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A B S T R A C T :  We prepose a 5-bit lattice Boltzmann model for KdV equation. 
Using Chapman-Enskog expansion and multiscale technique, we obtained high order 
moments of equilibrium distribution function, and the 3rd dispersion coefficient and 
4th order viscosity. The parameters of this scheme can be determined by analysing 
the energy dissipation. 
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1 I N T R O D U C T I O N  

In recent years, the lattice Boltzmann method (LBM) has at t racted at tention as an 
alternative numerical scheme for the simulation of fluid flows [1~3]. The main idea of lattice 

Boltzmann methods are to get available macroscopic physical equations by using the dis- 

creted BGK type Boltzmann equation. In general case, time, space and velocity are discreted 
on one lattice, and then, choose the equilibrium distribution function to fits some require- 

ments which can be obtained with multiscale technique and Chapman-Enskog expansion. 
Recently, there are some studies about model equations by lattice Boltzmann method [4~6]. 

On the other hand, equation contained high order partial differential term, such as KdV, can 
be recovered by modifying the equilibrium distribution function with some high moments, 

and truncation error of the model controlled to high order. 
We expand the distribution function to the third order by Chapman-Enskog expansion, 

use the conservational law in time scale to, get the error term of model equation of order 
O(e3). e is Knudsen number. 

2 L A T T I C E  B O L T Z M A N N  M O D E L  

2.1 T h e  Definit ion of  Macroscopic  Quantity 
Consider a one dimensional model, we discrede the velocity of particles into four di- 

rections, a lattice with unit spacing is used in which each node has four nearest neighbors 

connected by four links. The distribution function f~ is the probability of finding a particle 
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at time t, node x, with velocity es, here a = 0, 1, . - .  ,4 (a = 0 is rest particle). The parti- 
cles velocity are es = (0, c , - c ,  k c , - k c ) ,  k = 2 are given four neighbors node, see Fig.1. The 
macroscopic quantity u(x ,  t) (particles number) was defined by 

= 

s 

The conservational condition was 4 2 0 1 3 

~ s  feq( x '  t) = u(x,  t) (2) Fig.1 Schematic of a 1D lattice 

The particle distribution function satisfy the lattice Boltzmann equations 

I s  (x + es,  t + 1) - f s  (x, t) = - 1 [ i s  (x, t) - Y2 (x, t)] (3) 

where, f~q(x, t ) i s  the equilibrium distribution function at time t, x and r is the single re- 
laxation time factor. 

2.2 A Series o f  Latt ice B o l t z m a n n  Equat ions  in Different T ime  Scales  
Using e as the small lattice unit in physical unit, e can play the role of the Knudsen 

and 
0 0 0 e2 0 +e3-fl0 +O(e4 ) 
(gt - Oto q- e-ff~l -k -~2 or3 

( 8 )  

number [all, the lattice Boltzmann equation (3) in physical unites is 

1 [fo _ f 2 ]  (4) f s ( x + e e ~ , t + e )  - f s ( x , t )  = --T 

Expanding Eq.(4) 

~ e  '~ 0 0 '~ 
A ( x + e e s , t + e ) - S o ( x , t ) =  ~., [ ~  + e s ~ ]  f s (x , t )  (5) 

n ~ 0  

and retaining terms up to O(e 5) we obtain 

e '4 f t 0  1 0  4 

Next, the Chapman-Enskog expansion[ 7] is applied to I s  under the assumption that the 
mean free path is of the same order of e. Expand f s  anout f(0) 

- 4  ~(4) , Is = ~ en$ (") = f(o) + e41)  + e~f(2) + eaS(3) + ~ Ja •  (7) 
n----0 

where, f~q is f(o). 

To discuss changes in different time scales, we introduce t o , ' " ,  t3; thus 

to = t, t l  ---- et, t2 = e2t, t3 = eat 
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The equations to the order of e is 

1998 

os(~ _!4~ ~176 ~ + e o ~  = 
Oto cOx r 

(9) 

The equations to the order of ~ is 

0 f  (1) 0f(0) COl(l) 1 0 ea:.:__x]2f~O)=_!f(2) 
ot---j+-y~§ o--;- + ~ [~o + (10) 

The equations to the order of r is 

os(2) 
Oto 

of(') os(~ os(2) o2s(~ o~s~ ~ 
- -  + ~ + ~ + e,  ~ + cotoat----~ + e,  OtlO---~+ 

(Ii) 

The equations to the order of r is 

~(~o + ~ <  @o + ~os) ~-~s~ +~@o +~o 
la~t 'P ~ 1. t . (4 ~ (11a) 

From Eq.(9) it follows 

1 0 (12) 

1 0 0 

Substituting Eq.(10) into Eq.(12), we get 

(13) 

(14) 

0 0 
Multiplying by operator ~ + e~ 0---~ in Eq.(14), 

o~o~ ( 1 1  o o ~  l O  ~o~)~, (is) 

and eliminating f(2) by using Eqs.(ll), ( l la),  (14) and (15), we obtain 

(16) 
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§ 

0 0 

os(~) 1 o~i(~ _~_s(4) (17) 

Eqs.(9), (14), (16) and (17) satisfy in all dimensional lattice Boltzmann equation gen- 
erally, it is so-called a series lattice Boltzmann equations in different time scales. The 
coefficients in Eqs.(14)~(17) ~" - 1/2, r 2 -- r + 1/6 and --T 3 + 3T2/2 -- 77"/12 + 1/24 are 
needed in the derivation and may be used to give the feature of macroscopic equations. 

2.3 K d V  Equa t ion  
Taking the summation in Eqs.(9), (14), (16) and (17) about a, we obtain 

Ou Om ~ 
+ = 0 (18) 

Oto Ox 

oH 1 o e o ~ r  = 0 (19) 
Ol 

Ou 1 0 e ~0 ~3r176 0 (20) 
GZ 

OU 0 0 + e ~ x ) f ( o ) ( 1  1 ~/- ,Of  (2, 
otW + (1 - 2r) ~_,~ ~ ( ~  + ~) ~ 7 1 +  

0 0 + e~ ~x)2f(o)+ 

~X 

7 1 )  0 + e  0 ~ 4 f ( o ) = 0  (21) 

Ot 

(18)+(19) xe +(20) xe 2 +(21)xe 3 results in 

o - ~ + - ~ - ~  + ~  5 - "  ~oo + ~axJ '~ o ~ o  + e ~  

o o 

( _ ~ 3 + ~  7 o e o ~ , ( o ) ]  =0  (22) 

Under the assumption that 
mo_- 

~o ~ ] . ( o )  ~ _1 ~.~ 
= I& ea=  3 

(23) 

(24) 
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where  a is cons tan t  number ,  we have 

(:t Ct 

In  fact,  Eq.(25) is the  conservat ional  law of u and m ~ this is so-called conservat ional  law in 

t ime  scale to. I t  plays an  i m p o r t a n t  role in the  cons t ruc t ion  of la t t ice  B o l t z m a n n  scheme of 

high order  precision. Equa t ion  (25) had  also been  shown in references [5] and  [6], bu t  those 

are not  conservat ional  law in t ime  scale to. 

Equa t ion  (22) become 

0 4 

O~ Ot 

where#=,2_~.+ll6,17=(_~_3+~.2 7 1) - ] ~ T  + ~-~ . T h e  thi rd  t e r m  of Eq.(26) 's  left 

hand  side is 
~2vy~(b~to+ e o]3 , (o)  2 o5 r 0-~ oP~ (27) 

where  pO ~ - ( o )  3 L o ~ ,(o) 4 = 2.., a*& e=. Denote  = 2.~ I& e=, and  choose 
Ot Gt 

p 0  ~ l U ~ _ a 3 1 u 4  L 0 1 2  = = (2-~au -4-a 4 u 5 (28) 

thus 
OTr ~ O P  ~ Ou 
Ot---o + ~ = ~aOxx (29) 

OP~ OL~ = ~ 2 \2__  / (30) 
+ ox 

Equa t ion  (26) becomes  K d V  equat ion  Is~l~ 

therefore  

0o0(1 )  
O--~ + -~x au2 + v0-~x3 = O(e3) (31) 

The  t runca t ion  error  is 

�9 0 4  i 1  2 \ 
R = 0 @  3) = A b - ~  ~ { ~ a u  ) + 0 @  4) 

Here  the  coefficent v is given as 

( v = ~le2~u ---- e 2 m 2 - r + 1 (32) Fig.2 The curve of ~xe2 versus ~" 

From Eq.(32),  the  p a r a m e t e r s  ~1, u and  e can be used to de te rmine  the  re laxat ion  

factor  % and  ~1 is chosen to  sat isfy 

1 v 
a > 0 
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The 4th viscosity is given by 

7 )~=~3(T3--3T2-'~-'i-~T-- 1)(4~1--~2) 
and the~ 
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(33) 

1( 1) 
= ~3(~  _ 5 )  ~2 _ ~ + ~ (4~,  - ~ )  (34)  

Equat-ion (34) is written as 

v 

where v = 1 /a  2. Choosing A > 0, we get 

ea  < (36) 

It is an important  conclusion that  Eq.(36) become stability criterion for lattice Boltzmann 

equation. The parameters ~1 and ~2 are given by the model energy dissipation. 

2.4 

Fig.3 The curve of the 4th viscosity FigA The relationship between the 3rd dis- 
= A(4~1 - ~2) v 

e3 versus r persion coefficent V ---- ~ -~  and A 

T h e  E n e r g y  D i s s i p a t i o n  o f  t h e  L a t t i c e  B o l t z m a n n  M o d e l  

Assuming that  particles satisfy energy conservation in the form 

(37) 

Z f(k)e'~ = 0 k > 1 
O~ 

Equations (9), (14) and (16) multiplying by e~ and taking the summation we get 

Om O~r ~ 
Oto + ~ = o 

O m ( 1 )  c92u 

(38) 

(39)  
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on3 

Back to the time scale t, we have 

Here, the remaining coefficients are determined by the positive condition of Eq.(41). 

2.5 T h e  Loc a l  E q u i l i b r i u m  D i s t r i b u t i o n  
The moments of f(0) can be expressed as 

s~ ~ = ~, = B ,  ( 4 2 )  
13t 

E S~(~ = ~u2a = cB2 (43) 
2 

~-~-(o) 2 l u 3 a 2 = c 2 B 3  (44) 
l& e ~ =  3 

];~ e~ = u %  3 + ( l u  = c3B4 (45) 
f~ 

]& % =  usa 4 + ~ 2  u ~ a = c 4 B 5  (46) 
c~ 

We get the equilibrium distribution as 

f~o) _ 1 k2B3 - B5 + k2B2 - B4 (47) 
2 k 2 - 1 

f~o) = 1 k2B3 - S s  - k2B2 + B4 (48) 
2 k 2 - 1 

1 (B5 - B3 f~o>=~ ~ ~ 

f~o~ 1 (B5 - B3 
= ~ F  k ~- 

B4 - B2~ 
- - +  ~ 3 : u  

B4 - B2~ 

f~0)_~_ B 1 -  (f~o) --I- f(o) -l-f(o) -Jr- f(o)) 

3 

(49) 

(5o) 

(51) 

N U M E R I C A L  E X A M P L E  

A test problem, the collison of two solitons[ 1~ with initial and boundary function 

Ou Ou 03u 
o--7 + ~ ' ~  + ~'b-~=~ = o 

- o e  < x <  oo 0 < t < T  

u(x ,  O) = 3c l sech2(k lx  -4- dl )  + 3c2sech2(k2x + d2) 

cl = 0.3 c2 -- 0.1 dl = -6 .0  d2 = -6 .0  

kl = �89  k~ = ~ ( c 2 / . ) "  2 
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was s i m u l a t e d  by  u s i n g  th i s  mode l .  I t  shows t h a t  b igger  so l i t on  shou ld  reach  a n d  coll ide w i t h  

sma l l e r  so l i t on  in  t h e  process .  For  t h e  p h e n o m e n o m  of swa l lowing  a n d  sp i t t i ng ,  see Fig .5 .  

I n  t he  process  of  t h e  col l is ion,  all  pa r t i c l e s  n u m b e r  is conse rved ,  see Fig .6 ,  b u t  t he  t o t a l  

pa r t i c l e s  e n e r g y  has  a b i t  d i s s i p a t i o n  see Fig.7.  T h e  Fig .5  shows t h e  process  of  swa l lowing  

a n d  s p i t t i n g  w h e n  two so l i tons  coll ide.  
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Fig.5 The  process of two solitons collision, c = 10.0,/~ = 1.0 

0.052896 

0.0528955 

0.052895 

0,0528945 

0'052894~ 660 i 860 J 10.00 ~ 1200 

t=ndt 

0.0130 

rO.5u'- 

0.0125 

0.0120 

0.0115 

Xu 

O.OllC , J , 
600 8;0 lo;o 1200 

t fnAt  

Fig.6 All particles number  Fig.7 All particles energy, c = 3.0, # = 1.0 



26 ACTA MECHANICA SINICA (English Series) 1998 

4 C O N C L U S I O N  

There was a famous method,  Grad-13 moments  equations in the area of gas dynamics, 

which was successful in the simulation of Navier-Stokes eqflations from Boltzmann equation. 

In 1991, U. Frisch pointed out the possibility that  the requirments of higher moments  may 

be used to construct lattice gas model for Navier-Stokes equation [12]. In this paper,  we car- 

ried out Chapman-Enskog expanson and multiscale technique on the distribution function, 

obtained f(3), and KdV equation with high order accuracy. The conservational law in t ime 

scale to, the equations of different t ime scales Eqs.(9), (14), (16) and (17) are important  

results in the lattice Bol tzmann method.  

The lattice Bol tzmann model for KdV equation is  simple, but Euler equations and 

Navier-Stokes are more complex which is the next step of the authors. 
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