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Abstract. A 3D anisotropic elastoplastic-damage model was presented based on continuum damage 
mechanics theory. In this model, the tensor decomposition technique is employed. Combined with the 
plastic yield rule and damage evolution, the stress tensor in incremental format is obtained. The 
derivate eigenmodes in the proposed model are assumed to be related with the uniaxial behavior of 
the rock material. Each eigenmode has a corresponding damage variable due to the fact that damage 
is a function of the magnitude of the eigenstrain. Within an eigenmodes, different damage evolution 
can be used for tensile and compressive loadings. This model was also developed into finite element 
code in explicit format, and the code was integrated into the well-known computational environment 
ABAQUS using the ABAQUS/Explicit Solver. Numerical simulation of an uniaxial compressive test 
for a rock sample is used to examine the performance of the proposed model, and the progressive 
failure process of the rock sample is unveiled.  

1. Introduction 

Because the heterogeneous textures of geomaterials and the wide existence of joints and cracks in 
geostructures, the rock materials in geotechnical engineering should be considered to be anisotropic. 
To understand the inelastic behavior of rock materials, finding out an appropriate constitutive model 
and approaches for numerical simulation has received considerable attention during the last twenty 
years. Continuum damage mechanics provides a framework for the development of constitutive 
equations and damage evolution equations for rock materials. Rock materials containing microcracks 
and defaults usually exhibit permanent plastic strains as well as the reduction of the stiffness during 
the loading process. Hence, a coupling elastoplastic damage model is necessary to describe the 
inelastic softening behaviour of this kind of materials. 

In recent years, lots of constitutive models have been constructed according to different damage 
mechanism concerning with geomaterials and have been used in solving engineering problems. 
Kawamotto (1988) introduced a second rank symmetric tensor of anisotropic damage to study the 
deformation and fracturing of discontinuous rock mass [1]. Based on the measured characteristics of 
random crack distribution on the surface of a rock specimen, a probabilistic analysis method of 
random anisotropic damage mechanics problems was proposed in literature [2], in which a 
probabilistic distribution law of damage variables for rock mass is presented as a Beta distribution by 
using the Monte-Carlo statistical simulation method. Dragon (2000) considered the inelastic response 
on the macroscale for rock-like materials being resulted from the evolution of inner micro- and 
meso-cracks accompanied with frictional effects regarding closed cracks for compressive loading, 
and progressive microcracking produced volumetric dilatancy, which induced anisotropy and further 
pressure sensitivity. A continuum damage model was also presented accounting for frictional sliding 
over internal crack surfaces to capture salient features of progressive anisotropic degradation of 
rock-like materials in literature [3]. Mosler (2004) built a 3D anisotropic elastoplastic damage model 
using discontinuous displacement fields. To develop the constitutive equations for finite element 
formulations, an elastoplastic continuum model as well as an anisotropic damage model was 



 
 

 

projected onto a surface leading to traction separation laws. The coupling of both continuum models 
and the derivation of the corresponding constitutive interface law was also described [4].  

In this paper, a 3D anisotropic elastoplastic-damage model is presented to describe the inelastic 
anisotropic behavior of rock materials, within which the tensor decomposition technique is employed. 
The stress-strain curves for different directions, which can be obtained from the experiment, are 
assumed to be different in the normal eigenmodes. Hence, these damage variables in six eigenmodes 
can form a symmetric damage tensor which stipulates the evaluation of effective elastic modulus of 
the rock material and an adequate description of the evoluation of damage. The implementation of the 
proposed model is integrated into the well-known computational environment ABAQUS using the 
ABAQUS/Explicit Solver. The applicability and the implementation of the model is investigated by 
means of simulating the failure process of a standard uniaxial compressive test of a rock sample. The 
result of the numerical simulation shows that it is possible to reproduce most of the observable 
characteristics of anisotropic behavior and damaged zone in rock materials.  

2. Constitution of 3D Orthotropic Elastoplastic-damage Model  

2.1 Definition of Damage Tensor 
The hypothesis of strain equivalence indicates that a damaged volume of material under the applied 
stress σ  shows the same strain response as the undamaged one submitted to the effective stress [5]. 
For 3D anisotropic materials, this statement can be expressed as 

σ~

σCσCε ~~~ 11 −− ==                                                                                                                           (1) 

in which C  and C are undamaged and damaged stiffness tensors respectively. Hence, the damage 
tensor can be written by the damaged and undamaged stiffness tensors as the following form 

~

CCD ~ 11 −−−= I                                                                                                                                (2) 

where, denotes 4I th rank unit tensor. The damage tensor is described by the damage variables in the 
main directions, and it is assumed that, for orthotropic materials, the three damage variables in the 
main directions are mutually independent. The shear damage variables are determined by the damage 
variables in the main directions, and the three  shear damage variables are independent mutually yet. 
Thus, just like in literature [6], the damage tensor D  is denoted as   
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2.2 Constitutive Equation and Decomposition of the Stiffness Tensor  
The generalized Hooke’s law for orthotropic materials is expressed as 

)( pεεCσ −=                                                                                                                                  (4) 

where ε p is plastic strain tensor. if λ  andε are an eigenvalue and the corresponding eigenvector of 
the stiffness tensor C , respectively, then they satisfy the following equation 

εεC λ=                                                                                                                                          (5) 

The stiffness tensor C can be rewritten as  
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where is the Ath eigenvalue and λA ε A is the corresponding eigenvector, εεE T
BAA ⋅= and 

0T
BA =⋅ εε (if ), then the stress tensor of an orthotropic material  can be obtained BA ≠

)( εεEσ p
6
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                                                                                                                      (7)  

An assumption is made here that this property is unchanged during the damaging process. That is, 
the orientations of the eigenvectors do not change during loading. Then, the damaged stiffness tensor 
and the elastoplastic stress-strain relationship in damage state can be defined as 
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2.3 Damage Evolution Coupling Plasticity and Stress Increment 
In literature [7], the plastic and damage potential functions were assumed being functions of the 
thermodynamic forces and the scalar damage variable, namely  

0DΦΦ ≤= );,( Kσ                                                                                                                    (10-a) 

0DΨΨ ≤= );(Y                                                                                                                        (10-b) 

in which is the isotropic damage variable, and Y are the thermodynamic conjugate forces for 
plasticity and damage respectively. The evolution laws characterized the rate of change of the internal 
variables are also given as 

D K

σε
∂
∂Φγpp ⋅= &&                                                                                                                                 (11-a) 

Y∂
∂ΨγD

dp ⋅= &&                                                                                                                                (11-b) 

where  and  denote the plastic and damage multipliers, respectively. The explicit form 
of plastic multiplier  in terms of the prescribed strain rate was also given in literature [7].  

0γp ≥& 0γd ≥&

γp&

Combining Eq.9 and Eq.11, we can obtain the stress tensor in incremental format in order to be 
convenient for numerical simulation  
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where εe  is the elastic strain tensor. 

3. A Numerical Example  

Based on the proposed model, a finite element code was developed as a user subroutine of the 
ABAQUS/Explicit Solver. Drucker-Prager yield rule is adopted for the plastic behaviour. The 
performance of the constitutive model was evaluated by a standard uniaxial compressive test. The 
parameters of rock sample are summarized in Table 1. 
Table 1  Rock Sample Parameters 



 
 

 

Diameter 
[mm] 

Length 
[mm] 

Density 
[Kg/m3] 

Young's 
module 
[MPa] 

Poisson's
ratio 

Tensile
strengt

h 
[MPa] 

Compressive 
strength 
[MPa] 

Frictiona
l 

angle 
[degree] 

Cohesive
parameter

[Pa] 

50 100 2500 26500 0.23 28 280 40 50000 

The axial loading on the numerical sample in the simulation is controlled in terms of uniform 
strain rate. The simulating progressive failure process is shown in Fig.1 (form left to right in order).  
The result of the numerical simulation shows that it is possible to reproduce most of the observable 
characteristics of failure behavior and damaged zone in rock materials.  
 

             
 

Fig.1 Simulating failure process of a rock sample under uniaxial compression 

Summary 

A 3D anisotropic elastoplastic-damage model was presented based on continuum damage mechanics 
theory. The stress tensor are given in incremental format by using tensor decomposition method. The 
proposed model is implemented into a finite element computational program ABAQUS/Explicit 
Solver as its user subroutine. The stress-strain curves for different directions may be different, which 
can be obtained from the experiment, because of the effect of anisotropy. Different evolution of the 
damage variables can also be used for tensile and compressive loadings.  
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