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SUMMARY

We derive a relationship between the initial unloading slope, contact depth, and the instantaneous
relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter with an arbitrary
axisymmetric smooth profile. Although the same expression is well known for indentation in elastic and in
elastic–plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that
the unloading rate is sufficiently fast. Finite element calculations are used to illustrate the relationship for
indentation using conical and spherical indenters. These results help provide a sound basis for using the
relationship for determining properties of viscoelastic solids using micro- and nano-indentation techniques.
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1. INTRODUCTION

Instrumented micro- and nano-indentation techniques are playing an important role in the
study of small-scale mechanical behaviour of ‘soft’ matters, such as polymers, composites,
biomaterials, and food products. Many of these materials exhibit viscoelastic behaviour,
especially at elevated temperatures. Modelling of indentation into viscoelastic solids thus forms
the basis for analysing indentation experiments in these materials. Theoretical studies of
contacting linear viscoelastic bodies became active since the mid 1950s by the work of Lee [1],
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Radok [2], Lee and Radok [3], Hunter [4], Graham [5, 6], Yang [7], and Ting [8, 9]. In recent
years, a number of authors have extended the early work to the analysis of indentation
measurements in viscoelastic solids [10–16].

One of the widely used approaches is to obtain the elastic modulus from the initial unloading
slope (Figure 1), dF=dh; using the well-known relationship [17–21],

dF

dh
¼

4G

1� n
a ¼

2Effiffiffi
p

p
ð1� n2Þ

ffiffiffiffi
A

p
ð1Þ

where G is the shear modulus, E ¼ 2G=ð1þ nÞ is Young’s modulus, n is Poisson’s ratio, a is the
contact radius, and A ¼ pa2 is the contact area. Equation (1) can be derived from the theory for
elastic contacts between flat surfaces and spheres [22], flat punches [22], and conical punches
[23]. Furthermore, Sneddon has derived expressions for load, displacement, and contact depth
for elastic contacts between a rigid, axisymmetric punch with an arbitrary smooth profile and an
elastic half-space [24]. Using Sneddon’s results, Pharr et al. [18] showed that Equation (1) holds
true for rigid indenters of arbitrary smooth profiles indenting elastic solids. Equation (1) has
also been applied to indentation experiments where plastic deformation occurs. Doerner and
Nix [17] suggested that if the area in contact remains constant during initial unloading, the
elastic behaviour might be modelled as that of a blunt punch indenting an elastic solid. Oliver
et al. [19] pointed out that Equation (1) can be used even when the contact area between the
indenter and the solid changes continuously as the indenter is withdrawn and the indenter does
not behave like a flat punch. We have recently shown that Equation (1) is true for indentation in
elastic–plastic solids with or without work hardening and residual stress [25]. On the other hand,
Lu et al. [26], and Kumar and Narasimhan [27] have recently suggested that Equation (1) may
not be applicable to indentation in viscoelastic solids. In this paper, we examine the validity of
Equation (1) for indentation in viscoelastic solids.

2. DERIVATION

We consider a rigid, smooth, frictionless, axisymmetric indenter of arbitrary shape, f(r), (Figure
2) indenting a viscoelastic solid that can be described by the following constitutive relationships
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Figure 1. Typical indentation load–displacement curve and initial unloading slope.
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[28, 29] between deviatoric stress and strain, sij and dij, and between dilatational stress and
strain, sii and eii,

sijðtÞ ¼ 2

Z t

0

Gðt� tÞ
@dijðtÞ
@t

dt

siiðtÞ ¼ 3

Z t

0

Kðt� tÞ
@eiiðtÞ
@t

dt ð2Þ

where G(t) is the relaxation modulus in shear and K(t) is the relaxation modulus in dilatation.
The time-dependent Young’s modulus and Poisson’s ratio are then given by EðtÞ ¼ ½9KðtÞG�
ðtÞ�=½3KðtÞ þ GðtÞ� and nðtÞ ¼ ½EðtÞ=2GðtÞ� � 1; respectively.

When G(t), K(t), and n(t) are time independent, Equation (2) reduces to the ones for elastic
solids. The corresponding indentation problem has been solved previously, for example by
Sneddon [24], for the contact depth and indenter displacement relationship:

h ¼
Z 1

0

f 0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx ð3Þ

and for the load and displacement relationship:

F ¼
4Ga

1� n
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0
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where x ¼ r=a: Using these relationships, Pharr et al. [18] derived Equation (1) for rigid
indenters of arbitrary smooth profiles indenting purely elastic solids.

Applying the theories developed by Lee and Radok [3], Graham [5], and Ting [8]
to the problem of indentation in viscoelastic solids and assuming time-independent
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Figure 2. Illustration of surface deformation by an axisymmetric indenter.
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Poisson’s ratio, we can write,
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where x ¼ r=aðtÞ:
Equations (5) and (6) become the familiar equations for conical indentation in linear

viscoelastic solids, where z ¼ f ðxÞ ¼ ða tan aÞx and a is the indenter half-angle. Specifically, the
relationship between contact depth, hcðtÞ; and the indenter displacement is given by, using
Equation (5),

hðtÞ ¼
p
2
aðtÞtan a ¼

p
2
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and that between force and displacement is given by, using Equation (6),
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Likewise, the equations for spherical indentation in linear viscoelastic solids, where
f ðxÞ ¼ 1

2
½ðaxÞ2=R� and R is the indenter radius, are given by
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Equations (7)–(10) are special cases of more general expressions derived by Graham [5] and Ting
[8]. They showed that Equations (7)–(10) are valid when the contact area is a monotonically
increasing function of time. The equations for unloading where the contact area decreases
monotonically have also been derived [5, 8], though they are considerably more complicated.
However, we have recently demonstrated that Equations (7) and (8) and Equations (9) and (10)
can be used to evaluate the initial unloading slope for conical [16,30] and spherical indentation
[31] in viscoelastic solids, respectively. In the following, we use Equations (5) and (6) to derive
the equation for initial unloading slopes for arbitrary indenter profiles.

Suppose unloading takes place at t ¼ tm with a constant unloading rate of dhðtÞ=dtjtþm ¼ �nh;
we have, using Equation (6) for 04t4tm þ Dt and Dt! 0;

Fðtm þ DtÞ � FðtmÞ
Dt

¼
4

ð1� nÞ

Z tm

0

dG

dZ

����
Z¼tm�t

d

dt
aðtÞ

Z 1

0

x2f 0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx

" #
dt

(

þ Gð0Þ
d

dt
aðtÞ

Z 1

0

x2f 0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx

" #)
ð11Þ

Copyright # 2005 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2006; 13:561–569

Y.-T. CHENG AND C.-M. CHENG564



Using Equation (5), the derivative in the second term on the right-hand side becomes,
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We now show that the last three terms on the right-hand side of Equation (12) cancel each other.
Using x ¼ r=a and dx ¼ dr=a; and the fundamental theorem of calculus, we obtain,

d

dt

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p df ðxÞ
dx

dx ¼
Z r¼aðtÞ

r¼0

@

@t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

r

aðtÞ

� �2
s0

@
1
A df ðrÞ

dr
dr ð13Þ

After evaluating the partial derivative in the integrand and using x ¼ r=a; we have
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Substituting Equation (14) in Equation (12),
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The initial unloading slope is then given by, using Equation (11),
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When the unloading rate, nh, is sufficiently fast, the second term on the right-hand side
approaches zero. Once this limiting case is reached, Equation (1) can be used to determine the
‘instantaneous’ moduli, Gð0Þ=ð1� nÞ or Eð0Þ=ð1� n2Þ; provided that the contact depth, hc or
area, A, is known as a function of hm ¼ hðtmÞ: The latter condition is provided by Equation (5)
for axisymmetric indenters of arbitrary profiles, which becomes Equations (7) and (9) for
conical and spherical indenters, respectively.

3. FINITE ELEMENT CALCULATIONS

We now demonstrate the validity of Equations (5) and (16) for conical [16, 30] and spherical [31]
indentation in linear viscoelastic solids using finite element calculations. We consider a
frictionless, rigid conical indenter of half-angle y ¼ 70:38 indenting an isotropic linear
viscoelastic solid. This indenter half-angle is chosen since its depth-to-volume relation is the
same as that for the Berkovich indenter so that the results are expected to be applicable to
Berkovich indentation.
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A three-parameter ‘standard’ linear viscoelastic model is used to describe the shear and
hydrostatic relaxation modulus (see Figure 3):

GðtÞ ¼G1 1�
G1

G1 þ G2
ð1� e�t=tsÞ

� �

KðtÞ ¼K1 1�
K1

K1 þ K2
ð1� e�t=tsÞ

� �
ð17Þ

where the relaxation time ts ¼ Z=ðG1 þ G2Þ: Various parameters are given as G1 ¼ 235MPa;
G2 ¼ 25:8MPa; K1 ¼ 688MPa; K2 ¼ 75:6MPa; and t ¼ 0:99 s: The parameters are chosen such
that Poisson’s ratio is time independent, though both G(t) and K(t) are time dependent.
Specifically, their values at t ¼ 0 and1 are as follows: Gð0Þ ¼ 235MPa and Gð1Þ ¼ 23:2MPa;
Kð0Þ ¼ 688MPa and Kð1Þ ¼ 68:1MPa; and n ¼ 0:483: The parameters of this fictitious model
solid are used for illustration purposes. Because of linearity, the results can be scaled to
represent other materials of the same general type when the dimensionless parameters, such as
G1=G2; K1=K2; G1=K1; and t=ts; are equal. Finite element calculations were carried out using the
classical isotropic linear viscoelastic model implemented in ABAQUS [32] using either
displacement or load as the independent variable. The finite element mesh is the same as that
used in Reference [33].

For constant indentation displacement rate profiles given in Figure 4(a), the corresponding
loading–unloading curves from finite element calculations are shown in Figure 4(b). These
examples clearly show that, for the same loading history, the initial unloading slopes converge
when unloading rate is sufficiently fast, in agreement with Equation (16). A tangent line with the
converged initial unloading slope is also shown in Figure 4(b). Furthermore, Figure 4(b)
suggests that the complete unloading curve converges to one limiting case as the unloading rate
increases.

We next consider a frictionless, rigid spherical indenter of radius R ¼ 2 mm indenting the same
isotropic, three-parameter ‘standard’ linear viscoelastic model solid. For constant indentation
displacement rate profiles given in Figure 5(a), the corresponding loading–unloading curves
from finite element calculations are shown in Figure 5(b). These examples also show that, for the
same loading history, the initial unloading slopes converge when unloading rate is sufficiently
fast, in agreement with Equation (16).

G1

G2

η

Figure 3. A three-parameter ‘standard’ model for linear viscoelastic solids.
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4. SUMMARY

We have derived a relationship between initial unloading slope, contact depth, and
instantaneous relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter
with an arbitrary axisymmetric smooth profile. This derivation shows that with increasing
unloading rate, unloading slope converges to a limiting case given by Equation (16). Thus, fast
unloading is essential in determining the instantaneous modulus from the initial unloading slope
using Equation (16). The relationship is demonstrated using finite element calculations for
conical and spherical indenters. Presently, very little attention is paid in the literature to the
unloading rate when viscoelastic properties are measured using instrumented micro- and nano-
indentation techniques. This lack of attention to the unloading rate is believed to be the main
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Figure 4. Conical indentation: displacement–time profiles (a) and the calculated loading–unloading curves
(b) for the same loading rate and three different unloading rates. The tangent line with initial unloading
slope is also shown for the converged unloading curve (b). The loading–unloading curves are labelled by

the time duration of unloading.
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Figure 5. Spherical indentation: displacement–time profiles (a) and the calculated loading–unloading
curves (b) for the same loading rate and three different unloading rates. The tangent line with initial
unloading slope is also shown for the converged unloading curve (b). The loading–unloading curves are

labelled by the time duration of unloading.
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cause for the reported disagreement with Equation (1). Finally, it is evident from the derivation
that Equation (16) holds true for fast loading as well as for fast unloading since in both cases
(i.e. �vh) the second term in Equation (16) approaches zero. The instantaneous modulus can
thus be obtained by fast jumps during either loading or unloading for indentation in linear
viscoelastic solids using axisymmetric indenters of arbitrary profiles.
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