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Abstract: By using Jagrangian methnd , the flow properties of a dusty-gas point source in

a supersonic free stream were studied and the particle parantelers in the near-symmerry- axis

regiom were obtained . It is demonstrated that fairly inertial particles travel along oscillating

and intersecting trajectories hetween the baw and termination shock waves . In this region,

formation of © multi-layer structure” in particle distribution with alternating low- and high-

density luyers is reveuled . Moreover, sharp accumulation of particles occurs near the

envelppes of particle trgjectories .
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Introduction

Dusty-gas . as a two-phase medium, is the suspension of particles and gas, which are known
as dispersed and carrier phase respectively . For such a system, relaxation process happens due to
great mass difference between the particle and gas molecule. In many dusty-gas flows, the
trajectories of Inertial particle may be oscillating . which results in appearance of regions with
multiple intersections of the particle trajcctorics'” . Numerical modeling of these effects arc of
greal significance in various naturally-occurring phenomena and practical engineering problems,
for example, in astrophysics { evaporation from a comet nucleus to its atmosphere ), acrospace
engineering ( flow from an under-expanded pozzle into oncoming flow), high technologies
t drying powdered materials in colliding-jet-sprayers) and so on.
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The study of two-phase flows with such regions requires the modification of the ordinary
dusty-gas model wherc the single-valueness of the particle parameters is assumed Tt also
nceessitates the development of numerical algorithms, which allow 1o distinguish the boundaries
of the regions with intersecting particle trajectorics and to calculate correctly the particle
concentration. Crowe and his co-authors™* have been published comprehensive reviews on
numerical methods of dilute gas-particle flows. Essentially, these methods fall inlo two
categories : Lagrangian and Bulerian. For our problem, the Eulerian approach fails due to non-
uniqueness of the dispersed phase parameters. However, the Lagrangian approach of applying a
statistical wveraging procedure to a large number of trajectories takes heavy computation costs.
Thereore, in the litcrature, for calculating dust parameters in these regions, so-called “farge-
particle” method or its modifications are used most widely but hey often inroduce to inadequate
accuracy in the particle concentration. Osiptsm’m suggested a aovel approach for calculating the
dispersed phase density. using the Lagrange form of the particle continuity equation. Recently,
Healy and Young © calculzted some 2-D cxamples to assess the Ositpsov methed and concluded
that it is more elegant and efficient than the traditional Lagrangian method. The present paper
improves the novel Lagrangian method and illustrates its application to the dusty-gas flows with
multiple trajectory intersection. This method makes it possible to investigate these two-phasc
systems where the particle concentration distributions have a multi-layer structure with sharp
accumulation near the trajectory envelopes.

J Problem Formulation

As a typical problem, we coosider a steady flow resulled due to the interaction of a

.

supersonic dusty-gas point source with a
hypersonic flow of a purc-gas. The flow
diagram is shown in Fig.!, where the dusty-
gas source with a constant mass flow rate of 1
cartier phase ¢ is located at point 0y and the

pure-gas has a free streamn velocity Vo in the
direction of negative axis 0.y, (Below, an
asterisk denoles the dimensional quoantities
when necessary}. In the flow from the source, %,
the termination shock wave | appears while the 0
bow shock wave 2 forms in the oncoming
flow. The inner and outer shock layers are w0
separated by the contact sueface 3. We assume :

that, prior to the termination shock wave, the Fig.l Flow diagram

gas teaches to the maximum speed V., and the

particles are in equilibrium with the carrier phase. Hence, the particle inertia manifests itself
behind the shock front 1. The particle motion is considered in the curvilinear coordinates (x° ,
v ') direeted along and in the normal to the termination shock surface. Concemning the dispersed
phase . we adopt the usual assumptions for a dilute dusty gasm : the particles are non-deformable

Ry -

spheres with uniform diameter 4 and mass m, the Brownian motion is ignored, and the volume
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fraction or mass concentration of the parficles are small epough to neglect their ctlects on the
carrier phase. Concerning the carrier phase, we assume that the colliding gases are perfect with
the conslant parameters of the adiabatic curve ¥, and 7, , respectively.

In such a one-way-caupling problem of two-phase flow, we obtain the following expressions
for discontinuity geometry hy using thin shock layer approximation of the pure gas[ﬂ :

a} The distance from ths source to the stagnation point:

L= [y + D8y )07 Vagdpa Vai 1™ (1)
b) The curvature radius of the contact surface at the stagnation point:
Ry = 3L7 /2. {2
¢) The Lthickness of the shock layer 1 ;
8" = e/Rg Va - B)la - b°). (3)

Heree, = (o / Vo0 {pnipi)™, 2 =2, b = 0.5(p" (D) p], 374, where the subscript 1¢
denotes the parameters behind the shock 1 on the symmetry axis and g * (Q) is the gas density
prior ta the shock 1 on the symmetry axis.

d) The thickness of the shock layer 2;

87 = ks Ro /(1 + (8Bxa/3)'). (4)

Here  wo = (- = 1)/ 7. + 1),

) The form of the contact surface in the polar coordinates (r” , p}:
77 = L plsing. (5)

Simitarly . the approximute formulas for the gas parameters between the how and termination
shock waves in the neighborhood of the symmetry axis can be determined analytically based on
supersonic flow theory'®***! and they are not reproduced here due to awkwardness.

To obtain the solution of the particle parameters ( denoted by the subscript s ), it is
convenient to introduce the nondimensional variables ;

x=zx"IR;, y=y"/cuBy, R=R"IRS, r.=r]IRJ.
u, o= u IVL, v,=v VL, T,= T iTp, p,=p lo5 (0).

Here Ty, and p, (0) are respectively the stagnation iemperature and the particle density on the
symmetry axis prior to the shock front 1. Due to the curvilinear coordinates, R{zx)and r (2),
which are the curvature radius and the distance from the symmetry axis to the surface of the shock
wave | tespectively, appear in the goveming equations.

In the nondimensional Lagrange coordinates {x,,t), where x, is the initial position of a
piven particle trajectory on the shock wave | and ¢ = ¢* Vo /Ry is the motion time of the
particle from Its initial position, the dispersed phase equations of motion and energy take the

¢ wing form:
dx, u, dy, v,
FTER LI T
auﬁ D( ) HBLE
G0 - AeDle - ud - g ”
A )
R - BF v V) — Eg’
aT, 26, .
3 = iﬁ_‘ﬂ#(r(?‘ - Tﬁ).
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ln the cquations above, H = 1 + &,y /R is Lame’s coefficient, 8 = 3mduy Ry /mVa the
relaxation parameter { here 4y is the viscosity of the gas 2 at the stagnation peint), € = ¢cple.
the speaific heat ration of the gas 2 and particle material, Pr the gas Prandtl number whiley =
2" Iuy, is the nondimensional gas viscosity. In this paper. we assume that dependence of
viscosily on temperature takes the exponential form g = T'“. Besides. I and G are the comrection

functions for the interphase transfer of momenwm and heat'''';

1. 0.427
n = (1 + 5Re;’-‘](l + exp(' gjﬁ))
(7]
. ‘ 1 PlH 1/'3
¢ = (1 +0.3Pr" Rel™) ( ¢ 3.an e LED2 T )
Re, Pr

Here Re, = p° | V" - V' | d/p’ is the slip Reynolds number of the particle and Ma, is the
Mach number of the flow past the particle. Obviously, these expressions take into account the
finiteness of the Reynolds number, Mach number and Kaudsen number of the gas flow around the
particle . It should be pointed out that the gas velocily and temperature { u,v and T) in Eq.(6) are
nondimensional variables similar to those for the partcles while gas density p * s scaled w p,; .

2 Lagrangian Method

As well-known, the continuity equation of the dispersed phase in the curvilinear Duler
coordipates ( x, y ) fitted to the termination shock wave is written as;

A pugr.) 1 3 pev,r H)

ax Y, oy (8)
The corresponding equation in the Lagrange coordinates (x,,t) can be easily obtained
ro{xq)
pulmost) L= - rRTRIARIE 9)

Here J is the Jacobian of ansformation from the Buler coordinates to the Lagrange coordinates:

Ka¥a)? (xg,8) 3z, (xg,t)  u,(xp.1) aAJ’.;_(x(h"')
[= (l T ]u (xy,0) 3y " v,(%7.0) dxy ‘ (10)

Eq.{9) gives the relation between the initial and current values of the disperscd phase density,
p.(xy,0) and p,(x,.t), along a fixed particle wajectory ( x (x5,t), ¥ {xy,1)). In order to
calculate the particle concentration at any instant of time, we should determine the functions

x (%, 1)/32, and Iy {x,,1)/3 x, in relation (10) by differentiating the first four equations of

{6} with respect to x,:

IW {xy,t) W 2uly, R - RW

vl Hq%%a)’ ey
aW’n( ot bl 3

73-:?'7”7) = M“(‘( Wl :;-E + W1 ?Z [3)1" 'B(U - u.ﬁ)((u(;)’ -

“e W4 + T’;E/z ugr (R + ke, Wy}

RH + e (11h)
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a i My g
IWxyt) Wy (11c)
Jt K
W Lxp,t) i . dv dg . . ’ B
-5, — = ﬁ‘uG(W-l F W, 9 Wil+ 3y = v, ) () +
TncWo (R b W) ()
RH Ry
Here the superscript *'” nows the derivative with respect to x,, and the definitions of the four
functions W are as follows
. L?{L('xu W) .o ‘zua(xnv £) W, - rigxl, L) Y t_?_f,,(x”. i}
b 5;(1 T N AT CEN AN dxy I

In this way, the problem of determination of the dispersed phase paramelers is reduced to
solving the systern of ardinary differential equations (6), (11} and the relation (10) for various
initial values x, . For the calculations, required parameters of the carrier phase as well as their
space derivatives are obtained from the thin shock layer approximation theory as described before .
Based on the assumption of the equilibrium flow emitied from the dusty-gas point source, the
initial conditions at the termination shock wave in the neighborhood of the symmetry axis can be

given as:
.= s ¥ =0, w, o= O.Sx.)(p(()))’m, v, = (p(0)) vz

T, - T(0), W, =1, W, =050p0))", W;=W =0, p, =1

L:U:x

tierc p0) and 7°(0) are the nondimensional density and temperature of the gas prior to the
termination shock wave. In addition, it is obtained from (35) that for small x,: R{x,} = | 4+

1.5x5.
3 Numerical Results

From Eq.(6), it is known that the similarity crileria for the particles flow are 3, Rf.
cples- eple, and Pr, where Rb = Rej”/6, and Rey = po Vo, dl g, is the Reynolds number
of the free stream based on the particle diameter. The numerical calculation of the problems (6) .
110) and {11) were performed by the Kutia-Merson method for the flow media with the
following properties: ¥, = ¥, = 1.4, eyfes = 1, pplpp =1, @y = @y = 0.5, ¢, ¢, =
¢pfe, = land Pr = 2/3. The computation region along the generatrix of the termination shock
wave is 0 < z < 0.4 (in the neighborhood of the symmetry axis) .

Typical calculation results of gas and particle motions for Rb = 100 are plotted in Fig. 2,
where the solid lines 1 and 2 denote the contact surface and the bow shock wave respectively. The
calculated gas streamlines ( dashed lines) indicate that, due to the interaction between the
oncoming free stream and the point source flow, the gases | and 2 deflect both and move aside .
Pue 1o the inertia effect, the particles do not immediately follow after the motion change of the
carrier gas in the shock lavers. For example, a heavy particle may move across the contact
surface or even the bow shock wave. In our problem, veloeity slip and temperature jump between
the dispersed and carrier phases firstly appear behind the termination shock wave. In this non-
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cquilibrium state, the particles should exchange their momentum and energy with the gases. For
particles of large inertia, it takes quite a long time w perform the relaxation process between the
two phases. In the computations, we select two typical values for the inertia parameter: 3 = 0.0l
for the lfarge inertia particle and § = 1 for the small jnertia particle. The calculated particle
irajectorics demonstrate that two kinds of particle motion may occur: oscillatory type (curve 3 for
i =0.01) and monotonic type (curve 4 for § = 1).

Fig.2 Gas streamlines and

particle trajectories

Similar to the particle moton, depending on
the inerda parameter 3, different features may
appear in the thermodynamic behavior of the
particles. In Fig.3, the ume history of particle
temperature is shown for the particle moving along
the symmetry axis. Here Rb = 100 and § =0.01
ifor curve 1) or | (for curve 2). In our
calcuiations, the stagnation temperature of the
oncoming flow is greater than that of the source
flow and then the cold particles are heated after
they enter into the shock layers. As known above,
the heavy particles ( # =0.01) can enter into the

0.0 :
[t 10 20
i

Fig.3 Particle temperature on the

symmetry axis

Fig.4 Particle concentration distributions

outer shock layer while the light particles ( 8 = 1) move only inside the inmer shock layer.
Hence. the heavy particles can reach a higher temperature which is approaching the stagnarion
lemperature. Moreover, the healing rate also depends on the kind of the particle trajectory. For
the particles which perform the oscillations, the heating rate differs for different segments of the
trajectory corresponding 1o the shock layer 1, 2 and the external or internal gas flows (sec curve
11, In contrast to the heavy particles, the heating of the particles moving without oscillations

occurs in the shock layer 1 at almost constant rate (see curve 2).
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As menlioned above, by substituting the solutions of Eqs. (6) and (11) ino the relation
(10}, the particle concentration ¢an be determined. In Fig.4, for the case of Rb = 100 and 3 =
0.01, we plotted the density of three particle continua which intersect the line x = const: (a)
Before the first turnm {see curve ! {(x = 0, 0.1, 0.4)); (b) After the first but before the second
turn (see curves 2(x = 0, 0.1)and 4 { x =0.4)): (c) After the second but before the third
turn (see curves 3 ( 2 =0) and 5 ( x =0.4)) . The total density is the sum of the densities of
cach such continuum. As follows from the calculations, the contribution of the other coatinua of
the particles to the total density may be ignored. It is seen from Fig .4 that the particle distribution
has a multi-layer structure with alternating low- and high-density layers, and near the envelopes of
the particle trajectories, the particle concentration tends to infinite. In order to reveal the
mncchanism of the particle accumulation in detail, let us consider the oscillatory Lype of the
particle motion first. It is seen from Fig.2 that the particles with large inertia oscillate and
intersect the contact surface several times. At the turn points, the normal velocity of the particles
vanishes which results in an infinite particle density. In other words, the particles accumulate near
the envelopes of the particle trajectories {chain lines}. Between the accumulation regions there
oceur multiple intersections of the particle trajectories, which presents considerable difficultics of
calculating the particle pararaeters in this region using the Euler approach. The Lagrangian method
developed in this paper makes it possible to overcome these difficulties connected with non-
unigueness of the dispersed phase parameters. Of course, it should be noted that the neighborhood
of the contact surface is also a region of the particle accumulation. This region exists for both two
kinds of particle motion although it is the only possible accumulation mechanism for the
monotonic motion case. The accumulation effect in the near-contact-surface region is weaker than
that in the near-trajectory-cnvelope regions. The reason is that the normal velocity of the particle
near the contact surface does not become zero except x — = . Compared to the multiple
accurnulation case, for R6 < [0, 100], the single accumulation zone in the neighborhood of the
contact surface exists over a much wider range of the inertia parameter 3.

4 Conclusion

The novel Legrangian method for calculating the particle concentration was developed to
predict the flow structure formed near the symmetry axis when a supersonic flow of a pure-gas
cellides with a supersonic flow from a dusty-gas point source. In the region between the bow and
termination shock waves, the existence of zone with multiple intersections of the particle
trajectories was detected . The formation of multi-layer structure in the particle distribution, where
low- and high-density laye: appear alternatively, was revealed. The effect of sharp accumulation
and stratification of the dispersed phase in the shock layers may be of great imponance for
interpretation of experimental data on comet atmospheres and vericus relevant phenomena .
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