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Numerical Analyses of Discrete Gust Response for an Aircraft
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Based on Navier–Stokes equations and structural and flight dynamic equations of motion, dynamic responses in
vertical discrete gust flow perturbation are investigated for a supersonic transport model. A tightly coupled method
was developed by subiterations between aerodynamic equations and dynamic equations of motion. First, under
the assumption of rigid-body and single freedom of motion in the vertical plunging, the results of a direct-coupling
method are compared with the results of quasi-steady model method. Then, gust responses for the one-minus-cosine
gust profile are analyzed with two freedoms of motion in plunging and pitching for the airplane configurations
with and without the consideration of structural deformation.

Introduction

G UST load is one of the important dynamic loads considered
in aircraft structure design. Because of its multidisciplinary

nature with aerodynamics, flight dynamics, aeroelasticity, and at-
mospheric turbulence, until now, only the doublet-lattice, unsteady
linear aerodynamic code DLM, coupled with the equation of motion
of flexible vehicle, was used for gust response analysis.1−3

Gusts in nature tend to be random. The early design methods
for gust loads were based on a single discrete gust having a one-
minus-cosine velocity profile. Recently, the statistical discrete gust
method and the power spectral density method4 in the frequency
domain have been used to define the gust loads, however, which
are still hard to combine with the modern Navier–Stokes numerical
method.

In recent years, for the motion of rigid vehicles, the path of stores
during the separation phase has mainly been investigated with the
computational fluid dynamics (CFD) algorithm coupled with a six-
degree-of-freedom (6DOF) algorithm.5−8 For the motion of a flexi-
ble body, only Leishman and his team at the University of Maryland
did this kind of work for the rotor blades. Insofar as the authors
know, the computation of gust response with the coupling method
has still not been reported. In this paper, the fully implicit multiblock
Navier–Stokes aeroelastic solver implemented by Yang et al.,9 cou-
pled with the flight and structural dynamic equations of motion,
has been developed to simulate gust dynamic responses, which can
model the motion of rigid or flexible vehicles. Because it is hard to
find the structural data of a flexible vehicle, the supersonic trans-
port (SST) designed by National Aerospace Laboratory of Japan
(NAL),10 which has high rigidity, is taken as our calculated case. To
study the effects of dynamic response due to flow perturbation and
airplane motion, which involves only the consideration of vertical
plunging motion, a comparative study was first done for the airplane
in the harmonic flow perturbation with the direct-coupling method
and the quasi-steady model method. Then, the gust responses in a
one-minus-cosine gust velocity profile are analyzed with two free-
doms of motion in plunging and pitching, with and without the
consideration of structural deformation.
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Aerodynamic Equations and Numerical Method
Aerodynamic governing equations are the unsteady, three-

dimensional, thin-layer Navier–Stokes equations in strong conser-
vation law form, which can be written in curvilinear coordinates
as

∂t Q̂ + ∂ξ F + ∂ηG + ∂ζ H = ∂ζ Hv + SGCL (1)

The source term SGCL is obtained from the geometric conservation
law (GCL) for a moving mesh.11 In the formulation, all variables
are normalized by the appropriate combination of freestream den-
sity, freestream velocity, and mean aerodynamic chord length. The
viscosity coefficient µ in Hv is computed as the sum of laminar and
turbulent viscosity coefficients, which are evaluated by Sutherland’s
law and the Baldwin–Lomax model.12

The lower-upper symmetric Gauss–Seidel (LU-SGS) method
(see Ref. 13), employing a Newton-like subiteration, is used for the
solution of Eq. (1). Second-order temporal accuracy is obtained by
utilization of a three-point backward difference in the subiteration
procedure. The numerical algorithm can be deduced as
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Here, φ = 0.5, and Q p is the subiteration approximation to Qn + 1.
As p → ∞, Q p → Qn + 1. The deduced subiteration scheme reverts
to the standard first-order LU-SGS scheme for φ = 0 and p = 1.

The inviscid terms in Eq. (1) are approximated by the modified
third-order upwind HLLEW scheme of Obayashi and Guruswamy.14

For the isentropic flow, the scheme results in the standard upwind-
biased flux-difference splitting scheme of Roe, and as the jump
in entropy becomes large in the flow, the scheme turns into the
standard HLLEW scheme. The thin-layer viscous term in Eq. (1) is
discretized by second-order central difference.

For multiblock-grid applications, the Navier–Stokes equations
are solved in each block separately. To calculate the convective
and viscous fluxes in the block boundary, data communication is
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