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Abstract

A mechanical model of a laser transformation hardening specimen with a crack in the middle of the hardened layer is developed to quantify the
effects of the residual stress and hardness gradient on crack driving force in terms of J-integral. It is assumed that the crack in the middle of the
hardened layer is created after laser transformation hardening. Using a Double Cantilever Beam model, the analytic solutions, which can be used
to quantify the effects of the residual stress and the hardness gradient resulting from laser transformation hardening on crack driving force, are
obtained. A numerical example shows the crack driving force decrease is very sensitive to the residual compressive stress increase.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The technology of laser transformation hardening (LTH) is a
suitable technique for improving properties of steel surface.
Authors' report [1–7] stated it could improve the fatigue
properties of steels, such as the increase of the fatigue limit,
fatigue strength, or the decrease of the fatigue crack growth rate.
Authors' report [8] stated the laser-processed specimens could
exhibit a higher resistance to crack growth in the low stress
intensity factor range. It was also reported that the laser heat
treatment could improve the wear properties [9–12] and the
erosion properties [13,14].

From the studies mentioned above, the mechanisms
responsible for the prolonged lives of workpieces or specimens
by LTH can be attributed to two important factors. One is the
change of the mechanical property due to the changes of
microstructure. Authors [15] stated that the grain size of laser-
hardened zone is much smaller than that of the traditional
quenched high-speed steels at different quenching tempera-
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tures, and authors [16] stated a finer microstructure could be
obtained by using optimum processing parameters. The other
is the generation of residual compressive stress, which depends
on the heating conditions and overlapping degree of the laser
trace. The desirable microstructure containing fewer weak sites
can exhibit a favorable combination of hardness and
toughness, as stated in [14]. Hardness, the important property,
can be increased greatly, and it can be measured directly or
predicted by a mathematical model [17]. In general, it varies
from the surface to the interior along the heat-treated track
depth direction, which is termed as hardness gradient effect in
this work. The results of microstructure changes, high
hardness distribution and generation of high residual com-
pressive stress by LTH can be used to interpret the fact that the
technology has significantly prolonged the lives of workpieces
in surface engineering. Apart from the wear and erosion
experiments, it should be emphasized that most of the
experiments in studies mentioned above were restricted to
the fatigue property research under dynamic loads, and a
rigorous and quantitative theoretical analysis of the effect after
LTH treatment on crack driving force under non-dynamic
loads is still lacking. The theoretical analysis is essential to
predict the crack driving force of a specimen after LTH
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Fig. 1. A schematic illustration of the treatment way of LTH (in the form of laser
scanning).

Fig. 3. The curve of the stress vs. strain of the untreated layer.
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treatment, and it is also essential to the investigation of the
effect after LTH treatment on the fracture toughness of a
specimen. In this work, a mechanical model, based on small-
scale-yielding linear elastic fracture mechanics theory, is
developed that allows us to derive analytical solutions to
quantify the influences of the residual stress and the hardness
gradient resulting from LTH on crack driving force in terms of
J-integral.

2. The mechanical model

The schematic illustration of the treatment way of LTH (in
the form of laser scanning) of the steels is shown in Fig. 1.
The zones between tracks are assumed to be overlapping
zones. Here, the laser-scanning track is assumed to be
periodic for relatively large size flat workpieces, and the
interaction between the tracks is ignored for simplicity. So we
can choose a representative track as our study objective of
interest. In fact, a representative track is also suitable for the
flat workpieces, whose surface dimension in any direction is
smaller than or equal to that of the laser track. The cross-
section shape of the heat treatment zone is also simplified,
and a representative track is illustrated in Fig. 2, in which
h denotes the total depth of the heat-treated layer. As a matter
of fact, laser transformation hardening of steels makes the
steels change into a functional material, since the laser heat-
treated layer is considered to be composed of hardened zone,
transition zone, heat-affected zone and base material, and
each zone has different properties [18]. The transition zone
consisted of a partly austenitised and eventually hardened
structure and material fractions that did not transform to
Fig. 2. A schematic illustration of the cross-section of a representative track.
austenite during the laser irradiation, and the heat-affected
zone depended on the state of the base material [18]. But in
this work, the mechanical property, Young's modulus, is
assumed to be invariable in the four zones since the general
heat treatments have little influence on Young's modulus of
metals besides LTH [19]. The stress σ vs. strain ε curve of
the untreated layer and treated layer is shown in Figs. 3 and
4, respectively. Where σs1 and σs2 are the yield strength of
the untreated layer and treated layer, respectively, and
σs2>σs1.

It should be emphasized that, for materials treated by LTH,
the direct measurement of the yield strength for a particular
point along the heat-treated track depth direction is very
difficult to be carried out. So the law of the variable yield
strength in a microzone may be hard to be obtained from a
practical viewpoint. However, the measurement of the hardness
is easy and quick to be performed. In addition, the microhard-
ness could be approximated as three times of the yield strength
for metal materials under the condition that the working
hardening could be neglected, as stated in [20,21]. Recently,
using dimensional analysis and finite element calculations,
Fig. 4. The curve of the stress vs. strain of the treated layer.



Fig. 6. A schematic illustration of a crack in the middle of the hardened layer.
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authors [22] stated the yield strength could be estimated directly
from the hardness measurement in practice, and the relationship
between the hardness and yield strength has been discussed in
detail in [22,23].

In this study, let x be the abscissa denoting the heat-treated
track depth direction, and the hardness in the middle of the heat-
treated track as a function of heat-treated track depth is assumed
to obey the following law

H ¼ HðxÞ ð1Þ
Hardness in the middle of the heat-treated track as a

function of heat-treated track depth is illustrated in Fig. 5, in
which Hm and H0 denote the surface hardness and the
hardness of the base material, respectively. One specific law
of a hardness variation by hypothesis is given in Section 4 of
the paper.

As shown in Fig. 6, it is assumed that there exists a crack
in the middle of the hardened layer, which will propagate
along the hardened track depth direction. This is a reasonable
assumption since the surface and subsurface crack initiations
occur independently of the applied load level, as stated in [2].
In this work, it should be emphasized the crack length, a, is
assumed to be shorter than the hardened layer depth and
much shorter than the total heat-treated layer depth (the total
heat-treated layer depth is larger than four times of the crack
length). Crack propagation along the hardened track depth
direction in combination with the hardness variation is
depicted in Fig. 7.

In this work, it should be emphasized that a pre-cracked
body with a constant thickness, B, consisting of non-linear
elastic material is assumed to have (during the loading) the
same stress–strain response as an elastic-perfectly plastic
material with a yield strength, as shown in Fig. 4. According
to the theory of elasticity and dimension analysis, if the body
with a crack were linear elastic, the potential energy, ∏, would
depend on the load, Fp, the crack length, a, the Young's
modulus, E, and the geometry of the body, g. For our non-
linear elastic body with yield strength, σs, and residual stress,
Fig. 5. Hardness as a function of the heat-treated track depth.
σR, the potential energy ∏ depends additionally on σs and σR,
i.e.

j ¼ jðFp; a;E; g; rs; rRÞ ð2Þ

Since the microhardness and yield strength share a same
dimension and a certain relationship between them exists for a
given material, we assume that the yield strength is a function of
the hardness, i.e.

rs ¼ rsðHÞ ð3Þ

Thus Eq. (2) can be written as

j ¼ jðFp; a;E; g; rsðHÞ; rRÞ ð4Þ
Now a thought experiment is performed:
First let the crack in the body advance by an increment, Δa,

while the other parameters in Eq. (4) remain constant during the
crack extension, it will deduce the well-known J-integral [24]

J ¼ −
1
B
Bj
Ba

���
ðFp;E;g;rs;rRÞ

ð5Þ

And that J is a measure of the crack driving force. Then let
the hardness increase by an increment, ΔH, while the other
parameters in Eq. (4) remain constant. Hence, if the hardness of
Fig. 7. A description of crack propagation in combination with hardness
variation.
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the body changes as the crack propagates, an additional term of
the crack driving force will appear, given by

JH ¼ −
1
B
Bj
Brs

���
ðFp;a;E;g;rRÞ

drs
dH

d
dH
da

ð6Þ

JH is hereafter referred to as the hardness gradient term.
Thus, the total crack driving force, Jtot, is the sum of the terms in
Eqs. (5) and (6)

Jtot ¼ J þ JH ð7Þ

Eq. (7) can be reduced to the case without LTH treatment. In
the case of no LTH treatment on the specimen, the hardness
gradient term JH and the residual stress σR vanish, i.e. dH/
da=0, JH=0, and σR=0. The case of the specimen without LTH
treatment can be dealt with by using traditional fracture
mechanics method.

3. Application of the Double Cantilever Beam model

In order to get the specific expression of the total crack
driving force, Jtot, a Double Cantilever Beam (DCB) specimen,
i.e. a specimen composed of two cantilever beams, is adopted.
The Double Cantilever Beam model has proved to be successful
in obtaining analytical solutions for the modulus or yield
strength gradient problems in inhomogeneous materials
[25,26]. In this paper, it is extended to study the hardness
gradient effect in combination with residual stress analysis, as
shown in Fig. 8.

Here, the Double Cantilever Beam specimen is subjected to a
pair of external loads Fp, applying at the left end points. The
residual stress, σR, is assumed to be a pair of external loads
applied to the upper and bottom boundaries of the DCB
specimen, and it is compressive. Since the crack length in this
paper is assumed to be shorter than the hardened layer depth and
much shorter than the total heat-treated layer depth, the residual
stress can be approximated as a mean value over the crack
length.
Fig. 8. A Double Cantilever Beam model.
When the crack length is equal to a, based on the cantilever
beam theory, the vertical elastic displacement at the left end
produced by a given load, Fp, is

wFp ¼
2Fpa3

3EI
ð8Þ

The vertical elastic displacement at the left end produced by
the residual stress σR is

wrR ¼ −
rRBa4

4EI
ð9Þ

where I is the moment of inertia of the cross-section of one
beam and B is the constant thickness of the body. Then the total
vertical elastic displacement at the left end in the direction of the
load Fp is the sum of the terms in Eqs. (8) and (9)

we ¼ 2Fpa3

3EI
−
rRBa4

4EI
ð10Þ

For the small-scale yielding conditions, Irwin's model of a
circular plastic zone at the crack tip is adopted, and the radius is
given by [27]

ry ¼ b
GE

r2s
ð11Þ

where σs is the yield strength at the center of the plastic zone.
Note that at a given load, σs determines the radius ry of the
plastic zone, and from Eq. (11), we can see the radius of the
circular plastic zone is inversely proportional to squared yield
strength. Throughout this paper, ry is assumed to be small
against the crack length a. For plane strain problems, β is a
constant and equals to 1/(6π) [27]. G is the strain energy release
rate, which is defined as the strain energy release per unit crack
area. For the DCB specimen, G can be calculated and the result
is

G ¼ F2
pa

2

BEI
−
FprRa3

2EI
ð12Þ

The specific relationship between microhardness and yield
strength can be written as [20–23]

rs ¼ kH ð13Þ
where k is a dimensionless coefficient. For a given material, the
coefficient k depends on the properties of the material and can
be determined by experiment [20] or finite element calculations
[22,23]. In the case of the elastic-perfectly plastic metals, for
most metals for which 0<σs /E<0.01, k is between 1/2.6 and 1/
2.5, as stated in [23]. For a variety of materials, k can range from
1/2.8 to 1/2.7, but for most metals for which 0<σs /E<0.01, k
approximates 1/2.8, as stated in [22]. But authors [20,21] stated
that the coefficient k could be approximated as 1/3 under the
condition that the working hardening could be neglected. After
using dimensional analysis and the results presented in [22,23],
the hardness variation rate can represent the variation rate of the



Table 2
The crack driving force Jtot

R (J/m2) vs. the residual compressive stress σR (MPa)

Jtot
R 19523 16149 13011 10096 7394.2 4894.6 2587.2 462.18
σR 200 210 220 230 240 250 260 270
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yield strength because the laser heat-treated layer and the base
material share a same Young's modulus and the non-linear
elastic material is assumed to be elastic-perfectly plastic in this
work.

Substituting Eq. (13) into Eq. (11) yields

ry ¼ b
GE
k2H2

ð14Þ

Including the displacement contributed by perfect plastic-
ity, a good estimate of the total displacement at the left end
in the direction of the load Fp can be obtained by replacing
in Eq. (10) the crack length by the effective crack length,
aeff=a+ ry, i.e.

w ¼ 2Fpa3

3EI
1þ ry

a

� �3
−
rRBa4

4EI
1þ ry

a

� �4
ð15Þ

Thus, the total displacement w at the left end in the direction
of the load Fp, which is composed of the displacements
contributed by the load Fp, the residual stress σR and the perfect
plasticity, is obtained. As was pointed out by Rice [28], the
potential energy for a load-controlled test,∏|Fp

can be calculated
from

jjFp
¼ −

Z Fp

0
wdFp ð16Þ

Using Eqs. (12) and (14), the specific potential energy can be
calculated by substituting Eq. (15) into Eq. (16), and the result is

jjFp
¼
X9
i¼1

CiF
i
p ð17Þ

where Ci(i=1,2,3, …, 9) are given in Appendix A.
Eq. (17), together with Eqs. (5), (6) and (7), leads to the

desired analytical solutions

J ¼
X11
i¼2

Aia
i ð18Þ

JH ¼
X4
i¼1

k−ð2iþ1ÞH−ð2iþ1Þ dH
dx

ð19Þ

Jtot ¼ J þ JH ¼
X11
i¼2

Aia
i þ
X4
i¼1

k−ð2iþ1ÞH−ð2iþ1Þ dH
dx

ð20Þ

where Ai(i=2,3,4, …, 11) are given in Appendix B, and λ−(2i+1)
(i=1,2,3,4) are given in Appendix C.

Eq. (18) is the term of the crack driving force that includes
the residual stress, and Eq. (19) is the other term of the crack
driving force that includes the hardness gradient. Thus, the total
Table 1
Some parameters used for the calculations

E (GPa) h (mm) a (mm) B (mm) I (mm4) β

210 0.6 0.1 0.02 1.33×10−8 1/(6π)
crack driving force expressed in Eq. (20), which is the sum of
the two terms, is obtained.

4. A numerical example

A numerical example shall assess the influences of the
residual compressive stress and the hardness gradient on crack
driving force. The hardness gradient in the middle of the heat-
treated track depth direction x is assumed to follow an
exponential function

HðxÞ ¼ D0expðdxÞ ð21Þ

where D0 and δ are the constants to be determined. From Fig. 5,
it can be seen when x=0, H=Hm=D0, and when x=h,
H=H0=D0 exp(δh). Once the hardness values at the two points
are known, the constants D0 and δ can be determined.

For a particular case, one of the hardness distribution
characteristics in the middle of the heat-treated track along the
heat-treated track depth direction is taken from [14], in which
when x=0, H approximately equals to 8×109 Pa, and when
x=h=6×10−4 m, H approximately equals to 3×109 Pa. Using
Eq. (21), the constants D0 and δ can be determined and the
corresponding hardness variation law is given as

HðxÞ ¼ 8:0� 109expð−1634:7xÞ ð22Þ

Some parameters used for the calculations of J, JH and Jtot
are given in Table 1. All the parameters in Table 1 are
invariant throughout this calculation. The external load Fp is
also assumed to remain constant and equal to 0.5 N
throughout this calculation. The residual compressive stress
Fig. 9. Plot of the ratio Jtot
R /Jtot vs. the residual compressive stress σR.



Table 3
The crack driving force Jtot

k′ (J/m2) vs. the coefficient k′(k′=1/k)

Jtot
k′ 13,806 15,047 16,423 17,922 19,523 21,192 23,714

k′ 1.7 1.9 2.1 2.3 2.5 2.7 3

Fig. 10. Plot of the ratio Jtot
k′ /Jtot vs. the coefficient k′(k′=1/k).
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on the surface and in the surface layer down to a certain
depth can range between 200 and 500 MPa, as stated in [29].
For the first calculation, the value of the residual compressive
stress is assumed to equal to 200 MPa, and k is assumed to
equal to 1/2.5 [23]. Given these conditions, Jtot can be
calculated and it equals to 1.9523×104 (J/m2). It should be
emphasized this value is also a normalized factor for the
following analysis.

In this work, we investigate the influence of the variation of
the residual compressive stress on the crack driving force. Let
Jtot
R denote the crack driving force of different residual
compressive stresses, and the crack driving force Jtot

R vs. the
residual compressive stress σR is shown in Table 2. Jtot

R is
normalized with respect to Jtot mentioned above, and the plot of
the ratio Jtot

R /Jtot vs. the residual compressive stress σR is shown
in Fig. 9.

For convenience, we define another dimensionless coeffi-
cient k′, which is equal to 1/k. In this work, based on the results
[20–23], the coefficient k′ linking the hardness and yield
strength is assumed to range from 1.7 to 3.0. Let Jtot

k′ denote the
crack driving force of different coefficients, and the crack
driving force Jtot

k′ vs. the coefficient k′ is show in Table 3. Jtot
k′ is

also normalized with respect to Jtot, and the plot of the variation
of k′ on the ratio Jtot

k′ /Jtot is shown in Fig. 10.

5. Results and discussions

From Table 2 and Fig. 9, it can be seen that the crack driving
force decreases with the increase of the residual compressive
stress. From Table 2, it can also be calculated easily as the
residual compressive stress increases per 10 MPa, the least
decrease rate of the crack driving force lies between 200 and
210 MPa and the decrease rate is 17.28%, while the largest
decrease rate lies between 260 and 270 MPa and it can reach
82.14%. So we can draw a conclusion that the crack driving
force is very sensitive to the residual compressive stress, and the
crack driving force decreases significantly with the increase of
residual compressive stress. On the contrary, if the residual
stress is tensile, the crack driving force will increase
significantly with the increase of residual tensile stress, and it
will adversely facilitate the crack propagation. This case can be
detrimental to the workpieces.

From Table 3 and Fig. 10, we can see that the crack
driving force increases as k′ increases. This case can be
explained in the following way. Apart from the case that the
variation of k′ can represent a variety of materials, on the
other hand, the increase of k′ from 1.7 to 3 also implies the
decrease of the yield strength from another standpoint,
because the hardness is invariant for a given crack length
during this calculation. So, it is reasonable that the increase of
k′ (or the decrease of the yield strength) leads to the increase
of the crack driving force.
From the numerical results, the higher residual compressive
stress and higher strength can decrease much more crack driving
force, and the crack driving force tends to be much more
sensitive to the residual compressive stress. On the other hand,
the decrease of the crack driving force means the increase of
resistance to crack growth, and this situation can improve the
fracture behavior. Besides the results presented in this work, the
high residual compressive stress and high strength resulting
from LTH treatment also play an important role in improving
fatigue behavior [1–8], such as the decrease of the fatigue crack
growth rate or the increase of resistance to crack growth [2,5,8].
Thus, the residual compressive stress and high strength from
LTH treatment have a significant effect on fracture behavior in
fatigue or non-fatigue cases. So from the numerical results
mentioned above, we can conclude that the mechanical model
presented in this paper is reasonable, and that the results can be
used to quantify the LTH treatment effect on crack driving
force. In addition, if the variation law and magnitude of the
residual stress can be determined, the procedure presented in
this paper can be used to study the LTH treatment effect on
fracture toughness.

In order to obtain accurate results throughout the calculation,
it should be noticed that the geometric parameters of the
specimen must satisfy the beam model, and the radius ry of
circular plastic zone at the crack tip must satisfy the condition
that they are much smaller than the crack length a and specimen
dimensions. At the same time, the magnitude of the external
load Fp, which is a constant for this calculation, must also be
properly taken in that the total displacement w and the elastic
strain energy release rate Gmust be positive, otherwise it would
be the crack closure/contact problem.

The results obtained from the mechanical model are based
on some assumptions. The crack is assumed to be in the
middle of the hardened layer, and its length is assumed to be
shorter than the hardened layer depth and much shorter than
the total heat-treated layer depth. So the residual compressive
stress can be approximated as a mean value over the crack
length. The cases that the crack tip is in the hardened layer,
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transitional layer, heat-affected layer or base material are
different, and they must be dealt with separately. For
example, if the crack tip is in transitional layer or heat-
affected layer, we must consider the residual stress gradient
effect, i.e. the residual stress as a function of the depth below
surface, or the variation of the residual stress from
compressive to tensile [29–31]. The hardness in the middle
of the heat-treated track as a function of heat-treated track
depth is assumed to satisfy an exponentially decaying law.
One can also take other formulas to approximately express
the law of the hardness variation along the heat-treated track
depth direction for a specific or practical case.

The results presented in this work are not only limited to
the case of LTH treatment, they can also be extended to other
forms of high-energy surface treatments, such as electron
surface treatment, ion surface treatment, and so on. The
differences are that the magnitude and the distribution laws
of the hardness and residual stress may be different for
corresponding specific cases. Once the specific laws and
magnitude of the residual stress and hardness are given, the
procedure presented in this paper can also be adopted
without any difficulty.

6. Conclusions

The analytical solutions presented in this paper can quantify
the effects of the residual stress and hardness gradient after
LTH treatment on crack driving force in terms of J-integral. A
numerical example shows the crack driving force is very
sensitive to the residual stress.

These analytical solutions in this paper, can not only be
used as a means to predict the crack driving force, but
also serve as a baseline for further experimental measure-
ment of fracture toughness, accounting for the LTH treat-
ment effect.

The results presented in this paper are suitable for the case
that the crack lies in the middle of the hardened layer, and its
length is assumed to be shorter than the hardened layer depth
and much shorter than the total heat-treated layer depth. The
results presented in this paper are not suitable for the cases that
the crack tip is in the transitional layer, heat-affected layer or
base material. These cases are different, and they must be dealt
with separately.

In the end it deserves to point out that, the results presented
in this work can also be applied to other forms of high-energy
surface treatments.
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Appendix A

jjFp
¼
X9
i¼1

CiF
i
p ¼ C1Fp þ C2F

2
p þ C3F

3
p þ C4F

4
p þ C5F

5
p þ C6F

6
p þ C7F

7
p þ C8F

8
p þ C9F

9
p

C1 ¼ rRBa4

4EI
;

C2 ¼ −
a3

3EI
−

bBr2Ra
6

4EI2ðkHÞ2 ;

C3 ¼ brRa5

3EI2ðkHÞ2 þ
rRBa4

12EI
4ba

BIðkHÞ2 þ
3b2r2Ra

4

2I2ðkHÞ4
 !

;

C4 ¼ −
a3

6EI
3ba

BIðkHÞ2 þ
3b2r2Ra

4

4I2ðkHÞ4
 !

−
rRBa4

16EI
2b2rRa3

BI2ðkHÞ4 þ
2brRa2

IðkHÞ2
2ba

BIðkHÞ2 þ
b2r2Ra

4

4I2ðkHÞ4
 !" #

;

C5 ¼ 2a3

15EI
2b2rRa3

BI2ðkHÞ4 þ
brRa2

2IðkHÞ2
2ba

BIðkHÞ2 þ
b2r2Ra

4

4I2ðkHÞ4
 !" #

þ rRBa4

20EI
2b2a2

B2I2ðkHÞ4 þ
2b3r2Ra

5

BI3ðkHÞ6 þ
2ba

BIðkHÞ2 þ
b2r2Ra

4

4I2ðkHÞ4
 !2

2
4

3
5;

C6 ¼ a3

9EI
−

b2a2

B2I2ðkHÞ4 −
b3r2Ra

5

2BI3ðkHÞ6 −
ba

BIðkHÞ2
2ba

BIðkHÞ2 þ
b2r2Ra

4

4I2ðkHÞ4
 !" #

−
rRBa4

24EI
2b3rRa4

B2I3ðkHÞ6 þ
b2rRa3

BI2ðkHÞ4
4ba

BIðkHÞ2 þ
b2r2Ra

4

2I2ðkHÞ4
 !" #

;

C7 ¼ b3rRa7

7EB2I4ðkHÞ6 þ
rRBa4

28EI
4ba

BIðkHÞ2 þ
b2r2Ra

4

2I2ðkHÞ4
 !

b2a2

B2I2ðkHÞ4 þ
b4r2Ra

6

B2I4ðkHÞ8
" #

;

C8 ¼ −
b3a6

12EB3I4ðkHÞ6 −
r2Rb

4a9

16EB2I5ðkHÞ8 ;

C9 ¼ rRb
4a8

36EB3I5ðkHÞ8:
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Appendix B

J ¼
X11
i¼2

Aia
i ¼ A2a

2 þ A3a
3 þ A4a

4 þ A5a
5 þ A6a

6 þ A7a
7 þ A8a

8 þ A9a
9 þ A10a

10 þ A11a
11:

A2 ¼
F2
p

EBI
;

A3 ¼ −
rRFp

EI
þ 2bF4

p

EB2I2ðkHÞ2 ;

A4 ¼
5b2F6

p

3EB3I3ðkHÞ4 −
10rRbF3

p

3EBI2ðkHÞ2 ;

A5 ¼
3r2RbF

2
p

2EI2ðkHÞ2 −
21rRb

2F5
p

5EB2I3ðkHÞ4 þ
b3F8

p

2EB4I4ðkHÞ6 ;

A6 ¼
7r2Rb

2F4
p

2EBI3ðkHÞ4 −
2rRb

3F7
p

EB3I4ðkHÞ6 ;

A7 ¼ −
r3Rb

2F3
p

EI3ðkHÞ4 þ
8r2Rb

3F6
p

3EB2I4ðkHÞ6 −
2rRb

4F9
p

9EB4I5ðkHÞ8 ;

A8 ¼ −
3r3Rb

3F5
p

2EBI4ðkHÞ6 þ
9r2Rb

4F8
p

16EB3I5ðkHÞ8 ;

A9 ¼
5r4Rb

3F4
p

16EI4ðkHÞ6 −
15r3Rb

4F7
p

28EB2I5ðkHÞ8 ;

A10 ¼
11r4Rb

4F6
p

48BEI5ðkHÞ8 ;

A11 ¼ −
3r5Rb

4F5
p

80EI5ðkHÞ8 :

Appendix C

JH ¼
X4
i¼1

k−ð2iþ1ÞH−ð2iþ1Þ dH
dx

¼ ðk−3H−3 þ k−5H
−5 þ k−7H

−7 þ k−9H
−9Þ dH

dx
:

k−3 ¼ −
ba4F4

p

EB2I2k2
þ 4rRba5F3

p

3EBI2k2
−
r2Ra

6bF2
p

2EI2k2
;

k−5 ¼
14rRb

2a6F5
p

5EB2I3k4
−
4b2a5F6

p

3EB3I3k4
−
2r2Ra

7b2F4
p

EBI3k4
þ r3Ra

8b2F3
p

2EI3k4
;

k−7 ¼ −
b3a6F8

p

2EB4I4k6
−
2r2Rb

3a8F6
p

EB2I4k6
−
3r4Ra

10b3F4
p

16EI4k6
þ 12rRa7b

3F7
p

7EB3I4k6
þ r3Ra

9b3F5
p

EBI4k6
;

k−9 ¼
2rRb

4a8F9
p

9EB4I5k8
−
r2Rb

4a9F8
p

2EB3I5k8
þ 3r3Ra

10b4F7
p

7EB2I5k8
þ r5Ra

12b4F5
p

40EI5k8
−
r4Ra

11b4F6
p

6EBI5k8
:
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