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Applicability range of Stoney’s formula and modified formulas
for a film/substrate bilayer
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In addition to the layer thickness and effective Young’s modulus, the impact of the kinematic
assumptions, interfacial condition, in-plane force, boundary conditions, and structure dimensions on
the curvature of a film/substrate bilayer is examined. Different models for the analysis of the bilayer
curvature are compared. It is demonstrated in our model that the assumption of a uniform curvature
is valid only if there is no in-plane force. The effects of boundary conditions and structure
dimensions, which are not �fully� included in previous models are shown to be significant. Three
different approaches for deriving the curvature of a film/substrate bilayer are presented, compared,
and analyzed. A more comprehensive study of the conditions regarding the applicability of Stoney’s
formula and modified formulas is presented. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2178400�
I. INTRODUCTION

Stoney’s 1909 formula1 serves as a cornerstone for the
analysis of curvature based measurements. Stoney’s formula
has been modified many times for the purpose of evaluating
bilayer and multilayer structures with arbitrary layer thick-
ness ratios.2–13 Klein made comments on the accuracy of
some modified Stoney formulas mentioned above.14 The as-
sumption of a uniform curvature is explicitly or implicitly
used in the context of bilayer or multilayer structures mod-
eled as either beams or plates.2–13,15,16 Among these studies,
Freund et al., in particular, presented an excellent analysis of
the film/substrate bilayer and multilayer deflection due to
lattice mismatch.7–9 Freund et al. also noted that the assump-
tion of a uniform curvature is not valid for large nonlinear
deformations.7,9 The validity of the kinematic assumption of
a uniform curvature is examined in this paper. Two different
models of the film/substrate system are examined and com-
pared. It is demonstrated that the assumption of a uniform
curvature is not valid even in the case of small linear deflec-
tions if there are in-plane forces. Usually the film/substrate
longitudinal strain consists of two parts: the strain due to
stretching and the strain due to bending.7 The stretching
strain is directly related to the in-plane force, which can sig-
nificantly affect the deflection. Physically, thermal and intrin-
sic stresses due to film growth are the two major sources of
in-plane stresses and forces.15

A model that excludes the kinematic assumption of a
uniform curvature is presented. The assumption of a uniform
curvature leads to a conclusion that structural length and
boundary conditions have no influence on the curvature. We
demonstrate that this is true only if there is no in-plane force.
The effect of the interface condition on the curvature is also
discussed. Specifically, this paper presents an analysis of the
deflection of an isotropic film/substrate bilayer due to lattice
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mismatch as a demonstration example. The analysis can be
extended to the bilayer deflection induced by other mecha-
nisms.

II. LATTICE MISMATCH INDUCED DEFLECTION
OF A FILM/SUBSTRATE BILAYER

A. Strain distribution due to lattice mismatch

In Fig. 1, Mf and hf are the effective Young’s modulus
and layer thickness of the film. Ms and hs are the effective
Young’s modulus and layer thickness of the substrate. For
the heteroepitaxial growth of a film on a substrate, the mis-
match strain �m is defined as7

�m =
as − af

af
. �1�

where af and as are the lattice parameters of the film and the
substrate, respectively. The lattice-mismatch induced strain
in the film � f and the lattice-mismatch induced strain in the
substrate �s are determined by the following equations:7

� f − �s = �m,

�2�
Mf� fhf + Ms�shs = 0.

The first equation is the compatibility condition. The second
derives from Newton’s third law, which states that the force
acting in the film layer has the same magnitude but the op-
posite direction of that acting in the substrate. Here the film
and substrate are assumed to have the same uniform width.
The strains � f and �s as obtained from Eq. �2� are as follows:

� f = �m
Mshs

Mfhf + Mshs
, �s = − �m

Mfhf

Mfhf + Mshs
. �3�

Equation �3� clearly indicates that if the strain of one layer is
negative, that of the other layer is positive. This implies that

there is a bending moment due to the mismatch strain, and
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therefore, the film/substrate system will be subject to bend-
ing deformation.

B. Circular film/substrate system

Figure 1�a� specifies the cylindrical coordinate system.
The film and substrate materials are assumed isotropic and
the deformation is assumed axisymmetric. For the in-plane
normal strains, �rr and ���, the following kinematic assump-
tion holds:7

�rr = ��� = ��o + � f − �z , 1
2hs � z �

1
2hs + hf

�o + �s − �z , − 1
2hs � z �

1
2hs.

� �4�

�o is the uniform in-plane strain due to stretching. The sym-
bol � designates the curvature. The film/substrate system has

the following potential energy:

composite structure.
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V��o,�� = 2���
0

R �
1/2hs

1/2hs+hf

Mf��o + � f − �z�2rdzdr

+ �
0

R �
−1/2hs

1/2hs

Ms��o + �s − �z�2rdzdr	 , �5�

where R is the radius of the film/substrate system. The equi-
librium requires the potential energy V��o ,�� to be stationary
and therefore,

�V��o,��
��o

= 0,
�V��o,��

��
= 0. �6�

Note that no boundary conditions are required here to derive
the curvature �. From Eq. �6�, � is found equal to �F, which
is
�F =
�St�1 + �hf/hs��

1 + 4�hf/hs��Mf/Ms� + 6�hf/hs�2�Mf/Ms� + 4�hf/hs�3�Mf/Ms� + �hf/hs�4�Mf/Ms�2 . �7�
�F is the curvature as derived by Freund though Freund set
� f =�m and �s=0 in Eq. �4�.7 The symbol �St designates
Stoney’s curvature and is defined as follows:7

FIG. 1. �a� Schematic diagram of the film/substrate system in cylindrical
coordinates. R is the radius. The film has an effective Young’s modulus Mf

and a thickness hf. The substrate has an effective Young’s modulus Ms and
a thickness hs. �b� Rectangular coordinate systems as in Timoshenko’s
model. M1 and F1 are the moment and the force per unit width acting in the
film layer. M2 and F2 are the moment and the force per unit width acting in
the substrate layer. �c� shows the rectangular coordinate system in energy
method. The abscissa originates at the neutral plane of the film/substrate
�St =
6f

Mshs
2 =

6Mfhf�m

Mshs
2 . �8�

For hf /hs�1, f represents the surface stress and

lim
hf/hs�1

�F = �St. �9�

Note that �o and R do not appear in the �F expression as
given by Eq. �7�. In Eq. �6�, an implicit assumption of a
uniform curvature is made.7 We will demonstrate that if Eq.
�4� applies, the assumption is true. However, in the next sec-
tions, we will demonstrate that a different and refined kine-
matic assumption rather than Eq. �4� should be used during
the derivation. When the refined kinematic assumption ap-
plies, the assumption of a uniform curvature is not true any
more when �o�0. Now returning to Eq. �4�, we replace � by
�rr and treat �o as a variable parameter. The symbol � desig-
nates the transverse displacement and �rr=d2� /dr2. By ap-
plying the principle of minimum potential energy �PMPE�,
which means �V=0, we derive the following governing
equation

d

dr
� d

dr

r

d2�

dr2�	 = 0. �10�

We solve this equation and find the curvature by letting �
=�rr. The essential difference between Eqs. �10� and �6� is
that there is no uniform curvature assumption in Eq. �10�.
Equation �10� is solved to obtain

��r� = C1r2 + C2r ln r + C3r + C4, �11�

where Ci �i=1,2 ,3 ,4� are constants to be determined. Since
the system is axisymmetric, d� /dr=0 at the center �r=0�,

and
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d�

dr
= 2C1r + C2 + C2 ln r + C3. �12�

Because limr→0�ln r�→	, C2=0. Therefore, independent of
the boundary conditions at r=R, the curvature ��rr� remains
uniform ��rr=2C1�. We also note that if Eq. �4� applies, �o

does not appear in either the governing equation or the
boundary conditions.

C. Timoshenko’s model

Figure 1�b� shows the two rectangular coordinate sys-
tems of Timoshenko’s model. Timoshenko’s 1925 paper con-
cerns with the thermal stress induced deflection of a bilay-
ered composite made of two materials with different
coefficients of thermal expansion.17 The essence of Timosh-
enko’s model is to assume that an unknown force couple acts
in the upper and lower layers. The unknown force couple is
related to the curvature of the bilayer and determined by an
interfacial constraint condition. Recently, Yang and Li ex-
tended this concept to the diffusion-induced deflection of bi-
layered and multilayered beams.16 Here we summarize Ti-
moshenko’s model and apply it to the lattice-mismatch
induced deflection of a film/substrate bilayer.

In Fig. 1�b�, F1 and F2 are the forces per unit width
acting in the upper and lower layers; M1 and M2 are the
moments per unit width acting in the upper and lower layers.
The equilibrium requires the balance of both force and mo-
ment, therefore,

F1 + F2 = 0, �13�

and

M1 + M2 − F1
hf

2
+ F2

hs

2
= 0. �14�

F1 and F2 are the force couple to be solved. From Eq. �13�,
we have

F1 = P = − F2. �15�

Substitute it into Eq. �14�, we have

P�hf + hs�
2

= M1 + M2. �16�

The in-plane �longitudinal� strains of the film and substrate,
as in the beam theory, can be expressed as follows:

duf�x�
dx

= �o + � f +
P

Mfhf
−

z



, −

hf

2
� z �

hf

2

�17�
dus�x�

dx
= �o + �s −

P

Mshs
−

z



, −

hs

2
� z �

hs

2
,

where uf and us are the in-plane displacements of the film
and substrate, respectively. If �o+� f and �o+�s represent ther-
mally induced strains of layers, Eq. �17� matches the original
Timoshenko’s model. For a beam structure, Mf =Ef and Ms

=Es. For a plate structure that bends to a cylindrical surface,
Mf =Ef / �1−� f

2� and Ms=Es / �1−�s
2� �Ef and Es and � f and �s

are Young’s moduli and Poisson’s ratios of the film and sub-
18
strate, respectively�. The symbol 
 designates the radius of
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the curvature. In the coordinate systems shown in Fig. 1�b�,
1 /
=d2� f�x� /dx2=d2�s�x� /dx2, where � f�x� and �s�x� are the
transverse deflections of the midplanes of the film and sub-
strate, respectively. In general, � f�x���s�x�, but their deriva-
tives are assumed to be the same.19 The linear curvature-
moment relation yields the following equations:

M1 = −
Mfhf

3

12

, M2 = −

Mshs
3

12

. �18�

Substituting Eq. �18� into Eq. �16�, we have

�T =
1



= −

6P�hf + hs�
Mfhf

3 + Mshs
3 . �19�

Equation �19� gives the curvature of Timoshenko’s model.
So far, P is still unknown. To obtain P, the compatibility
condition at the interface is used, i.e.,

�o + � f +
P

Mfhf
+

hf

2

= �o + �s −

P

Mshs
−

hs

2

. �20�

Physically, Eq. �20� states that there is no slip at the
interface,20 which is an ideal case. In this paper, we only
model and discuss the ideal case. However, in real world
situations, interfacial slip occurs. For example, the formation
of an amorphous layer and dangling bonds in some regions
between the two crystals results in the weakly bonded inter-
face areas.21–23 This will reduce the overall interface
adhesion.23 For a nonideal or damaged interface,24 the inter-
facial slip arises. Both experiment and theoretical analyses
show that the interfacial slip greatly influences the stress dis-
tribution inside the layer.20,25 Therefore, the deflection and
curvature of the bilayer are affected. The interface layer
models including the shear-lag model26 and lap-shear
model27,28 can be used to model the nonideal case by allow-
ing interfacial slip.20 From Eq. �20�, P is found to be

P =
− �m

1/Mfhf + 1/Mshs + 3�hf + hs�2/�Mfhf
3 + Mshs

3�
, �21�

keeping in mind that � f −�s=�m. Again, we note that �o and
length L do not appear in the curvature solution in Timosh-
enko’s model. The boundary conditions are not used, either.
If hf /hs�1, Eq. �21� reduces to

lim
hf/hs�1

P = − Mfhf�m = − f , �22�

and Eq. �19� yields

lim
hf/hs�1

�T = −
6P

Mshs
2 =

6f

Mshs
2 = �St. �23�

Unlike Timoshenko’s model, the derivation of �F does not
assume a constraint force couple. In Eq. �4�, continuity of
strain across the interface is assumed, and the effective
Young’s moduli of the two layers are different. This results
in the discontinuity of stress across the interface, which is
equivalent to the constraint force couple in Timoshenko’s
model. A different approach adopted by Röll,2 Klein and
Miller,10 Hsueh,11 and Hu and Huang13 also leads to �T. They

first postulate an equation similar to Eq. �4� and then use the
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equilibrium conditions of Eqs. �13� and �14� to derive the
curvature.

For arbitrary hf /hs, no one has pointed out that the
relation,29

�F = �T, �24�

holds.

D. In-plane force and boundary condition effects

Figure 1�c� shows the rectangular coordinate system for
a film/substrate bilayer. In this coordinate system, as the or-
dinate originates at the neutral plane, Eq. �4� must be rewrit-
ten as follows:

�xx = ��o + � f − z
d2��x�

dx2 , hs − hc � z � hs + hf − hc

�o + �s − z
d2��x�

dx2 , − hc � z � hs − hc, 

�25�

where �xx is the in-plane strain, and ��x� is the deflection of
the neutral plane, which is located at30

hc =
Mfhf

2 + Mshs
2 + 2Mfhfhs

2Mfhf + 2Mshs
. �26�

If hf /hs�1, hc=1/2hs, i.e., for a very thick substrate, the
neutral plane is the middle plane of the substrate. If a non-
linear term is added to Eq. �25�,7 we have

�xx =�
�o + � f − z

d2��x�
dx2 +

1

2
�d��x�

dx
	2

,

hs − hc � z � hs + hf − hc

�o + �s − z
d2��x�

dx2 +
1

2
�d��x�

dx
	2

,

− hc � z � hs − hc.


 �27�

As explained in Ref. 31, the nonlinear term 1
2 �d��x� /dx�2 due

to neutral plane stretching will significantly affect the struc-
ture deflection and dynamics even for small deflections if
�o�0. The potential energy of the bilayer now amounts to

V =
1

2
�

−L

L ��
hs−hc

hs+hf−hc

Mf
�o + � f − z�xx +
�x

2

2
�2

dz

+ �
−L

L �
−hc

hs−hc

Ms
�o + � f − z�xx +
�x

2

2
�2

dz	dx , �28�

where �xx=d2� /dx2 and �x=d� /dx. Applying the PMPE
��V=0�, we derive both the governing equation and the
boundary conditions for the bilayer. The following governing
equation is obtained:

K4�xxxx − K2�xx − 6K5�x
2�xx = 0. �29�

Here we define Ki �i=1–5� as follows:

K1 = − Ms�s�hs
2 − 2hshc� − Mf� f�hf

2 + 2hfhs − 2hfhc�

= − Mf� f�hf
2 + hfhs� ,
K2 = �Mshs + Mfhf��o,
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K3 = −
�hs

2 − 2hshc�Ms

2
−

�hf
2 + 2hfhs − 2hfhc�Mf

2
, �30�

K4 =
�hs − hc�3 + hc

3

3
Ms +

�hf + hs − hc�3 − �hs − hc�3

3
Mf ,

K5 =
Mfhf + Mshs

4
.

This derivation makes use of Eqs. �2� and �26�. Note that
− 1

2K1 is the moment per unit width acting in the bilayer and
is independent of �o, K2 is the in-plane force per unit width
acting in the bilayer and depends on �o, K3 measures the
asymmetry of the bilayer resulting from different Young’s
moduli and thicknesses of the two layers, K4 is the bilayer
bending stiffness per unit width, and 4K5 is the bilayer lon-
gitudinal stiffness per unit width.

For free-free beams, the boundary conditions as derived
from the PMPE are

K1 + K3�x
2 + 2K4�xx = 0, x = − L,L ,

�31�
K2�x − K4�xxx + 2K5�x

2 = 0, x = − L,L .

If Eq. �25� is used, the K2�xx term in governing Eq. �29� and
K2�x term in the boundary conditions disappear. The differ-
ence between Eqs. �25� and �27� leads to the different gov-
erning equations and the boundary conditions, and thus will
significantly affect the curvature computation. We linearize
Eqs. �29� and �31� for a free-free beam in the small deflection
case,

K4�xxxx − K2�xx = 0, �32�

and

K1 + 2K4�xx = 0, x = − L,L ,

�33�
K2�x − K4�xxx = 0, x = − L,L .

The solution of Eq. �32� with its boundary conditions of Eq.
�33� is

��x� =�
−

K1

2K4 cosh�
L�
2 cosh�
x� + C3x + C4, �o � 0

K1

2K4 cos�
L�
2 cos�
x� + C3x + C4, �o � 0

−
K1

4K4
x2 + C3x + C4, �o = 0,



�34�

where 
 is defined as follows:


 =��K2

K4
� . �35�

In Eq. �34�, C3 and C4 are the constants to be determined.
For a free-free beam, the boundary condition K2�x−K4�xxx

=0 at x=−L and L is automatically satisfied; therefore, C3

and C4 cannot be determined. However, because C3x+C4 is a

rigid body displacement �rotation and translation�, C3x+C4
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makes no contribution to the system’s potential energy V and
thus has no influence on the governing equation or the
boundary conditions. From Eq. �34�, the curvature then be-
comes

�L�x� = �xx =�
−

K1

2K4 cosh�
L�
cosh�
x� , �o � 0

−
K1

2K4 cos�
L�
cos�
x� , �o � 0

−
K1

2K4
, �o = 0.



�36�

With Ki being as defined in Eq. �30�, it is straightforward to
demonstrate that

�F = �T = −
K1

2K4
. �37�

It follows that only if �o=0 �no in-plane force�, the bilayer
does have a uniform curvature. In addition, the structural
dimension 2L has no influence on the curvature. For either
�o�0 �tensile in-plane force� or �o�0 �compressive in-plane
force�, the curvature of the bilayer varies with position. Only
at the two free ends �x=−L and L�, �L is equal to �F. At the
center �x=0�, �L differs most from �F. For the tensile case
��o�0�, �L�0�=−K1 / �2K4 cosh�
L��=�F / cosh�
L�. For the
compressive case ��o�0�, �L�0�=−K1 / �2K4 cos�
L��
=�F / cos�
L�. Consider now the parameter 
L.


L =��K2

K4
�L �

���o�L
hf + hs

. �38�

Clearly, L appears as an argument in �L when �o�0 and the
parameter ���o�L / �hf +hs� qualitatively determines how the
curvature varies along the beam span.

For a beam with two ends simply supported �ss-ss�, we
have the following boundary conditions:

K1 + 2K4�xx = 0, x = − L,L ,

� = 0, x = − L,L , �39�

and the solution of ��x� is

��x�

=�
−

K1

2K4 cosh�
L�
2 �cosh�
x� − cosh�
L�� , �o � 0

K1

2K4 cos�
L�
2 �cos�
x� − cos�
L�� , �o � 0

−
K1

4K4
�x2 − L2� , �o = 0.



�40�

The curvature of a ss-ss beam has the same expression as
given in Eq. �36� for a free-free beam. So all the discussion
on the curvature of a free-free beam is the same for ss-ss

beam.
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Both free-free and ss-ss beams have symmetric bound-
ary conditions. We now examine the cantilever beam which
is asymmetric. For cantilever beams, the boundary condi-
tions are

� = 0, �x = 0, x = − L ,

K1 + 2K4�xx = 0, K2�x − K4�xxx = 0, x = L . �41�

The deflection solution of the cantilever beam is therefore

��x� =�
−

K1

2K4 cosh�2
L�
2 �cosh�
x + 
L� − 1� , �o � 0

K1

2K4 cos�2
L�
2 ��cos�
x + 
L� − 1�� , �o � 0

−
K1

4K4
�x2 + 2Lx − 3L2� , �o = 0,



�42�

and the curvature is

�L�x� = �xx =�
−

K1

2K4 cosh�2
L�
cosh�
x + 
L� , �o � 0

−
K1

2K4 cos�2
L�
cos�
x + 
L� , �o � 0

−
K1

2K4
, �o = 0.



�43�

Evidently, cantilever beams also have a uniform curvature
only if �o=0. Similar conclusions were reached by Zhang
et al.32

III. RESULTS AND DISCUSSION

Consider the case of a germanium film and a silicon
substrate, and assume a beam structure. We have Mf =Ef

=105.08 GPa and Ms=Es=150 GPa, af =0.565 74 nm and
as=0.543 06 nm, and hf and hs are fixed as hf =0.1 �m and
hs=1 �m. The curvature �F�Mf /Ms ,hf /hs� as given in Eq.
�7� clearly indicates the effect of Mf /Ms and hf /hs on the
curvature. For our purposes, we only vary L and �o to show
their effects on the curvature �L and introduce the following
dimensionless ratios:

�̄F = �̄T =
�F

�St
and �̄L =

�L

�St
. �44�

Figure 2 shows the �̄L variations along the free-free or ss-ss
beam span with different �o’s and L=5.5 �m ��hf +hs� /L
= 1

5
�. The contribution of the film thickness to the curvature

is evaluated by means of Eq. �7�, which yields �̄F

=0.805 81 thus indicating an error of about 20% when com-
pared with Stoney’s formula. For the nonzero in-plane force
case ��o�0�, we have �̄L= �̄F only at the two ends. For the
tensile in-plane force case ��o�0�, �̄L varies according to
��̄F / cosh�
L��cosh�
x�. At L=0, �̄L has a minimum value of
0.607 84 ��o=0.2% � and 0.695 422 ��o=0.1% �. For the
compressive in-plane force case ��o�0�, �̄L varies according

¯ ¯
to ��F / cos�
L��cos�
x�. At L=0, �L has a maximum value
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of 1.141 ��o=−0.2% � and 0.948 85 ��o=−0.1% �. Figure 3
shows the �̄L along the free-free/ss-ss beam span for different
�o’s and L=7.7 �m ��hf +hs� /L= 1

7
�. As L increases �hf and

hs are fixed�, the curvature becomes more and more sensitive
to the in-plane forces. At L=0, �̄L with a tensile in-plane
force now has the minimum values of 0.482 45 ��o=0.2% �
and 0.610 99 ��o=0.1% �. At L=0, �̄L with a compressive
in-plane load now has the maximum values of 1.781 02 ��o

=−0.2% � and 1.132 06 ��o=−0.1% �.
Figure 4 shows the �̄L variation along the cantilever

beam for different �o’s and L=5.5 �m ��hf +hs� /L= 1
5
�. Only

when �o=0, the state of a uniform curvature is reached. The
same �̄L= �̄F=0.805 81 applies to the entire beam span. It is
shown that for �o�0, �̄L varies according to
��F / cosh�2
L��cosh�
x+
L�. Its minimum is reached at the
fixed end of x=−L and �̄L=0.320 41 ��o=0.2% � and �̄L

=0.549 91 ��o=0.07% �. For �o�0, �̄L varies according to
��F / cos�2
L��cos�
x+
L�. Its maximum is reached at the
fixed end of x=−L and �̄L=1.479 96 ��o=−0.08% � and �̄L

FIG. 2. Variation of the ratio �̄L along the free-free beam span for hf

+hs /L= 1
5 . Strains �o’s are set equal to −0.2%, −0.1%, 0, 0.1%, and 0.2%.

FIG. 3. Variation of the ratio �̄L along the free-free beam span for hf
1
+hs /L= 7. Strains �o’s are set equal to −0.2%, −0.1%, 0, 0.1%, and 0.2%.

Downloaded 08 Mar 2006 to 159.226.230.175. Redistribution subject to
=1.3493 ��o=−0.07% �. Figure 5 shows the �̄L variation
along the cantilever beam with different �o’s and L
=7.7 �m ��hf +hs� /L= 1

7
�. For the tensile case, at x=−L, �̄L

=0.175 96 ��o=0.2% � and 0.407 77 ��o=0.07% �. Compared
to Fig. 4, the variation of �̄L for nonzero �o’s in Fig. 5 in-
creases dramatically.

IV. CONCLUSION

Our major conclusions are as follows. �i� In the absence
of in-plane force, the assumption of a uniform curvature is
always valid for small deflections; the �F or �T expressions
for curvature are accurate. The curvature is determined only
by layers’ effective Young’s moduli and the thickness ratio;
furthermore, �F=�St for a very thin film. �ii� If there are
in-plane forces, the kinematic assumption of a uniform cur-
vature is not valid. Boundary conditions, structure dimen-
sions, and in-plane force will all affect the variation of the

FIG. 4. Variation of the ratio �̄L along the cantilever beam span for hf

+hs /L= 1
5 . Strains �o’s are set equal to −0.08%, −0.07%, 0, 0.07%, and

0.2%.

FIG. 5. Variation of the ratio �̄L along the cantilever beam span for hf

+hs /L= 1
7 . Strains �o’s are set equal to −0.08%, −0.07%, 0, 0.07%, and
0.2%.
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curvature along the span. �iii� The kinematic assumption as
expressed by Eq. �25� does not include any in-plane force
effects in either the governing equation or the boundary con-
ditions. Only when the contribution of the nonlinear term
� 1

2 �d��x� /dx�2� due to the neutral plane stretching is included
in Eq. �27�, the in-plane force effects can be assessed. The
structure dimensions �size effect� and boundary conditions
can then affect both the deflection and the curvature.

Besides the six conditions concerning the applicability
range of Stoney’s formula,9 we introduce two more. �i� The
interface is “ideal” in the sense of no interfacial slip. �ii�
There is no in-plane force. These two conditions also apply
to the modified Stoney’s formula as �F.
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