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Abstract: Modelling free-surface flow has very important applications in many engineering
areas such as oil transportation and offshore structures. Current research focuses on the mod-
elling of free surface flow in a tank by solving the Navier–Stokes equation. An unstructured finite
volume method is used to discretize the governing equations. The free surface is tracked by
dynamically adapting the mesh and making it always surface conforming. A mesh-smoothing
scheme based on the spring analogy is also implemented to ensure mesh quality throughout
the computaiton. Studies are performed on the sloshing response of a liquid in an elastic con-
tainer subjected to various excitation frequencies. Further investigations are also carried out on
the critical frequency that leads to large deformation of the tank walls. Another numerical simu-
lation involves the free-surface flow past as submerged obstacle placed in the tank to show the
flow separation and vortices. All these cases demonstrate the capability of this numerical
method in modelling complicated practical problems.

Keywords: finite volume, finite element, free surface, fluid–structure interaction

1 INTRODUCTION

The modelling of incompressible free-surface flow
has large-scale commercial applications such as the
design of tanks for oil transportation and offshore
structures. The difficulty of this type of problems
lies in the boundary condition. Not only does the
free surface form a part of the boundary for the com-
putation domain but also its shape and position are
coupled with the solution to the fluid system. Further
complexity may also be added if structural inter-
action is also considered. The structural response
alters the fluid boundary, which in turn causes a
change in the flow field and force exerted on the
structure. This strongly coupled nature makes the
problem very challenging. Solution to such a pro-
blem with the ideal fluid assumption (potential

flow) can be achieved with less computational
effort. However in some applications, viscous effect
needs to be accounted for, e.g. the drag force exerted
on a ship, boundary layer separation, and recirculat-
ing flows. Thus the solution of a full Navier–Stokes
equation with a free surface is sometimes necessary
although it is computationally very expensive. In
this paper, the Navier–Stokes equation is solved
using the unstructured finite volume method (FVM)
with an arbitrary Lagrangian–Eulerian formulation.
The mesh adapts dynamically to the moving bound-
ary and forces the cell faces always to coincide with
the free surface. The elastic walls of the tank are sim-
plified as one-dimensional beam elements and their
responses are computed using a finite element (FE)
formulation.

In the design of an engineering system, it is necess-
ary tomodel the system as close to reality as possible,
enforcing the correct input parameters and bound-
ary conditions. This would ensure a safe and econ-
omical design. For example, in the design of a tank
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carrying liquid, it is necessary to compute the
dynamic forces exerted by the liquid on the tank.
The non-linear free surfacemodelling has to be accu-
rate as this alters the pressure head, which in turn
affects the structural response. The solution becomes
more involved in a viscous fluid when the assump-
tion of an ideal fluid with irrotational flow is no
longer valid. This requires the solution of a full
Navier–Stokes equation. As a first step, the full
Navier–stokes equation is solved with ‘zero viscosity’
to represent an ideal fluid and results are compared
with potential flow solutions. Then viscosity is
brought in to simulate a ‘real’ fluid. In this work,
three numerical studies involving free surface are
performed: (a) the dynamic response of a liquid in
a container subjected to agitation; (b) the behaviour
of the container side walls, modelled as elastic
beams; (c) the simulation of free-surface flow past
a rectangular obstacle in a tank.

In all the aforementioned simulations, the velocity
and pressure fields are obtained by solving the
Navier–Stokes equation. For the fluid–structure
interaction (FSI) problem, this pressure is integrated
over the structural area and the resulting force is
applied to calculate the structural response. The
Navier–Stokes equation is solved using a discretiza-
tion based on finite volume (FV) linear elastic
behaviour. In the case of a tank the structure is
modelled as a beam element assuming it to be a
plate extending in the z-direction. For the wave–
structure interaction the structure is modelled as a
plane strain element. The structural response is
obtained by discretizing the structural domain into
PEs and solving using the standard Galerkin FE
formulation. As the response is dynamic in nature,
the Newmark method is used for time integration.
The time steps for the fluid and structural solvers
are different, but the transfer of boundary conditions
occurs at exactly the same time instant to ensure
that the solutions progress by the same time
interval.

A brief review of the literature in this research area
will be given in section 2. Section 3 focuses on the
numerical model and solutions including the
Navier–Stokes equation, the static equilibrium
equation of an elastic beam, and the spring analogy
smoothing algorithm. Numerical results are pre-
sented in section 4. Finally, conclusions appear in
section 5.

2 LITERATURE REVIEW

The literature regarding the representation of the
free-surface profile is summarized first. There are
two main methods of capturing the free-surface pro-
file, namely interface capturing [1, 2] and interface

tracking [3, 4]. In the interface capturing method,
the solution domain includes the region occupied
by both fluids (in this case, air and liquid). The
free-surface position at various time intervals is
obtained by solving the volume fraction of one
fluid. Some other passive scalars with similar phys-
ical meaning are also used in some approaches, e.g.
the level set function in the level set method by
Osher and Sethian [5]. In the interface tracking
method, only one fluid is solved and the mesh
moves and adapts itself to the free-surface profile.
However, this method is not effective when the top-
ology change is abrupt with even breaking waves or
overturning waves. In this work the interface tracking
methodology is followed. The method explained by
Muzaferija and Peric [6] is adopted with a slight
variation.

FSI problems are, in general, solved using two
types of formulation. They are the monolithic formu-
lation and the sequential formulation. In a mono-
lithic formulation, the fluid and the structural
equations are combined and the resulting equation
is solved by an iterative method. For complex pro-
blems, themonolithic coupled approach is computa-
tionally involved and expensive both mathematically
and economically. Hence, an alternative approach
called the sequential coupled field formulation is
used. In this method, the interaction between the
fluid and structural codes is limited to the exchange
of surface loads and surface deformation infor-
mation. The relevant boundary conditions are
updated for subsequent computation. A review of
the various literature on FSI has been presented by
Sudharsan et al. [7].

In the present work the analysis of FSI in a rec-
tangular tank and the structural response due
wave–structure interaction are considered. Although
there is abundant literature involving cylindrical
tanks, there is limited literature involving rectangular
tanks. Housner [8, 9] and Haroun [10] studied the
dynamic response of rectangular fluid container,
which, however, did not fully take into account the
flexibility of the container. Kim et al. [11] performed
a similar analysis by incorporating the modal
response of the structure and found that the pressure
distribution is amplified due to the elastic response
of the structure. However, the effect of sloshing
motion was not completely considered. Koh et al.
[12] performed an FSI analysis, using the boundary
element method (BEM)–finite element method
(FEM), on a rectangular tank subjected to a seismic
response. However, the effect of free-surface sloshing
was taken into account using the linear free-surface
boundary condition only. Ortiz and Barhorst [13]
modelled the FSI of a rigid tank and a rigid tank
coupled to either a flexible or a rigid body. They con-
sidered the fluid to be a viscous incompressible fluid
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and as a potential flow with modified Rayleigh
damping. The flexibility of the container was not
considered. Pal et al. [14] performed an FSI analysis
using a sequential coupled approach, assuming the
structure to be a composite and the sloshing
response to be linear. Very recently, Pal et al. [15]
incorporated non-linear slosh dynamics, but the
interaction results were provided for a cylindrical
container using a two-dimensional FE approach.
Bermudez et al. [16] performed FE computations of
sloshing modes in a container with an elastic baffle
using linear velocity potential formulation in the fre-
quency domain. Thus, based on the above review, to
the present authors’ best knowledge, it was observed
that the transient dynamic response of a rectangular
elastic tank incorporating fully non-linear free sur-
face conditions with a viscous fluid using the full
Navier–Stokes equation has not yet been attempted.
Thus the dynamic response of a rectangular elastic
container with a viscous fluid subjected to external
forces in analysed. The free surface flow of a viscous
fluid past a two-dimensional bluff body is also ana-
lysed and presented.

3 MATHEMATICAL MODEL AND NUMERICAL
SOLUTION

3.1 Navier–Stokes equations

Themotion of an incompressible fluid is governed by
the following conservation laws written in an integral
form. The continuity equation is

ð
@S

(v� vs) � ndS ¼ 0 (1)

The momentum equation is

@

@t

ð
V

rvdV þ
ð
@S

rv(v� vs) � ndS

¼
ð
@S

T � ndS þ
ð
V

f b dV (2)

The space conservation law is

@

@t

ð
V

dV �
ð
@S

vs � ndS ¼ 0 (3)

where V is an arbitrary volume occupied by the
fluid, @S is the boundary which surrounds the fluid
volume, r is the density (which is a constant for an
incompressible fluid); n and ns are the velocities of
the fluid and control surface respectively, T is the
stress tensor fb is the body force, and n is the unit
outward-normal vector on the integral surface dS.

The stress in the fluid is related to the rate of defor-
mation by the Stokes law

T ¼ pI þ m½rvþ (rv)T� (4)

where p is the static pressure and m is the dynamic
viscosity. Substituting equation (4) in equation (2),
the momentum equation can be written as

@

@t

ð
V

rvdV þ
ð
@S

rv(v� vs) � ndS

¼ �
ð
V

rpdV þ
ð
@S

m(rv) � ndS þ
ð
V

f b dV (5)

Note that Gaussian theorem is used to convert the
surface integral into a volume integral.

If gravity is the only body force, this term could be
incorporated into the pressure gradient term by
introducing a potential function H according to

f b ¼ �rH
H ¼ rgy (6)

Here, y is the vertical coordinate and g is the gravita-
tional acceleration. Thus equation (5) can be
rearranged as

@

@t

ð
V

vdV þ
ð
@S

v(v� vs) � ndS

¼ �
ð
V

r p�

r

� �
dV þ

ð
@S

v(rv) � ndS (7)

where p� ¼ pþH which is called the piezometric
pressure in some references.

In free-surface flows, usually the dominating terms
are the pressure gradient term and the gravity term.
It is their difference that drives the flow. This could
lead to large round-off errors if the original formu-
lation of equation (5) is used in the discretization.
This problem could be solved by using the reformu-
lated form [i.e., equation (7)], as proved to be true in
the present numerical experiments. A similar issue
has also been addressed in references [3] and [17].

3.2 Numerical schemes for the fluid

The FVM is used to discretize the governing
equations. First, the solution domain is divided into
small control volumes (CVs) or cells. All unknowns
are stored at the centre of these cells. In this work,
only triangular cells are used in the discretization.
Linear distribution of dependent variables and
midpoint rules are used to calculate the surface
and volume integrals. An algebraic linear system is
obtained as a result of such discretization on all the
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CVs. The pressure is calculated using the SIMPLE
algorithm. Since the collocated storage is adopted
for all dependent variables, a Rhie–Chow interp-
olation is used to avoid the possible wiggles in the
pressure field. All the resulting linear systems are
solved using Krylov-type iterative solvers. The
numerical procedure is only summarized briefly
here; for full details of this numerical scheme, read-
ers should refer to the Ferziger and by Peric [18] or
the paper by Demirdzi and Muzaferija [19]. The dis-
cretization of the momentum equation (7) is
explained in the form of a generic transport equation
of a variable f according to

@

@t

ð
V

rate of change

fdV þ
ð
S

½f(v� vs)

convection

�Gfrf
diffusion

� � ndS

¼
ð
S

Qf

source

dS (8)

where f represents the velocity components vi (i ¼ 1,
2), Gf is the diffusive coefficient (1/Re) and the source
term is Qf ¼ 2(p�/r)ni.

The rate of change is discretized by a backward
Euler (fully implicit) scheme

@

@t

ð
V

fdV � 1

Dt
½(fV )n � (fV )n�1� (9)

where n and n21 denote the time step counter.
The convective term is discretized as

ð
S

f(v� vs) � ndS � _njf
0
j (10)

where ṁj is the volume flux across face j. It is defined
as

_mj ¼
ð
S j

(v� vs) � ndS � Aj(v
0
j � vs) � n j (11)

where Aj is the area of face j, vj
0 is the face velocity.

The mesh velocities vs are chosen in such a way
that they satisfy the space conservation law (SCL);
otherwise a non-physical mass source term will be
introduced into the discretized form of equation
(8). This issue has been discussed in detail by
Demiridzic and Peric [20]. The SCL can be expressed
in the form

Vn
P0
� Vn�1

P0

Dt
¼
X3
j¼1

ð
S j

vs � ndS ¼
X3
j

DVj

Dt

� �
(12)

where DVj is the volume swept by face j in the time
interval Dt. In the code, the mesh velocities are not
computed directly from equation (12); instead they
are determined by the current mesh position and
the mesh position after the time interval Dt (Fig. 1).
Thus the flux correction due to the mesh movement
can be expressed as

Ajvs � n � 1

2
(Ajn)

n þ (Ajn)
n�1

� � � (Xn
j � Xn�1

j )

Dt
(13)

where Xj
n21 and Xj

n are the face-centre position vec-
tors at the time steps n21 and n respectively (see
Fig. 1). A similar formulation has been used by
Perot and Nallapati [21] in simulating free-surface
flow.

fj
0 in equation (10) is the variable value interp-

olated to face j using a blending scheme

f0
j ¼ f(1)

j þ gf(f
(2)
j � f(1)

j ) (14)

where the superscripts (1) and (2) denote first-
order interpolation and second-order interpolation
respectively. The first-order interpolation is just a
simple ‘upwind’ scheme. The second-order scheme
uses the gradient of the variable f and a Taylor
expansion to evaluate the value of f on the face
centres. In this paper, the gradient of f is constructed
using a least-squares approach. gf is a blending
factor which is set to 0.95 in this paper.

The diffusion term is discretized as

ð
S j

�Gf rf � ndS � �Gf j

A j

L j
(fP j

� fP0
)

�

þ½(rf)P j
� t1 � (rf)P0 � t2�

�
(15)

where Lj is the distance from the centre of cell P0 to
that of cell Pj projected on to the normal direction
on face j. t1 and t2 are two vectors in the tangential
direction of face j (Fig. 2). The first term on the
right-hand side of equation (15) is the ‘normal

Fig. 1 SCL and the calculation of mesh velocity
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diffusion’ and the second term is the ‘cross diffusion’
which is a correction on non-orthogonal meshes.

Linear systems are obtained as a result of the dis-
cretization of the two velocity components, e.g.

aC
P0
fP0

¼
X3
j¼1

a
j
P0
f

j
P0
þ bP0

(16)

Here the superscript C denotes the diagonal element
of the coefficient matrix and j denotes the neighbour-
ing cells which share a common face with cell P0. The
contributions to the coefficient matrix are the mass
matrix, the upwind difference of the convective
term, and the ‘normal diffusion’. The source term
bPo

in equation (16) has three contributions: the
pressure gradient, the ‘cross diffusion’, and the
departures of the convective flux from the upwind
differencing (deferred correction).

The SIMPLE algorithm is used to calculate the
pressure. A pressure-correction equation is derived
from the continuity equation (1) and is given by

X3
j¼1

1

aC
P0

 !
j

(rp0) jA jn j ¼
X3
j¼1

_mj (17)

where p0 is the pressure correction and the over bar
indicates arithmetic averaging from cell to face.

The left-hand side of equation (17) is a Laplacian
operator and is treated similarly to the diffusive
term in the momentum equation. Some corrections
for the mesh non-orthogonality are also considered.

After obtaining the pressure correction p0, the press-
ure and velocity are corrected by

pm ¼ pm�1 þ bpP
0m

vm ¼ vm�1 1

aC
P0

X3
j¼1

pm
j A jn j (18)

where bp is a relaxation factor for pressure (Ferziger
and Peric [18] suggested that bp ¼ 0.2 for fluid), m
is the pressure-correction loop counter at time step
n. After these corrections, the coefficient matrix and
source term in equation (16) are computed using
the newly updated p and v. A new velocity is obtained
by solving equation (16) again. This velocity is then
substituted into (17) to compute a new pressure cor-
rection. This pressure-correction procedure is
repeated until the convergence criterion is met. The
convergence criterion used in this paper is that sol-
ution to the subsequent time steps are obtained fol-
lowing the same procedure.

Attention is tobepaid to the face velocityvj
0which is

max
cellnumber

k¼1

X3
j¼1

_mj

������
������

0
@

1
A4 10�5

used to calculate the volumeflux. This velocity cannot
be obtained by a simple average of the values in the
neighbouring cells. Instead, a Rhie–Chow interp-
olation that introduces some dependence on the
pressure is used.

3.3 Boundary conditions for the fluid

In order to solve the momentum and continuity
equations, boundary conditions must be provided.
For the partial differential equations that govern
the fluid motion, usually two types of boundary con-
dition are specified at the boundaries. The first type
is a Dirichlet boundary condition, where the value
of the variable is prescribed. The second type is a
Neumann boundary condition where the gradient
of the variable is prescribed.

The boundary conditions of the problems studied
in this work are as follows.

1. On solid walls, the normal velocity component is
always zero (Dirichlet) and the tangential com-
ponents are zero gradient (Neumann) for inviscid
fluid and zero (Dirichlet) for viscous fluid. Press-
ure is always zero gradient for both inviscid and
viscous fluids. If the wall is considered to be an
elastic wall, then the fluid velocity must be the
same as the velocity of the structure (or mesh
moving velocity).

2. On the inlet (piston boundary), the velocity is pre-
scribed as a function of time (Dirichlet condition

Fig. 2 Cells used in the discretization. The dashed line

is perpendicular to the cell face. It makes an

angle (not necessarily 908) with the line

connecting cells P0 and P1
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for all components). The pressure is also zero
gradient.

Some attention should be paid to the free-surface
boundary condition. On the free surface, two con-
ditions should hold, namely the kinematic condition
and the dynamic condition. The kinematic condition
states that no fluid passes through the free surface
according to

_mfs ¼ r½(v� vs) � n�fs ¼ 0 (19)

where the subscripts fs stands for the free surface.
The dynamic condition states that the fluids in

contact with the free surface are in the state of
dynamic equilibrium. If both the viscous effect and
the surface tension effect are neglected, this con-
dition is reduced to the statement that the pressures
on both sides of the interface are equal. Since a con-
stant pressure (zero in this work) is always assumed
for the air above the free surface, this condition is
written as

pfs ¼ 0 or p�
fs ¼ Hfs (20)

In flows with the presence of a free surface, usually
the position of the free surface is part of the solution
and cannot be pre-determined. In this work, a
moving-grid technique is used to track the free surface.
An iterative correction procedure has to be
implemented to make sure that equations (19) and
(20) are satisfied simultaneously at the free surface.
Since the pressure is prescribed (zero) on the free sur-
face, the velocity on it will be corrected in the SIMPLE
algorithm in order to satisfy the continuity equation.
Thus the position of the free surface must also be cor-
rected to compensate for the non-zero flux across the
free surface resulting from this velocity correction.
The movement of the free surface is achieved by
moving the ‘control points’ instead of the mesh
nodes (Fig. 3). These ‘control points’ are the mesh
face centres on the free surface. The mesh node pos-
ition is then determined by the linear interpolations
of these control points. The displacement of the
control points along the vertical direction is

Dy ¼ g
_mfsDt

rAf(n � e2) (21)

Whereg is a relaxation factor, e2 is theunit vector in the
vertical (y) direction,Af is the facearea,n is the faceunit
normal vector pointed outwards, _mfs is the non-zero
mass flux across the free surface resulting from the vel-
ocity corrections, and Dt is the time step.

To summarize, there are three loops in the compu-
ter code: the first is the time-advancing loop; the
second is the pressure-correction loop in the
SIMPLE algorithm; the third is the loop for tracking
the free surface. The iterative procedure will con-
tinue until all the corrections become negligibly
small. The flow chart of this algorithm is presented
in Fig. 4. The details of this free-surface tracking
method can be found in the paper by Muzaferija
and Peric [6].

3.4 Mesh smoothing scheme

Another issue that needs to be addressed is the mesh
movement. The movement of the free surface or the
structure will lead to a change in position of the
boundary nodes in the fluid domain. If only these
nodes are moved while the interior nodes are
intact, poor quality or even overlapping cells may
appear. This could affect the accuracy of numerical
algorithms or even prevent the computation from
proceeding. A spring-analogue smoothing technique
is implemented in the code to control the mesh qual-
ity throughout the computing procedure. In this
algorithm, each face is replaced by a spring under
tension. The mesh smoothing procedure is com-
pleted when all the nodes of the mesh reach an equi-
librium state. This method avoids topology change
and thus is much easier to implement than the
point insertion and elimination techniques. The
movement of the mesh point is determined by

dr(i)

dt
¼
Xnb
j¼1

F(ij) ¼
Xnb
j¼1

k(ij)(r(j) � r(i)) (22)

where r(i) and r( j) are the position vectors of nodes i
and j respectively, F(ij) is the pulling force exerted
on node i by spring ij, k ij is the stiffness coefficient
of spring ij, and nb stands for all the neighbouring
nodes that are connected to node i (Fig. 5). Since
the unknown r appears on both sides of equation
(22), the solution has to be obtained using an itera-
tive method.

3.5 Equation for the elastic beams

The transient response of the elastic tank walls to a
sloshing liquid is studied. The sidewalls are assumed
to be plates extending to the third dimension and are
modelled as elastic beams. The governing equationFig. 3 Corrections to the free-surface position
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for the beam is

m
d2u

dt2
þ d2

dx2
EI

d2u

dx2

 !
¼ f (23)

where m is the mass per unit length, u is the displa-
cement which has two components, f is the force per
unit length acting on the beam, E is the modulus of
rigidity, and I is the moment of inertia. The following
values are considered in this simulation: density of
steel, 7800 kg/m3; modulus of rigidity, 200 GPa;

Fig. 4 Flow chart for the algorithm in the code
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moments of inertia, 2 � 1023 and 2 � 1024 m4. Com-
parison is also made for a material whose properties
are those of high-density polyethylene (HDPE), i.e. a
density of 944 kg/m3, a rigidity modulus of 0.8 GPa
and moments of inertia of 2 � 1021 and
2 � 1022 m4. The standard Galerkin method is used
to obtain the element stiffness and mass matrix.
The matrix form of the equation is written as

M €uþKU ¼ F (24)

The structure has to be integrated in time simul-
taneously with the fluid. Here, equation (24) is
solved using the Newmark method. The two vari-
ables a and b in the Newmark method are chosen
as a ¼ 1

2 and b ¼ 1
4. These values lie within the stab-

ility limits given by b 5 1
4aþ 1

2

2
. Although the time

step chosen for the structural solver is different
from the fluid solver to ensure numerical stability,
the transfer of unknowns and updating of boundary
conditions occurs exactly at the same time instant.
In the present simulation the fluid solutions are
stepped every 2p/240 seconds and the structure is
cycled four times within this cycle (i.e. 2p/960 s).

Data transfer between the FV code and FE code is
illustrated in Fig. 6. It is seen that the beam element

nodes are also the vertices of the triangular FV cells.
The ghost cell is located at the centre of boundary
faces. In the FE code, variables (displacement, vel-
ocity, etc) are defined at element nodes; they can
easily be interpolated to the ghost cell position by
arithmetically averaging. These averaged quantities
then act as boundary condition to the FV code. Con-
versely, variables from the FV code (e.g. pressure) are
interpolated to the element nodes and act as the load
in the FE code.

4 NUMERICAL RESULTS

4.1 Code validation

The fluid equations are solved using an in house
computational fluid dynamics code UNCFV3D.
Before going further in the free surface simulation,
some validation cases are tested. One of these cases
will be presented here. This case involves laminar
flow past a circular cylinder. The Reynolds number
is 100 based on uniform inlet velocity and diameter
of the cylinder. This problem is inherently unsteady
because of the existence of shedding vortices in the
wake region. The computational mesh is presented
in Fig. 7. Instantaneous velocity vector plots and
streamlines are presented in Fig. 8. The periodic
behaviour of the shedding vortices is examined at
one sampling point in the flow field. This sampling
point is located on the centre-line and about one

Fig. 5 Spring analogy model for smoothing out the

mesh movement

Fig. 6 Data transfer between the FV code and the FE

code

Fig. 7 The computational mesh for flow over a

cylinder

Fig. 8 Instantaneous streamlines and velocity vector

plots
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diameter away from the lee side of the cylinder. In
Fig. 9(a), the vertical velocity component at this
point is plotted as a function of time. This picture
demonstrated a perfectly periodic behaviour. By
taking the fast fourier transform Fig. 9(a), the fre-
quency is shown to be 0.16 Hz in Fig. 9(b). This

value matches the experimental data [22] very well.
Next the free-surface validation is attempted.

4.2 Free-surface validation

The free-surface profile obtained in a numerical
wave tank is simulated using the FV program devel-
oped by the present authors. As the code has been
validated for viscous flows, the code’s performance
under the ‘zero-viscosity’ condition is tested.
Although the effects of viscosity on the free surface
can be compared with those published by Wu et al.
[23], the same simulation has not been attempted
in the present work. Only the results from potential
flow solutions are compared with the present code.
A numerical tank with a length-to-depth ratio of 40,
as simulated by Wu and Taylor [24], is adopted
here for comparison. The tank has a wave-maker
piston on the left-hand side and a free surface on
the top. The wave-maker piston undergoes a sinusoi-
dal motion with an amplitude A ¼ 10 per cent of
water depth (‘zero-viscosity’ computation) and
v� ¼ 1. For this case the wavelength obtained
dt ¼ A sin (vt) using linearized theory is 5.2 times
the depth d. Figure 10 presents the free-surface pro-
file after 3.8 cycles. As the flume length is 40, it will
accommodate 7.6 wavelengths or, in other words, it
would take 7.6 cycles for the particle in contact
with the right-hand wall to be disturbed. Thus 3.8
cycles refers to half this value. From the figure it
can be seen that the normalized v� ¼ v

ffiffiffiffiffiffiffiffi
d/g

p
free-

surface profile is within the range. The wavelength
of 5.2d (approximately) is also obtained. From the
figure it is also seen that the free surface in the first
half of the flume is disturbed corresponding to 3.8
cycles. Figure 11 presents the particle response 6d
away from the wave-maker piston. It can be observed
that the particle responds after approximately 1.15
wave +1 cycles corresponding to its position (6d–
5.2d), with subsequent peaks occurring every cycle.
Thus the results obtained for the numerical wave

Fig. 9 The vortex shedding frequency: (a) vertical

velocity component versus time; (b) Fast

Favier transform of (a)

Fig. 10 Free-surface profile in a numerical wave tank after 3.8 cycles
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tank is validated. Next, the free-surface response of
a liquid in a tank subjected to a periodic oscillation
is computed. The results are compared with those
published in the literature. A tank is assumed to
undergo a sinusoidal transverse displacement of
the form Thus the velocity V will be V ¼ Av cos(vt).
The parameters chosen for this simulation are the
same as used by Wu et al. [25] in their simulation,
namely a tank with a ratio of depth d to breath 1 of
1 to 2, an amplitude A ¼ 0.0186 and a non-dimen-
sional frequency of 1.2. The analytical solution for
this case is obtained from the derivation provided
by Faltinsen [26]. Figures 12 and 13 present the
free-surface profiles after 2.5 cycles and 3 cycles
respectively. The results published by Wu et al. [25]
are digitized and superimposed in the present
figures. It is seen from the Figures that the results
obtained in the present method are comparable
with the published results.

4.3 Structure response of the tank sidewalls

The structural response of an elastic tank containing
a viscous fluid undergoes a transverse excitation,
whose velocity V is of the form V ¼ Av cos (vt). The
amplitude A is varied from 1 to 4 per cent of water
depth d and v� ¼ 0.5, 0.75, 1.0, and 1.25. The kin-
ematic viscosity of the arbitrary fluid is fixed at
0.01. The corresponding Reynolds number
Re ¼ Avd/n varies from 1.57 to 15.66. Figures 14,
15, and 16 present the deformations of the left side-
wall for excitation amplitudes, A of 1 per cent, 2 per
cent, and 4 per cent respectively of water depth d.
It is to be noted that the deformations have been
magnified and are not to scale; this is only to show
the difference in deformation patterns. The simu-
lations are performed for the structural properties
of steel and for a moment of inertia of
2.0 � 1023 m4 for various non-dimensional circular
frequencies v�. From the figures the following

Fig. 11 Response of a particle 6d from the wave-maker piston

Fig. 12 Free-surface profile comparison after 2.5

cycles

Fig. 13 Free-surface profile comparison after 3.0

cycles
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observations can bemade. There is a general trend in
the magnitude of deformation and the excitation
amplitude. From Fig. 14 it can be seen that the defor-
mation is large for v� ¼ 1 compared with other fre-
quencies. The same observation is valid for the
higher amplitude of 2 per cent (Fig. 15) with a
larger deformation. It is interesting to compare
Fig. 14 and 15. Although a larger deformation is
seen for the higher excitation frequency v� ¼ 1.25
for the 4 per cent amplitude case, the deformation

for v� ¼ 1 (Fig. 16) is less than that obtained for the
2 per cent amplitude (Fig. 15). It appears that the
excitation amplitude and frequency of 2 per cent of
water depth and v� ¼ 1 give the maximum defor-
mation for this particular cross-section. The thick-
ness of the structure is reduced in such a way that
the moment of inertia is reduced by one order of
magnitude to 2.0 � 1024 m4. Figures 17, 18, and 19,
present the deformations of the left sidewall for exci-
tation amplitudes A of 1 per cent, 2 per cent, and 4

Fig. 14 Left sidewall deformations for various

frequencies and an amplitude A of 1 per cent

of d

Fig. 15 Left sidewall deformations for various

frequencies and an amplitude A of 2 per cent

of d

Fig. 16 Left sidewall deformations for various

frequencies and an amplitude A of 4 per cent

of d

Fig. 17 Left sidewall deformations for various

frequencies and an amplitude A of 1 per cent

of d (thin structure)
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per cent respectively of water depth d. From Fig. 17
to 19, it can be observed that the deformations are
larger than those obtained for the previous cases
(Figs 14 to 16). However, the critical frequency
seems to have shifted to v� ¼ 0.75. In this case too
the excitation amplitude of 2 per cent of water
depth seems to have the largest effect on the struc-
ture. Figure 20 presents the deformations on the
right sidewall for excitation amplitudes A of 1 per
cent and 2 per cent of the water depth for a
moment of investor of 2.0 � 1024 m4 The critical

frequency v� ¼ 0.75 is realized here too. However,
it was also noted that for a moment of inertia
of 2.0 � 1023 m4 the deformation occurred at
v� ¼ 0.75, instead of v� ¼ 1 as observed for the left
sidewall. The critical frequency where maximum
deformation occurred using a potential flow code
for the same set of parameters was found to be
v� ¼ 1.2 [27]. This shift could be attributed to the
damping effects of viscosity. As it was seen that the
excitation amplitude of 2 per cent caused the largest
deformation, this case is further tested by changing
the material property to that of HDPE. Figure 21 pre-
sents the deformations of the left and right sidewalls
for HDPE whose moment of inertia is 1.0 � 1021 m4,
for various frequencies and A ¼ 2 per cent of d.

Fig. 18 Left sidewall deformations for various

frequencies and an amplitude A of 2 per cent

of d (thin structure)

Fig. 19 Left sidewall deformations for various

frequencies and an amplitude A of 4 per cent

of d (thin structure)

Fig. 20 Right sidewall deformations for various

frequencies and amplitude A of 1 per cent

and 2 per cent of d (thin structure)
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From this figure too, the frequency v� ¼ 1 causes the
maximum deformation. The moment of inertia is
then doubled and simulated for v� ¼ 1. Figure 22
presents the deformations of the left and right wall
for the various cases studied. It is seen from this
figure that the deformation for a moment of inertia
of 2.0 �1021 m4 is less. Thus there are a critical
frequency and critical amplitude that cause the
maximum deformation. It is also seen that the criti-
cal values are dependent on the structural properties.
The structural deformation thus alters the flow
pattern and, because of that effect, the pressure.
Thus the system is interdependent and hence the
importance of analysing the FSI as one system can
be seen here.

4.4 Free-surface flow over a submerged
rectangular obstacle

This study concerns the free-surface flow over a sub-
merged obstacle. In this problem, a rigid rectangular
obstacle is placed in a tank. The dimensions of the
tank and the obstacle are 40 � 1 and 0.125 � 0.75
respectively. The distance from the left end of the
tank of the left end of the rectangular obstacle is
6.0. The computational domain is meshed with
5788 triangular cells and the mesh is shown in
Fig. 23. A piston-type boundary condition (same as
in the previous section) is applied on the left-hand
side. A slip wall boundary condition is applied for
the right-hand side. The bottom wall of the tank
and the surface of the obstacle are treated as non-slip

Fig. 21 Left and right sidewall deformations of HDPE

for various frequencies and an amplitude A

of 2 per cent of d

Fig. 22 Comparison of wall deformations for various

material properties (M.I., moment of inertia)
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walls. The Reynolds number Re ¼ Avd/n for this
simulation is 31.3. A series of instantaneous velocity
plots every quarter-cycle for one full cycle is given in
Fig. 24. The wave dispersion and the reversing vel-
ocity vector can be observed as time progresses.
The instantaneous streamlines after an elapsed
time of 5.5 cycles are plotted in Fig. 25. The flow sep-
aration and formation of vortices immediately after

the obstacle can be clearly seen. The flow separation
and vortices will alter the pressure field and thus
a simple potential flow solution may not be valid.
Thus for this class of problems it is necessary to
implement a full Navier–Stokes equation. The limit-
ation of the present code is that it cannot handle a
turbulence model; hence, a simulation is currently
not possible for high-Reynolds-number flows.

Fig. 23 Mesh for simulating free-surface flow over a submerged obstacle (the X-to-Y ratio is 0.3)

Fig. 24 Wave dispersion and velocity vectors for a flow over an obstacle
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However, as a preliminary investigation, it is
observed that some major invscid effect (wave dis-
persion) and viscous effects (large vortices formed
by the roll-up of separated shear layer on the lee
side of the obstacle) have been successfully captured
in the simulation. To summarize, this simulation
shows the capability of this numerical method in
applications in marine structural design.

5 CONCLUSIONS

In this paper, a numerical simulation of free-surface
flow in a container is presented by using a self-devel-
oped moving-mesh FV code. In the first sloshing
case, the container walls are considered as rigid,
and the free-surface profile of an inviscid fluid has
been captured. The computed amplitude matches
the simulation in the literature. In the second slosh-
ing case, the sidewalls are treated as elastic beams
and the fluid considered as viscous. An FSI problem
is solved by coupling with an FE code. The structure
response to the fluid motion is studied and the criti-
cal frequency of agitation related to a large defor-
mation of the sidewall is identified. This critical
frequency is found to vary with the structural rigidity
and is different from that obtained by a potential flow
treatment. The third simulation is a viscous free-sur-
face flow past a submerged obstacle in a tank. The
flow field shows both an inviscid effect such as
wave dispersion, and a viscous effect such as separ-
ation bubbles. All these simulations demonstrate
the capability and efficiency of this numerical
method in modeiling both free-surface and FSI
problems.
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APPENDIX

Notation

aP0
j coefficient of the matrix in the linear

system resulting from the
discretization

Af face area on the free surface
Aj face area at the face j
bP0 source term in the linear system

resulting from the discretization
e2 unit vector in the vertical direction
E Young’s modulus
fb body force on the fluid
F force on the beam element

F (ij) force exerted on the pseudo-spring
connecting nodes i and j

g gravitational acceleration
H potential function
I moment of inertia
k (ij) stiffness coefficient of the pseudo-

spring connecting node i and j
Lj distance between two neighbouring

cells
m mass per unit length of the beam

element
_mfs mass flux across the free surface
_mj mass flux across the face j
n cell face normal vector
p static pressure of the fluid
p0 pressure correction
p� piezometric pressure of the fluid
Qf source term in the generic transport

equation
r(i), r( j) position vectors of mesh nodes, i and j

respectively
T stress tensor of the fluid
U displacement in the beam element
v velocity of the fluid
vs velocity of the mesh
vj

0 fluid velocity at face j
VP0
n , VP0

n21 volume of cell P0 at time steps n21
and n respectively

Xj
n21, Xj

n position vectors of face j at time steps
n21 and n respectively

bp relaxation factor for pressure
g relaxation factor in the free-surface

correction
gf blending factor
Gf diffusive coefficient in the generic

transport equation
Dt time step
DVj area swept by face j
Dy change in y position in the correction

procedure for tackling the free surface
m dynamic viscosity of the fluid
n kinematic viscosity of the fluid
r density of the fluid
t1, t2 two vectors in the tangential direction

at the faces
f control variable in the generic

transport equation
f0
j control variable at face j
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