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A Continuation Method of Parameter Inversion for Non-Equilibrium
Convection—Dispersion Equation *
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Based on the homotopy mapping, a globally convergent method of parameter inversion for non-equilibrium
convection-dispersion equations (CDEs) is developed. Moreover, in order to further improve the computational
efficiency of the algorithm, a properly smooth function, which is derived from the sigmoid function, is employed
to update the homotopy parameter during iteration. Numerical results show the feature of global convergence
and high performance of this method. In addition, even the measurement quantities are heavily contaminated

by noises, and a good solution can be found.

PACS: 02.30. Zz, 02.60. Pn, 47. 55. Mh

Over recent years, the study of solute transport in
porous media has attracted considerable attention.!*?
The non-equilibrium convection-dispersion equation
(CDE) has been successfully used to describe the pro-
cedure of many kinds of solute transport in porous
media, such as heavy metal ion transport through un-
saturated soils.l®] The dimensionless form of the one-
dimensional non-equilibrium CDEs can be expressed
as follows:4]

ac  a(6C)
Kpom+—5—+ pKy(1 - S)C — pKpvS
9 aCy\  9(qC)
Y (O‘qaz> A (1)
a8
5 = Kall = S)C — Kps, (2)

where C' and S are the dimensionless solute concentra-
tions associated with the solution and solid phases of
the soil, K is the sorption distribution coefficient, p is
the bulk density of the solid phases, 6 is the volumetric
water content, K 4 and K g represent the precipitating
rate and the dissolving rate respectively, v is the rela-
tive maximum sorption capacity, « is the mechanical
dispersion coefficient, and ¢ is Darcy’s velocity.
Under appropriate initial and boundary condi-
tions, Egs. (1) and (2) can be solved by some numeri-
cal methods, such as the finite element method (FEM)
or the finite difference method (FDM), and then the
concentration distribution of the solute in porous me-
dia can be obtained. Obviously, the capability of the
equation to simulate reality deeply depends on the
possibility that determines the values of the govern-
ing parameters with accuracy. However, some param-
eters, which include a, K, K4, Kpg, and =, are in
general not directly measurable, so they have to be
estimated by parameter inversion on the basis of the
available observed data. The discrete form of this in-

version problem is generally formulated to the follow-
ing nonlinear optimization problem:

min J(p) = %HC’(p) —Cpl?, (3)

in which p = [a, K, K4, Kp,7] is a vector whose com-
ponents are unknown parameters, C(p) and Cg are
the calculated and observed solute concentrations at
the observation position respectively.

There are mainly two kinds of methods to solve
the inverse problem for Eq. (3). One are the so-called
heuristic algorithms and the other are the gradient-
based methods. Both methods have their advantages
and disadvantages. The former, such as the Genetic
Algorithms (GA),[58 belong to the random search
methods, in which the initial solution need not be
carefully selected, and the global solution can also be
obtained. However, these methods usually consume
much computation time. In contrast, the gradient-
based methods, such as the Levenberg—Marquardt
method,[" ! which use the gradient of the objective
function during iteration, are generally more effective
than the heuristic algorithms. However, they are lo-
cally convergent. In other words, an improper initial
solution may lead to a divergent iteration process.

The present status naturally motivates us to de-
velop a global convergence method with high perfor-
mance for this problem. In this Letter, a homotopy-
based continuation method is proposed. Homotopy is
an important concept of topology. Watson et al.[10~12]
developed a series of global convergence methods for
solving the Brouwer fixed-point problems, nonlinear
systems of equations, nonlinear optimization problems
and other problems by employing homotopy map-

pings. To our problem, by applying the optimality
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condition, an equivalent system of Eq. (3) can be ob-
tained in the form of

{30(17)
op

|"1c@) - ¢l = 0. (4)

To simplify the representation, let G = 9C(p)/Op
and C = C(p).
The homotopy map of Eq. (4) is constructed as

H(p,\) =(1-)N[G"C - G"Cg]+Ap-p°)
=0, Xelo,1], (5)

where A is an embedding parameter, i.e. homotopy
parameter; p° is an initial estimation of solution. Ob-
viously, when A = 1, the solution of Eq. (5) can be ob-
tained immediately, i.e. p = p°. When A = 0, Eq. (5)
transforms to Eq. (4). Therefore, if the homotopy pa-
rameter can track through a proper path from one to
zero, the solution of original problems of Eq.(4) can
be obtained. This is the basic idea of the homotopy
methods. As A changes, by using Taylor series expan-
sion at the nth iteration step, the linearized version of
formulation (5) can be obtained to be

(1-A"{G"[C"+G(p—p")] -CEr}+\"(p—p") = 0,

(6)
where A\ and C" = C(p") are the homotopy pa-
rameter and the calculated concentration at the n-th
iteration step respectively. Let Ap = p — p™, then
Eq. (6) can be rewritten as

[(1-A"G'G +\"I|Ap = (1 - \")G"(C" - CEg),
p"tl=p" + Ap, (7)

in which I is the unit matrix.

The strategy of determining the homotopy param-
eter A" in Eq.(7) is very important. Generally, it
can be determined by solving a series of ordinary dif-
ference equations (ODEs),["=1% but this ODE-based
method will not be appropriate to our problem. As is
well known, the observed quantities will be inevitably
contaminated by observation errors; by using the sin-
gular value decomposition!"®! analysis, we can know
if a proper value of A, but not zero, was chosen at
the end of iteration, and the observation noises can

Table 1.

Numerical inversion results for different initial values of parameters.

be restrained effectively. Hence there are two crite-
ria for updating the homotopy parameter that should
be abided by. First, in order to ensure a stable itera-
tion process, A should be diminished along a smooth
path during iteration. Second, to restrain the mea-
surement errors, A should be terminated at a proper
point, which may be close to zero, but should be un-
equal to zero. Here we propose a function, which is
derived from the sigmoid function of the neural net-
works, as follows:

n 1
ECe ®

where n is the number of times of iteration, § and
Ny are the adjustable parameters. It is clear that
this function which we call the quasi-sigmoid function
could naturally meet the two requirements mentioned
above. Parameter Ny is mainly used to ensure the sta-
bility of computation at the early stage of iteration,
while 8 can balance the stability and the efficiency of
computation. The lower value of Ny and 8 can accel-
erate iteration, but may lead to a divergent process.
In our problems, we suggest that Vg should be an in-
teger from 0 to 5, and (8 should be chosen from 0.01
to 0.5.

In order to examine the method, transport pa-
rameters of cadmium ions through unsaturated soils
are estimated. A laboratory soil column experi-
ment method is adopted to collect the experimen-
tal data; detailed information about the experiment
can be found in Ref.[4]. Equations (1) and (2)
are numerically solved by using the FEM. For com-
parison, the homotopy method and the widely used
Levenberg-Marquardt (LM) method are simultane-
ously employed to solve this problem. Two examples
are carried out: the first example is based on the vir-
tual experimental data, while the second is based on
practical observation.

The main aim of the first example is to test the
convergence of the method. The detailed procedure is
as follows: first, the values of parameters are given,
then substitute them into Egs. (1) and (2) and the
“true” concentration can be calculated. Next some
random noises with different intensity are added to
the true concentration for simulating experimental

IT is the number of iteration; LM denotes the

Levenberg-Marquardt method; HM denotes the homotopy method. The true parameters are [0.6835, 0.1154, 1.9298, 0.00255,

0.6037].

Initial values

Inversed values

No —3 Kcq Ka Kp v Kca Ka Kp v T
HM 06835 0.1154 1.9298 0.00255 0.6037 10
105 05 30 05 05 1p 6835 0.1154 1.9298  0.0026 0.6037 24
HM 0.6835 0.1154 1.9298 0.00255 0.6037 41
2 30 05 30 05 05 gy 06835 01154 1.9298  0.0025 0.6037 18
HM 0.6835 0.1154 1.9298 0.00255 0.6037 29
3 05 05 60 05 05 7N 06835 01154 1.9298 0.00255 0.6037 34
HM 06835 0.1154 19298 0.00255 0.6037 37
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errors. Finally, we estimate the parameters from dif-
ferent initial values based on the virtual experimental
data. In this example, S and Ny of formula (8) are
evaluated as 0.5 and 0 respectively. All the numerical
results are presented in Tables 1 and 2.

In Table 1, different initial values of computation
are selected: in the cases 1-3, the parameters can be
estimated accurately by both methods. In case 4, the
start point is far away from the true values of the pa-
rameters, and the Levenberg—Marquardt method fails,
while the homotopy method works very well. These
results show the feature of global convergence of the
homotopy method. In Table 2, although the noise is

relatively intensive, the distance between the true and
the calculated result is not very great. These results
show the capacity of restraining noise of the homotopy
method.

Table 2. Numerical inversion value for different noise levels.
NA is the noise intensity, the initial values of parameters are
[0.5, 0.5, 3.0, 0.5, 0.5]. The true parameters are [0.6835, 0.1154,
1.9298, 0.0026, 0.6037].

Inversed results

NA o Kca Ka Kp v T
1% 0.6532 0.1130 1.8786  0.0028 0.6021 10
2% 0.6567 0.1151 1.8582 0.0028 0.6027 10
4% 0.5877  0.1092 1.7918 0.0025 0.6003 11
8% 0.6889 0.1199 1.8117 0.0004 0.5960 10

Table 3. Experimental conditions. Here L denotes the height of soil sample, PH represents the pH value of the solution, AP is the
pressure difference between two ends of the soil sample, Cp is the initial concentration of cadmium ions in the pollutant solution,
Ty denotes the time to add pollutant solution, T2 denotes the time to add distilled water, 6 denotes the volumetric water content,

p denotes the bulk density of dry soil, and ¢ is Darcy’s velocity.

No L (cm) PH AP (atm) Cp (mg/m3) Ty (h) T (h) 0 p (cm/g3)  q (cm/h)
1 8.0 2.0 0.2 2550 6.0 6.0 0.2375 1.7809 1.5649
2 8.0 6.0 0.2 12406 8.0 8.0 0.2141 1.7924 0.9796
3 10.0 6.0 0.05 6939.6 3.0 3.0 0.2572 1.8190 2.9426
4 7.5 6.0 0.3 23043 9.0 9.0 0.2203 1.8673 0.9717
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Fig. 1. Experimental and fitted breakthrough curves.
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The second example is based on the practical ex-
perimental data, totally four kinds of soil samples are
considered under different conditions, correlated ex-
perimental conditions are listed in Table 3.

In cases 1-3, 8 and Ny of formula (8) are evalu-
ated 0.5 and 0; in case 4, they are evaluated 0.01 and
0 respectively. The computational results are listed
in Table 4. The experimental and the fitted break-
through curves are shown in Figs. 1(a)-1(d).

Table 4. Parameters by different inversion methods with the
initial values [0.5, 0.5, 0.5, 0.5, 0.5].

Num. a K Ka Kp 0% IT
LM 0.4624 0.1071 2.6904 0.0040 0.5700 18

1 HM 0.4623 0.1071 2.6900 0.0040 0.5700 18
LM 0.4574 0.0949 1.5555 0.0010 0.4953 24

2 HM 0.4562 0.0949 1.5528 0.0010 0.4953 16
LM 0.6142 0.0907 3.6400 0.0031 0.4744 33

3 HM 0.6143 0.0907 3.6407 0.0031 0.4744 23
4 LM 0.2310 0.1033 1.2558 0.0290 0.1460 300

HM 0.2716 0.1184 2.5473 0.0419 0.1131 69

As the results show in Table 4 and Fig. 1, in cases
1-3, the good solution points are obtained by both
methods, while the homotopy method is generally
more effective than the LM method. In case 4, as
is shown in Fig. 1(d), apparently the measurement er-
rors are heavier than the other three cases. Even after
300 iterations, a satisfied solution cannot be obtained
by using the LM method; while by using the homo-
topy method, a good solution can be found after 69
iterations.

Based on our investigation, we can conclude that
the continuation method presented is globally conver-

gent and highly efficient. In addition, the measure-
ment noises can be effectively restrained. In addition,
this method can also be directly extended to solve
other physical inverse problems.

The authors wish to thank Professor LI Xingsi and
Professor LI Baoyuan of Dalian University of Technol-
ogy for their kind help.
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