hardening law is expressed as following:

. L\ .
Eezf/(Ee)(l—i— T ) E,, (83)

e

n1 in the above equation denotes the effective stretching gradient and can be expressed as:

/. Q@
n1= ni(jllni(jll’ (84)
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where nfjl,ﬂ denotes the stretching gradient tensor and can be obtained from the second differential of the
displacement vector, which can be found in Chen and Wang (200@.the length scale related with the

stretch gradient.
The corresponding constitutive relations in the incremental form are as follows:

2%, , 2%, 2%,

Sij = 3E, &ij — 3E38ijEe + 3Eeéij; (85)
2,3 22%, , . 22%

-/“:_12_9 [ — e '/'Ee cs “e -'/‘; 86

mlj 3 cs Ee le 3E62 le + 3Ee X[/ ( )
1 1

6m = éékk’ mm = é”hkk- (87)

6.1. Thin wire torsion

In this section the new hardening law, equation (83), is adopted to analyze the torsion of thin wires with
different diameters. From the above section we know that equations (38) and (39) are the true field for the
special boundary conditions (32)—(37). Here we take (38) and (39) to check the overall torque produced by the
new hardening law.

The anti-symmetric stress vanishes. The non-vanishing components of strain and the deviatoric components
of curvature tensor are the same as equations (40)—(41).

From the displacement field, the stretching gradient can be obtained:
nind =0 (®3)
then
n =0. (89)

Substituting the effective strain, effective rotation gradient and the effective stretching gradient into the
hardening law, equation (83), then:

Y, =nSoE" E,. (90)

After integrating (90) one can obtain the following equation:
Y, =XoE]. (91)

Thus, it is reasonable and convenient to use (91) to solve the problem of thin wire torsion and from above
Section 4.1, we can easily obtain the overall torque.

6.2. Ultra-thin beam bending

In this section the new hardening law, equation (83), is adopted to analyze bending of ultra-thin beams with
different thickness. From above, we know that equations (81) and (82) are the true field for the special boundary
conditions (76)—(80). Here we take equations (81) and (82) to check the overall moment produced by the new
hardening law.
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The anti-symmetric stress vanishes. The non-vanishing components of strain are the same as equation (70)
and the deviatoric components of curvature tensor are:

2
X31= —K, Xe = \/;K- (92)

From the displacement field, the stretching gradient can be obtained:

76
MG = gk (93)

Substituting the effective strain and effective strain gradient into the hardening law, equation (83), then:

. 3 V3 vz,
$o=op, (14 3% 1k, (94)
47" 5(2x3 + 12)1/2

From (94), we find that the term reflecting the effect of strain gradient has no relation with the deformation
history, so for the problem of ultra-thin beam bend, after integrating (94) one obtains the following equation:

3 3 V38 12
¥, = £20+ PEE ) [14 — | . (95)
2 47" 5(2xZ + 12))1/2

Thus, it is reasonable and convenient to use (95) to solve the problem. Here the overall moments at the end
faces are taken into account:

The non-vanishing stress components and couple stress components at the end faces are:

4%, _[Zo 2 5 2172 ] [ V38 r/z
=2511=—¢;,=|—=(5 +2x +KkE,| |1+ ———— ; 96
011 11 3E, €11 l:ﬁ( cs 2) kKLp 5(2)(% 4 lgs)l/Z X2 ( )
2% —12%, 12 P v38, Y2
e { 5202 4 o272l E] [1 —] . 97
m31 3E, es X31 ﬁ ( s T 2) 2 H + 5(2X22 4 133)1/2 ( )
1.s=7um, | ;=0.7um
Solid lines: Present results
6 Dotted lines: Experiment results

(Stolken and Evans, 1998)

Figure 7. Plots of bending moment against the surface strain for three beams with different thickness. The dotted lines denote the theoretical
results by Fleck and Hutchinson (1997) and the solid lines denote the present results, the various symbols denote the experiment results
(Stolken and Evans, 1998).
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Then the overall moments produced by the stresses and couple stresses at the end faces are

h/2 h/2
M = 2/ O’llbe d.xg -2 mglb dXZ. (98)
0 0

The comparisons of equation (98) with the test results for Ni beam bend with different thickness (Stolken and
Evans, 1998) are shown figure 7, wherel; = 0.1/, similar to Stolken and Evans (1998). Frdigure 7we

can find that all curves predicted by (98) for different thickness are quite consistent with the test results and
herel,, =7 um.

7. Flow theory

In this section the/, flow theory version of the present theory for crystalline solids is given briefly following
Section 3, in which the strain gradient deformation theory is given.

The strain tensor consists of elastic and plastic parts. The curvature tensor also consists of the two
corresponding parts. Thus the strain rate and the curvature tensor rate can be expressed:

. _'e .p 'p_ .
gij_gij—i_gij’ Xij—a)l"j. (99)

Assuming the existence of couple stresses in the elastic-plastic body. The elastic straff) istafetained:
8,-‘} = MijkiOkl» (100)

wherep;x; is the elastic compliance tensor.

Since the angular displacementis directly related to the plastic curvature tenyg?r, hence we only need
to address the constitutive equation @

The yield surfaceb can be written as:
®=d(0,,m,,Y), (101)

whereos, = \/%si jsij is the Von Mises effective stress, = gm; jm; i is the effective couple stress, alids

the current flow stress.
Plastic flow is normal to the yield surface such that:
. 0P

P
g =A

. 3D
les iy =1t ——

(102)

8(7,7’ o Bm,-j

According to Fleck and Hutchinson (1993}, is called the overall effective stress defined by equation (23)

and the overall effective plastic strain rate is definedEgs= \/ END2+ (s xH)2, where the effective strain

rate isé? = %8585 and the effective curvature tensor ratexjs = %X,’;X,',J Then the yield surface (101)

generalizes to:

O(%,,Y)=%,—Y =0. (103)
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The plastic strain rate and the plastic curvature tensor rate can be given

/

3 i 3 lilm .
P = S es Mij gy (104)

ii — =X, lcv.‘p':
T 2n(s,) 3 K= oh(3.) %

According to the hardening law proposed by Fleck et al. (1994) and Fleck and Hutchinson (1993):

3= f/(EP)El = A(E?)E?; (105)

3y Bl
‘2z 2 0%,

For this kind of hardening law, the tangent modutusf the stresst, versus plastic strait? curve in simple

tensionish = X,/E? = A(E?). While considering the stretching gradient, only the tangent modudlgnges

andh = A(EP)(1+ 1}2#)1/2.
The constitutive equation for the anti-symmetric stress rate is:

1 b (106)

)

T;j = 2C10;; = 2C1e;j (wr — 6r). (207)

8. Conclusions

(1) The present strain gradient theory for crystalline solid fits within the mathematical framework of the
general couple stress theory. But the present theory differs from the reduced couple stress theory. In the present
theory,w; plays the role of the plastic rotation.

(2) In the new strain gradient theowy; is different fromé;, generally speaking that; # 0. The equilibrium
equations for Cauchy stresses and couple stresses are second order differential of displacamilesmgular
displacementy; respectively and no higher order terms are introduced.

(3) The strain energy density is assumed to consist of two pattg and wq, the former is a function of
the strain tensoe;; and the curvature tensgy;, the latter is a function of the relative rotation tensgy,
which means that the anti-symmetric stresss only the function of the elastic rotation vector and the relative
rotation tensoty;; has no effect ow;; andm;;.

(4) A simple linear elastic relation betwee#); andt;; is used to analyze the torsion of thin wires and
bending of ultra-thin beams. The elastic modulu§isWhile C; equals zero, the Cauchy stress tensor becomes
symmetric and the Cauchy stresses and couple stresses in their own equilibrium equations are one to one
correspondences.

(5) Sincew; # 6;, xu # 0, the volumetric modulus of bend-torsidfy, can be naturally introduced and the
spherical part of couple stress can be determined according to the boundary conditions.

(6) Using the new strain gradient theory, the moment on the free boundary can be met exactly and the
spherical part of the moment can be obtained.

(7) The rotationgw;, is treated as an independent kinematic quantity with no direct dependence;uthia
enables the use @, continuous elements in a finite element formulation, which will give great benefit to the
finite element calculation to avoid dramatic sensitivity to the element formulation.

(8) A new hardening law is introduced in an incremental form, in which not only the rotation gradient
but also the stretch gradient is considered. The equilibrium equations are still second-order differentials of
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displacement and angular displacement. The effective stretching gradienbnly a parameter to influence
the tangent modulus. Using the new hardening law to analyze torsion of thin wires and bending of ultra-thin
beams, the analytical results are fairly consistent with the experiment results.
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