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Modification of Bertrand’s Theorem and Extended Runge-Lenz Vector *
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It is shown that for a particle with suitable angular momenta in the screened Coulomb potential or isotropic
harmonic potential, there still exist closed orbits rather than ellipse, characterized by the conserved aphelion
and perihelion vectors, i.e. extended Runge-Lenz vector, which implies a higher dynamical symmetry than the
geometrical symmetry Os. The closeness of a planar orbit implies the radial and angular motional frequencies

are commensurable.
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In classical mechanics, the maximum number
of functional independent conserved quantities of a
closed system with N degrees of freedom is 2N — 1.}
For a system with independent conserved quantities
no fewer than N is called integrable.? An integrable
classical system with N + A independent conserved
quantities (0 < A < N—1) is called A-fold degenerate,
and there exist A linear relations to the frequencies
vi(i =1,2,---,N) of the system.3 A classical system
for A = N—1is called a completely degenerate system,
and there remains only one independent frequency,
which implies the existence of closed orbits. For ex-
ample, for a particle in a central potential, besides the
Hamiltonian, the angular momentum L is also con-
served, and the particle in a general central potential
is 1-fold degenerate and moves in a plane perpendic-
ular to L while the planar orbits are in general not
closed. However, the orbit of a particle in the attrac-
tive Coulomb potential V(r) = —k/r is always closed
for any continuous negative energy E < 0 and angu-
lar momentum L, i.e., an ellipse, of which the length
of semi-major axis is a = 1/(2|E|) for m = k = 1
and the eccentricity is e = /1 — 2|E|/L2. The pe-
riod of motion is T = 1/v = =|E|~3/2//2 = 27wa3/2
from Kepler’s law, where v is frequency. The close-
ness of orbits is guaranteed by the existence of an
additional conserved quantity the Runge-Lenz vector
R =px L—r/r4In fact, the direction of R is just
that of the major axis of elliptic orbit and the magni-
tude of R is the eccentricity, |R| = e. It is seen that
R-L=0and R> =2HL?*+ 1, so the number of inde-
pendent conserved quantities is 5, and the hydrogen
atom is a completely degenerate system. The exis-
tence of Runge-Lenz vector implies that the Coulomb
potential has a higher dynamical symmetry O, than
its geometric symmetry O3.% A similar situation exists
for an isotropic harmonic oscillator.

Concerning the closeness of orbits, there is a fa-
mous Bertrand’s theorem,® which says that the only

central forces that result in closed orbits for all bound
particles follow the inverse square law and Hooke’s
law. In the derivation of Bertrand’s theorem, a power-
law central potential W(r) = ar” was assumed. If
the restriction of a simple power law is relaxed, the
Bertrand’s theorem needs modification. In this letter
we will show that for another type of central poten-
tial, the screened Coulomb potential or isotropic har-
monic potential V(r) = W(r) — A/r?, where W(r) is
the Coulomb potential or isotropic harmonic poten-
tial, there still exist closed orbits (rather than elliptic
orbits) for suitable angular momenta. The properties
of these closed orbits and the corresponding conserved
quantity (extended Runge-Lenz vector) will be inves-
tigated.

For the valence electron in an alkali atom V (r) may
be approximately expressed as the screened Coulomb
potential (e =m = 1):

:2, O<A<1). (1)

In this case, the orbit equation is (u = 1/r)

du

0=— , 2
V2E/L? + 2u/L? — k2u? @)

where k = /1 —2)A/L? and 0 < k < 1. Integrating
Eq. (2), we get”
1
T

- L_j’§{1+\/1 + 2EL2x2 cos[k(0—o)]}, (3)
where v1+2FEL?k2 = (/1+2E(L2-2)\) > 0 In
general, the orbit is not closed. The precession of
a non-closed orbit on an invariant torus is shown in
Fig.1. In fact, all the precessing orbits lie between
the perihelion circle with a radius r, = [1/(2|E|)](1 —

v/ 1~ 2k2L2|E|) and the aphelion circle with a radius
ra = [1/(2|E|)](1 + \/1 — 2k2L2|E]). Using the New-

ton’s second law of motion for the screened Coulomb
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potential (1), p = —(r +2X\)r/r%, so that at the aphe-
lion and perihelion points, i.e. at 7 =0

dR’' d 220\ r
Toap (1 R)=e

where R is in the opposite direction of the radial vec-
tor r and its magnitude is

|R'| = v/2(H — M\/r2)L2 + (1 + 2\ /r)2.

However, for irrational values of «, a particle starting
from any point never reture to the initial point, i.e.,
the orbit is not closed.

2.0

Fig. 1. Precession of a non-closed orbit of a particle on
the r — 6 plane in screened Coulomb potential of Eq.(1)
with A = 0.2, E = —0.5, and & = 1/2 + v/2/100.
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Fig. 2. Closed orbits of a particle on the r—#8 plane in the
screened Coulomb potential of Eq. (1) with A = 0.2 and
E = —05; (a) & = (1/2) or L = (2/3)V6X, (b) k = (2/3)
or L = (3/5)V10X, (c) & = (3/4) or L = (4/7)v/14X, (d)
& = (4/5) or L = (5/3)V2A.

It is interesting to note that there exist infinite
numbers of closed orbits corresponding to rational val-
ues of k = /1 —2)A/L%. Some illustrative examples
are displayed in Fig.2. The geometry of closed or-
bits depends only on the value of &, i.e. angular mo-
mentum L, but is irrelevant to the energy E. The
directions of each aphelion vector and perihelion vec-
tor expressed by 8, and 8, respectively keep constant
during the motion, i.e.,

0. — 60 = (2n + 1)%,

0, —6=2n", n=01,2-. (5)
K

Of course, the length of aphelion (perihelion) vector
increases (decreases) with increasing E. The closeness
of a planar orbit implies that the radial frequency w,
and angular frequency wy are commensurable. It can

be shown that
wy
— =K. 6
We " ( )

For A =0, ie. k =1, and w,/wg = 1, the closed
orbit becomes an ellipse and R’ is reduced to the fa-
mous Runge-Lenz vector R = p x L — r/r. However,
while dR/dt = 0 holds at every point along the closed
orbit for the Coulomb potential, dR’/dt = 0 for A # 0
holds only at the aphelion and perihelion points, which
implies that the original dynamical symmetry O4 for
the Coulomb potential is partially broken.
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Fig. 3. Closed orbits of a particle on the » — @ plane in
the screened isotropic potential of Eq.(7) with A = 0.2
and E = 5.

Next, we consider the particle in the screened
isotropic harmonic potential:

V(ir)y=r%- % (7)
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The orbit equation is

du

N7 Eamp i e

where k = /1 — 2X/L2. Integrating Eq. (8), we get

, 1 1 {E + VE? — 2L2k2 cos[2£(6 — 6o)]}.

TR T e
(9)

Similarly, closed orbits still exist for rational number
values of x. The closed orbits for x = 1/2, 2/3, 3/4,
and 4/5 are displayed in Figs. 3(a)—3(d), respectively.
The direction of the aphelion and perihelion vectors
can be expressed by

1.7
03—00=(n+§);,
Gp—00=n£,n=0,1,2,---, (10)
and w
=L = 2. 11
=2 ()

Finally, it is worthwhile to mention that there ex-
ists intimate relation between the conserved quanti-
ties responsible for the closeness of classical orbits on
one side the quantum mechanics raising and lower-
ing operators on the other side.'»!? For a classical
particle in a power law central potential W{(r), for
and only for the Coulomb potential or isotropic har-
monic oscillator, the orbits are closed for any negative
energy and positive angular momentum. In quan-
tum mechanics, it was shown®~10 that only for the
Coulomb potential and isotropic harmonic potential
the radial Schrédinger equation can be factorized and
from the factorization one can construct both energy
and angular momentum raising and lowering opera-
tors, which is equivalent to the conserved quantities

responsible for the closeness of classical orbits.!! But
for the screened Coulomb potential (1) or isotropic
harmonic potential (7), the orbit is not closed in gen-
eral. However, the closed orbits still exist for any
negative energy, but only for suitable discrete angular

momentum
L=+/2)(1 = «?)

(x being rational number), which implies the original
dynamical symmetry of W (r) is partially broken. Cor-
respondingly, in quantum mechanics, it can be shown”
that in this case only the energy (but not angular mo-
mentum) raising and lowering operators can be con-
structed from the factorization of radial Schrédinger
equation. The dynamical symmetry of the screened
Coulomb potential and isotropic potential needs fur-
ther investigation.
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