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Abstract

An elastoplastic constitutive relation is developed for meso damage of whisker-reinforced composites. A model is

constructed that includes orientation distribution of whiskers and slip systems as well as interface and crystal sliding.

Evolution of damage will be addressed. Given in Part I is the formulation while examples will be illustrated in

Part II. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Continuous Damage Mechanics for homoge-
neous material has been developed in [1]. Using
the intrinsic theory of thermo-dynamics, the
damage variable was brought into the framework
of Continuum Mechanics [2], whereby the isotro-
pic damage constitutive equation [3] was extended
to include anisotropy [4].

Recently, many e�orts have been made to de-
velop relationships between the material micro-
structure and macroperformance of composites.
Self-consistent scheme and equivalent inclusion
method were used as a basis for the mechanical
analysis of ®ber or particle reinforced composites.
As an extension of Eshelby's method, the work in
[5] has been widely adopted for composites. An
approximate analysis of two neighboring micro-
cracks was introduced to account for interaction
among randomly oriented and located micro-
cracks [6]. From a parallel ®ber bundle model for

long-®ber-reinforced composites, damage was an-
alyzed using the probability distribution of ®ber
rupture strengths [7].

Since the microscopic description of whisker
reinforcing and crystal sliding mechanisms was
introduced [8], the mesoscopic material model and
constitutive relations for polycrystalline metals
and whisker-reinforced composites have been es-
tablished [9±11]. Thus, the evolution of the yield
surface and deformation-induced anisotropy was
predicted [10±12]. Recently, the ®ber-breaking
mechanism has been applied to the elastic damage
constitutive relation for predicting the damage-
induced anisotropy and damage-rate e�ect of
brittle ®ber-reinforced composite material [13].

Experimental results show that damage of
composites is associated with multiple physical
mechanisms. The response is sensitive to the in-
terface-linking state between the matrix and rein-
forcement [14]. Anisotropy however should be
investigated in combination with the internal stress
redistribution due to damage [15] and damage rate
[13,16]. It is still a challenge to formulate a con-
stitutive relation and to explain the complex
nature of damage behavior.
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Part I of this work is concerned with the mi-
crostructure and damage mechanism of matrix
and whiskers. A model is constructed followed by
a discussion of the crystal and interface sliding
criteria and damage evolution of the constituents.
This leads to the derivation of a constitutive
equation that accounts for damage.

2. Material model

Whisker-reinforced metal±matrix composites
(MMCs) are composed of metallic matrix and
whiskers. The overall elastoplastic damage be-
havior has been associated with the microstructure
and damage of the matrix, whiskers, and interface.
To develop a material model that has character-
istics consistent with the composite material, it is
assumed that:
�Deformation of the matrix is decomposed into

an elastic part _Eme in the crystal grains and a
plastic part _Ems caused by crystal sliding. The total
strain rate of the matrix is compatible with macro
strain rate _E, i.e.

_E � _Eme � _Ems: �1�
� Local stresses ~Sg in a crystal grain and ~ss in a

slip system are proportional to the average stress
Sm and resolved shear stress ss of the matrix, i.e.

~Sg � ~cg : Sm; �2�

~ss � ~csss; �3�

ss � Ps : Sm; �4�
where ~cg and ~cs are stress heterogeneity factors of
the crystal grain and slip system. Note that

Ps � 1

2
�m
 n� n
m� �5�

is an orientation tensor of the slip system. In
Eq. (5), m is a unit slip vector and n, a unit normal
vector of the sliding plane.
� Local strain rate _~ef in a whisker is propor-

tional to the average strain rate _ef that is com-
patible with macro strain rate tensor, i.e.

_~ef � ~cf _ef ; �6�

_ef � Pf : _E; �7�

where ~cf is a heterogeneity factor of the strain rate
of the whisker. Here

Pf � l
 l �8�

is an orientation tensor of the whisker and l, a unit
vector along the whisker.

The symbols with tilde refer to location. ~cg and
~cs may vary with the average stress of the matrix,
and ~cf may vary with macro strain. The crystal
grains, slip systems, and whiskers are incremen-
tally linear, such that

_~Eg � ~Cg :
_~Sg; �9�

_~cs �
1

~hs

_~ss; �10�

_~rf � ~Ef
_~ef ; �11�

where _Eg and ~Cg are local strain rate and compli-
ance tensors of crystal grains, respectively. The
local sliding rate and hardening modulus of slip
systems are given by _~cs and ~hs, while _~rf and ~Ef are
the local stress rate and YoungÕs modulus of
whiskers, respectively.

2.1. The matrix

Polycrystalline metal matrix consists of many
irregular crystal grains. Crystal sliding is the
plastic deformation mechanism of the matrix.

Elasticity of the matrix: According to the as-
sumptions, the power stored in crystal grains can
be expressed as

_W � 1

Vm

Z
Vm

~Sg : ~Eg dV � Sm :
1

Vm

Z
Vm

~cg : ~Eg dV ;

�12�

where Vm is volume fraction of the matrix. Being a
power conjugate with Sm, the elastic strain rate
tensor in crystal grains can be written as

_Eme � 1

Vm

Z
Vm

~cg : _~Eg dV : �13�
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Substitution of Eqs. (9) and (2) into Eq. (13) yields

_Eme � Cme : _Sm

Cme � 1

Vm

Z
Vm

~cg : ~Cg : ~cg

� 1

2
~cg : ~Cg : ~Sm :

d~cg

dSm

 
� d~cg

dSm

: ~Sm

!
dV :

�14�
Thus, the elastic behavior of the heterogeneous
matrix described by Eq. (14) can be represented by
one of a uniform elastic medium with the average
compliance tensor Cme: _Sm and _Eme represent the
average stress and elastic strain rate tensors of the
elastic medium or matrix.

Plasticity of crystal sliding: Consider slip in the
direction m on slip planes with the unit normal
vector n. The power dissipated by the local slip
systems can be expressed as

_W � 1

Vm

Z
Vm

~ss
_~cs dV � 1

Vm

Z
Vm

~cs
_~cs dV

� �
ss: �15�

An average sliding strain rate conjugate with ss is

_c � 1

Vm

Z
Vm

~cs
_~cs dV : �16�

By use of Eqs. (3) and (10), the local sliding strain
rate can be derived

_~cs �
1

~hs

�~cs _ss � _~csss� � 1

~hs

~cs

 
� d~cs

dss

ss

!
_ss: �17�

Substituting Eq. (17) into Eq. (16), the local slip
systems can be represented by an equivalent slip
system with an average hardening modulus hs, and

_cs �
1

hs

_ss;

1

hs

� 1

Vm

Z
Vm

~cs

~hs

~cs

 
� d~cs

dss

ss

!
dV ;

�18�

where _ss and _cs denote resolved shear stress and
sliding rates of the equivalent slip system.

An orientation distribution of equivalent slip
systems can be described with a statistical orien-
tation density qs of all slip systems in the matrix.
Without consideration of any preferred orienta-

tion, equivalent slip systems are assumed to be
homogeneously distributed in the 3D space, and
qs � 1=4p2.

A slip system may be active as long as the re-
solved shear stress reaches its critical value s�cr in
m direction or sÿcr in )m direction. An activation
criterion of the slip system can be stated as [11]

If ss � s�cr

then _cs > 0; _s�cr � _ss � hs _cs and
_sÿcr � _s�cr ÿ 2scr0:

If ss � sÿcr

then _cs < 0; _sÿcr � _ss � hs _cs and
_s�cr � _sÿcr � 2scr0:

Otherwise _cs � 0; _s�cr � 0:

8>>>>>>>><>>>>>>>>:
�19�

In Eq. (19), Prager's kinematics hardening rule is
applied, and scr0 is an initially critical resolved
shear stress.

2.2. Whiskers

Experimental results show that the interface
siding between the matrix and whiskers may take
place when the ®ber strain reaches its critical value
[17]. And the interface debonding is mainly de-
pendent on the maximum ®ber-direction strain
[14]. Therefore, the interface sliding may be re-
garded as pseudo-plasticity of whisker [18]. Hence,
the whisker behaves as in elasto-pseudo-plasticity.

Elasticity of whiskers: Consider whiskers dis-
tributed unidirectionally in the matrix. The stored
power in the whiskers can be expressed as

_Wf � 1

Vf

Z
Vf

~rf
_~ef dV � 1

Vf

Z
Vf

~cf ~rf dV
� �

_ef ; �20�

where Vf is volume fraction of whiskers in direc-
tion l. An average stress rf conjugate with _ef is

rf � 1

Vf

Z
vf

~cf ~rf dV : �21�

Thus, the stress rate can be derived as

_rf � 1

Vf

Z
Vf

�~cf
_~rf � _~cf ~rf� dV : �22�

Substitution of Eq. (11) and Eq. (6) into Eq. (22)
yields
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_rf � Ef _ef ;

Ef � 1

Vf

Z
Vf

~c2
f

~Ef

 
� ~rf

d~cf

de

!
dV :

�23�

Those whiskers in direction l are represented by a
®ber-bundle with the average sti�ness modulus Ef .
Note that _rf and _ef denote the stress and strain
rates of the ®ber-bundle, respectively.

Statistically, a probability density qf can be in-
troduced to describe the orientation distribution of
the ®ber-bundles. The homogeneous orientation
distribution density is qf � 1=2p.

Pseudo-plasticity of interface sliding: Interface
sliding may take place when the ®ber strain
reaches its critical value e�cr in tension or eÿcr in
compression. Then, the behavior of the ®ber-
bundle becomes pseudo-plastic that can be de-
scribed as

_rf � Efs _ef ; �24�
where Efs is an average interface sliding modulus.
An interface-sliding criterion can be stated as

If ef � e�cr

then _e�cr � _ef � _rf=Efs and
_eÿcr � _e�cr ÿ 2ecr0:

If ss � sÿcr

then _eÿcr � _ef � _rf=Efs and
_e�cr � _eÿcr � 2ecr0:

Otherwise _e�cr � 0:

8>>>>>>>><>>>>>>>>:
�25�

The quantityecr0 � �e�cr0 ÿ eÿcr0�=2 is an initial
critical sliding strain of the ®ber-bundle [10].

3. Damage

Damage of composites is a complex process.
Their failure modes are dominated by multiple
mechanisms. In the following, damage is attribut-
ed to the mechanical property degradation of three
elements.

3.1. Statistical expression of damage

Let Dm denote a volume fraction of the de-
graded elastic medium, Ds denote a percentage of
the sliding net area reduction of the slip system,

and Df denote a percentage of the load-bearing-
capacity degradation of the ®ber-bundle.

According to [1], there exist

Sm � �1ÿ Dm�S�ef�
m ; �26�

ss � �1ÿ Ds�s�ef�
s ; �27�

rf � �1ÿ Df�r�ef�
f : �28�

The e�ective stresses S�ef�
m ; s�ef�

s and r�ef�
f satisfy

Eqs. (14), (18) and (23), respectively. This gives

_S�ef�
m � Kme : _Eme; �29�

_s�ef�
s � hs _cs; �30�

_r�ef�
f � Ef _ef : �31�

Statistically, there exists a probability distribution
density of the broken strain for the ®ber-bundle
[13]. The e�ect of interface-debonding on load-
bearing capacity of the ®ber-bundle is taken into
account. Let wf�efc� denote the probability distri-
bution density of ®ber breaking and interface-
debonding. Here, efc denotes the smaller one of
broken strain and debonding strain of whiskers. Df

can be expressed as

Df�em
f � �

Z em
f

ecr

wf�efc� defc: �32�

In Eq. (32), ecr is the smaller critical strain of the
weakest whiskers and the weakest-linking inter-
face, while em

f is the maximum strain of the ®ber-
bundle reached [11].

Similarly, let ws�csc� be the probability distri-
bution density of the failure strain csc of the slip
system. Ds can be expressed as

Ds�cm
s � �

Z cm
s

ccr

ws�csc� dcsc; �33�

where ccr is the critical failure strain of the weakest
sliding system, and cm

s , the maximum sliding
strain.
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3.2. Thermodynamic consideration of damage

For an isothermal and in®nitesimal-strain pro-
cess, independent state variables are strain and
damage tensors, E and D. Let f denote the speci®c
Helmholtz' free energy. The generalized Gibbs'
relation [19] can be expressed as

q0
_f � S : Eÿ g � _D; �34�

where q0 is mass density.
As far as each element was concerned, Eme and

Dme are conjugate to Sm and gme; cs and Ds are
conjugate to ss and gs; ef and Df are conjugate to
rf and gf , respectively. Neglect the interaction of
damage. There exist Dme � Dme�Eme; gme�Eme��;
Ds � Ds�cs; gs�cs�� and Df � Df�ef ; gf�ef��. That is
to say, each damage variable can be determined by
its respective deformation. Thus, the damage
evolution of essential elements can be expressed as

_Dme � dDme

dEme

: _Eme; �35�

_Ds � dDs

dcs

_cs � ws�cs� _cs; �36�

_Df � dDf

def

_ef � wf�ef� _ef : �37�

The damage rate of essential elements is propor-
tional to their respective strain rate, and the pro-
portional coe�cients are material-dependent.

4. Constitutive relation

According to the basic assumption, the whisker-
reinforced metal±matrix composite can be mod-
eled with three types of essential elements. Equiv-
alent slip systems and ®ber-bundles are distributed
according to their orientation distribution density
qs and qf . The heterogeneity is embodied in the
average sti�ness and compliance tensors of
the three elements mentioned earlier. Based on the
material model, the constitutive equations are
derived for elastoplasticity and damage.

4.1. Elastoplasticity

Consider a representative elementary volume
(REV) with orientation distribution density
qs and qf . The total power of REV equals a sum of
those for the three types of elements, i.e.

S : _E � VmSm : _Eme � Vm

Z
W

Z
U

qsss _cs dU dW

� Vf

Z
X

qfrf _ef dX; �38�

where dU is a solid angle in direction n, dW, a
plane angle in direction m, dX, a solid angle in
direction l, Vm and Vf are volume fractions of the
matrix and ®ber-bundles such that satisfy
Vm � Vf � 1. Substituting Eqs. (4) and (7) into
Eq. (38), there results

S : _E � VmSm : _Eme

�
�
Z

W

Z
U

qs _csPs dU dW

�
� Vf

Z
X

qfrfPf dX

� �
: _E: �39�

The ®rst term on the right-hand side of Eq. (39) is
the power stored in the elastic medium; the second
is that dissipated by the active slip systems; and the
third is for one of the ®ber-bundles.According to
power conjugate principle, the strain rate tensor
produced by the crystal sliding can be obtained by
use of Eqs. (4) and (18) and Eq. (39)

_Ems �
Z

W

Z
U

qs _csPs dU dW � Cms : _Sm;

Cms �
Z

W

Z
U

qs

hs

Ps 
 Ps dU dW;
�40�

where Cms is an average compliance tensor related
with the orientation distribution of slip systems.
Substitution of Eqs. (14) and (40) into Eq. (1)
yields

_E � �Cme � Cms� : _Sm: �41�

Eq. (41) describes the stress±strain relation of the
matrix.

From the third term on the right-hand side of
Eq. (39), the stress tensor for the ®ber-bundles can
be calculated as
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Sf �
Z

X
qfrfPf dX: �42�

By use of Eqs. (7) and (23), and Eq. (42), the stress
rate tensor for the ®ber-bundles becomes

_Sf � Kf : _E;

Kf �
Z

X
qfEfPf 
 Pf dX;

�43�

where Kf is an average sti�ness tensor related to
the ®ber orientation distribution.

Thus, the total power in Eq. (39) can be re-
written as

S : _E � VmSm : _Eme

n
� _Ems

o
� Vf Sf : _E: �44�

By substituting Eq. (1) into Eq. (44), the total
stress in REV can be obtained

S � VmSm � VfSf : �45�

The total stress rate tensor is

_S � Vm
_Sm � Vf

_Sf : �46�

Eqs. (41) and (43) can be substituted into Eq. (46)
to yield

_S � Vm�Cme

n
� Cms�ÿ1 � VfKf

o
: _E; �47�

Cms �
Z

W

Z
U

qs

hs

Ps 
 Ps dU dW: �48�

In Eq. (48)

hs � 1 when sÿcr < ss < s�cr;
hs when ss6 sÿcr or ss P s�cr

�
and

Kf �
Z

X
qfEfPf 
 Pf dX; �49�

where

Ef � Ef when eÿcr < ef < e�cr;
Efs when ef 6 eÿcr or ef P e�cr:

�
Eq. (47) is the elastoplastic constitutive equation
of whisker-reinforced metal±matrix composite. It
depends not only on Cme; hs;Ef and Efs but also on

the state of slip systems and ®ber-bundles. They
can be determined from the crystal and interface
sliding criteria in Eqs. (19) and (25).

4.2. Damage constitutive equation

By use of Eqs. (26)±(31), the average stress rates
of essential elements can be derived as

_Sm � �1ÿ Dme�Kme : _Eme ÿ _DmeS
�ef�
m ; �50�

_ss � �1ÿ Ds�hs _cs ÿ _Dss
�ef�
s ; �51�

_rf � �1ÿ Df�Ef _ef ÿ _Dfr
�ef�
f : �52�

Substitution of Eqs. (35)±(37) into Eqs. (50)±(52),
respectively, yields

_Sm � K�ef�
me : _Eme; �53�

_ss � h�ef�
s _cs; �54�

_rf � E�ef�
f _ef : �55�

Note that

K�ef�
me � �1ÿ Dme�Kme

ÿ 1

2�1ÿ Dme�
dDme

dEme

�

 Sm � Sm 
 dDme

dEme

�
;

�56�

h�ef�
s � �1ÿ Ds�hs ÿ ss

1ÿ Ds

dDs

dcs

; �57�

E�ef�
f � �1ÿ Df�Ef ÿ rf

1ÿ Df

dDf

def

: �58�

Irreversibility implies that as efj j or csj j decreases,
_Df � 0 or _Ds � 0. Hence, the e�ective moduli of
the slip system and ®ber-bundle can be further
expressed as

h�ef�
s �

�1ÿ Ds�hs ÿ ss

1ÿDs
Ws

when csj jP max� cm
s

�� ��; ccrj j� and csdcs > 0;

�1ÿ Ds�hs

when csj j<max� cm
s

�� ��; ccrj j� or csdcs6 0;

8>>><>>>:
�59�
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and

E�ef�
f �

�1ÿ Df�Ef ÿ rf

1ÿDf
Wf ;

when efj jP max� em
f

�� ��; ecrj j� and ef def >0;

�1ÿ Df�Ef ;
when efj j<max� em

f

�� ��; ecrj j� or ef def 6 0;

8>><>>:
�60�

respectively.
When damage ceases to grow, the e�ective

sti�ness tensor Eq. (56) of the elastic medium be-
comes

K�ef�
me � �1ÿ Dme�Kme: �61�

This is the same as that described previously. It
can be seen that the damage-rate e�ect of the
uniform material has little in¯uence and it will not
be discussed here.

Therefore, substituting K�ef�
me ;E

�ef�
f ; and h�ef�

s for
Km;Ef ; and hs into Eqs. (47)±(49), there results the
elastoplastic damage meso-constitutive relation. It
depends not only on the damage state but also on
the damage rate e�ect.

The predictive capability of the derived con-
stitutive relation will be presented in Part II [20] of
this work.
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