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Abstract—A new hardening law of the strain gradient theory is proposed in this paper, which retains the
essential structure of the incremental version of conventionalJ2 deformation theory and obeys thermodynamic
restrictions. The key feature of the new proposal is that the term of strain gradient plasticity is represented
as an internal variable to increase the tangent modulus. This feature which is in contrast to several proposed
theories, allows the problem of incremental equilibrium equations to be stated without higher-order stress,
higher-order strain rates or extra boundary conditions. The general idea is presented and compared with the
theory given by Fleck and Hutchinson (Adv. in Appl. Mech. (1997) 295). The new hardening law is demon-
strated by two experimental tests i.e. thin wire torsion and ultra-thin beam bending tests. The present theoreti-
cal results agree well with the experiment results. 2000 Acta Metallurgica Inc. Published by Elsevier
Science Ltd. All rights reserved.
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1. INTRODUCTION

Many experiments have shown that materials display
strong size effects when the characteristic length scale
associated with non-uniform plastic deformation is in
the order of microns. For an aluminum–silicon matrix
reinforced by silicon carbide particles, Lloyd [13]
observed a substantial strength increase when the par-
ticle diameter was reduced from 16 to 7.5 microns
with the particle volume fraction fixed at 15%. In
experiments of measuring micro-indentation hardness
of metallic materials, the square of hardness increases
linearly as the depth of indentation decreases [14, 15,
17, 19]. The overall properties of a polycrystal are
functions of l/a, which reflects the grain size effect,
where l is the intrinsic length scale introduced into
crystal’s constitutive law by the gradient effects and
a is the grain size [21]. The most compelling experi-
mental evidence that strong size effects exist have
been provided by Flecket al. [7] and Stolken and
Evans [22]. The former is to measure torsion stress
strain performed on copper wires, the scaled shear
strength increases by a factor of 3 as the thin copper
wires diameter decreases from 170 to 12 microns,
while the increase of work-hardening in simple ten-
sion is negligible. The latter is to bend ultra thin
beams and measure the bend moments, a significant
increase in the normalized bending hardening is
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observed as the beam thickness decreases from 50 to
12.5 microns, while data from simple tension displays
no size dependence.

The classical plasticity theories can not predict this
size dependence of material behavior at the micron
scale because their constitutive models possess no
internal length scale.

In order to explain the size effect, developing a
continuum theory for micron level is needed. Fleck
and Hutchinson [5] and Flecket al. [7] developed a
phenomenological theory and a material length scale
was introduced for dimensional grounds. From these
theoretical developments and consequent attempts at
explaining experimental findings of indentation [4,
14, 20], and fracture [23], it has been found necessary
to introduce two length parameters [4, 6]. One length,
lR, refers to rotational gradients as originally proposed
in connection with the torsion measurements. The
other, lS, refers to stretch gradients. The latter is
needed to rationalize length scale phenomena found
in indentation and fracture. In 1998, Nix and Gao [18]
started from the Taylor relation and gave one kind of
hardening law for gradient plasticity. Using the law,
they derived the relationship between the indentation
hardnessH and the depth of indentation, which could
show excellent agreement with the experiment results
measured by McElhaneyet al. [15]. Motivated by the
indentation hardening law, Gaoet al. [8] proposed a
mechanism-based theory of strain gradient plasticity
(MSG) based on a multiscale framework linking the
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microscale notion of statistically stored and geometri-
cally necessary dislocations to the mesoscale notion
of plastic strain and strain gradient.

All the above strain gradient plasticity theories
introduce the higher order stress which is required for
this class of strain gradient theories to satisfy the
Clausiius–Duhem thermodynamic restrictions on the
constitutive model for second deformation gradients
[2, 9, 10]. In comparison, no work conjugate of strain
gradient has been defined in the alternative gradient
theories [3, 16, 24, 25] which represent the strain
gradient effects as terms relative with Laplacian of
effective strain. Retaining the essential structure of
conventional plasticity and obeying thermodynamic
restrictions, Acharya and Bassani [1] conclude that
the only possible formulation is a flow theory with
strain gradient effects represented as an internal vari-
able, which acts to increase the current tangent-hard-
ening modulus. However, there has not been a sys-
tematic way of constructing the tangent modulus so
as to validate this framework.

In the present paper, the essential structure of the
incremental version of conventionalJ2 deformation
theory is retained and no work conjugate of strain
gradient is defined, the only new formulation is con-
structing a kind of new hardening law with strain
gradient effects as an internal variable which acts to
increase the current tangent modulus. It is tested by
the wire torsion and ultra-thin beam bending experi-
ment results respectively and compared with the
theoretical results obtained from the strain gradient
theory proposed by Fleck and Hutchinson [5, 6]. As
far as the case of micro-indentation or nano-inden-
tation goes, a detailed analysis will be presented in
another paper.

2. FLECK AND HUTCHINSON’S STRAIN GRADIENT
THEORY

In the theory proposed by Fleck and Hutchinson in
1997, there are three material length scalesl1, l2, l3,
in which the first one is related to the stretch gradient
and the other two are related to the rotation gradient.
This strain gradient theory is briefly introduced in
this section.

Assuming the displacement isui, the strain tensor
is eij and the strain gradient is defined as

hijk = uk,ij (1)

The deviatoric part of the strain gradient tensors
could be decomposed into three unique, mutually
orthogonal third orders deviatoric tensors [20]

h9
ijk = h(1)

ijk + h(2)
ijk + h(3)

ijk (2)

Fleck and Hutchinson [6] introduced the gen-
eralized effective strain

E2
e =

2
3
e9ije9ij + l21h(1)

ijkh(1)
ijk + l22h(2)

ijkh(2)
ijk + l23h(3)

ijkh(3)
ijk (3)

In Begley and Hutchinson [4], Equation (3)
becomes

E2
e = e2e + 12

1h(1)
ijkh(1)

ijk + l2CSc2
e (4)

Where

l2CS = 2l22 + 12l23/5, ee = !2
3
e9ije9ij, cij = qi,j, ce = !2

3
cijcij

and l2 = √6/5l3.
Equation (4) can be represented in the following

form

H E2
e = e2e + l2h2

h = √c1h(1)
ijkh(1)

ijk + c2
e

(5)

where h is called the effective strain gradient and

l = lCS, c1 = S l1
lCS
D2

.

The overall stress measureSe as the work conju-
gate ofEe is

Se =
dW(Ee)

dEe

(6)

For the purpose of the following section we shall
adopt a simple functional relationship betweenSe

and Ee

Se = A(Ee) (7)

3. A NEW HARDENING LAW

The proposed new hardening law of the strain
gradient theory preserves the essential structure of the
incremental version of conventionalJ2 deformation
theory and no extra boundary value conditions
beyond the conventional ones are required to solve
problems, no higher-order stress or higher-order
strain rates are introduced either. The key feature of
the new proposal is that the gradient measures
explicitly enter the constitutive relations only through
the instantaneous tangent modulus and the boundary
value problem of incremental equilibrium is the same
as in the conventional theories. The tangent hardening
modulus is influenced by not only the effective strain
but also the effective strain gradient.

In the conventional plasticity theories,se is the
work conjugate ofee and defined by

se =
dW(ee)

dee
(8)

where se = !3
2
SijSij is the usual Von Mises effec-

tive stress.
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The work done on the solid per unit volume equals
the increment in strain energy

dW = Sijde9ij + smdem (9)

The componentsSij of the deviatoric stress tensor
can be obtained as

Sij =
2se

3ee
eij (10)

From equation (10), we know that the normality is
assumed to be met and there is a yield surface.

The hardening relationship of equation (9) can be
expressed as follows

se = A(ee) (11)

The incremental form of equation (10) can be
expressed as

Ṡij =
2eij
3ee
ṡe +

2ėij
3ee
se2

2eijse

3e2e
ėe (12)

and the incremental form of equation (11) is

ṡe = A9(ee)ėe (13)

whereA9(ee) is the tangent hardening modulus in the
incremental version of conventionalJ2-deformation
theory.

While the strain gradient is considered, the harden-
ing strength is related not only with the density of
statistically stored dislocation but also the density of
geometrically necessary dislocation. The former is
related to the homogeneous deformatione, the latter
with the non-homogeneous deformation and the strain
gradient lh in a material. We know that when the
characteristic length of the deformation fieldL usu-
ally corresponding to the smallest dimension of
geometry is much larger than the material lengthl,
the strain gradient terms become negligible in com-
parison with strains, and strain gradient plasticity
theory then degenerates to the conventional plasticity
theory. However, whenL becomes comparable tol,
strain gradient effects begin to play a dominating role.
Instructed by this idea, we propose a new incremental
hardening relationship instead of equation (13),

ṡe = A9(ee)S1 +
l2h2

e2e
Daėe = B(ee,lh)ėe (14)

whereh is the effective strain gradient defined in equ-
ation (5),B(ee,lh) is the hardening function including
the effect of strain gradient anda is the exponent, in
this paper,a = 1 is taken.

On each incremental step, both the effective strain
ee and the effective strain gradienth can be obtained
from the updated displacement fields. Hencelh is
only a given parameter in equation (14) and it doesn’t
invoke higher-order stress or higher-order strain rates.
The conventional incremental constitutive relation
equation (12) is still adaptable in the present theory.

The difference between the present strain gradient
theory and the incremental version of conventionalJ2

deformation theory is shown in Appendix A.
The present strain gradient theory can be easily

extended to strain gradient flow theory as shown in
Appendix B.

4. COMPARISONS BETWEEN THE THEORETICAL
PREDICTIONS AND EXPERIMENT RESULTS

4.1. Torsion of thin wires

A Cartesian coordinate system (x1, x2, x3) and a
cylindrical polar coordinate system (r,q,x3) are intro-
duced as shown in Fig. 1 andx3 axis is parallel to
the axis of the wire. The radius of the wire isa. k is
the twist per unit length of the wire and taken to be
positive without loss of generality. Take the displace-
ment field as in classical torsion

u1 = 2kx2x3, u2 = kx1x3, u3 = 0 (15)

and the velocity field is as follows,

v1 = 2k̇x2x3, v2 = k̇x1x3, v3 = 0 (16)

Fig. 1. Plots of two coordinate systems on a thin wire, one is
the Cartesian coordinate system (x1, x2, x3) and the other is the

polar coordinate system (r, q, x3).
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The associated non-vanishing components of strain
rate and strain are

5
ė13 = ė31 = 2

1
2

k̇x2, ė23 = ė32 =
1
2

k̇x1

e13 = e31 = 2
1
2

kx2, e23 = e32 =
1
2

kx1

(17)

The non-vanishing components of the curvature
tensor are

c11 = c22 = 2
1
2

k, c33 = k (18)

then, the effective strain and the effective strain gradi-
ent are

ee =
1

√3
kr, ce = k (19)

The stretch gradient in equation (3) can be calcu-
lated according to Smyshlyaev and Fleck [20]

h(1)
ijkh(1)

ijk = 0 (20)

The generalized effective strain takes the form

Ee = √e2e + l2c2
e = k!1

3
r2 + l2 (21)

a) Flecket al. [7] took a simple power law relation-
ship between the generalized effective stress and
effective strain

Se = S0EN
e = S0(e2e + l2c2

e)N/2 (22)

Substituting equations (19) and (22) into the fol-
lowing equation

Ew(Ee)dV = E
V

(EEe

0

Se(Ee)dEe)dV = E
k

0

Q(k)dk

(23)

Finally, the torque given by Flecket al. [7] is

Q =
6p

N + 3O0

kNFS1
3
a2 + l2D(N + 3)/2

2lN + 3G (24)

From simulating the tensile curves of experiment
we takeN = 0.22. If we choose a torsional response
curve of 2a = 30 µm as a calibration curve, we get
l = 3.75 µm. The comparisons of predicted results
with the experiment results are shown in Fig. 2. The
theoretical predictions given by the theory of Fleck

Fig. 2. Plots of torque against the surface strain for copper
wires with different diameters. The solid lines denote the theor-
etical results by Fleck and Hutchinson [6] and the various sym-

bols denote the experiment results [7].

and Hutchinson [6] agree very well with experiment
results for the case of 2a = 30 µm and 170µm. But
it seems underestimate the effect of strain gradient on
the torsional response for the case of 2a = 15 µm and
12 µm.

b) Now, we use the incremental version of the
strain gradientJ2 deformation theory and the new
hardening relationship, equation (14), to investigate
the same problem and here takea = 1. According to
equation (22), we have

A(ee) = s0eNe, s0 = S0 (25)

so equation (14) becomes

ṡe = Ns0eN21
e S1 +

l2h2

e2e
Dėe = (26)

Ns0eN21
e S11

3l2

r2Dėe
From equation (26), we find that the term reflecting

the effect of strain gradient has no relation with the
deformation history, so for the problem of thin wire
torsion, after integrating equation (26) one can obtain
following equation,

se = s0eNeS1 +
3l2

r2 D (27)

Thus, it is reasonable and convenient to use equ-
ation (27) to solve the problem of thin wire torsion.

In this problem, h = xe and the non-vanishing
components of stress can be obtained according to
equation (10),

t13 = t31 =
2e13

3ee
se, t23 = t32 =

2e23

3ee
se (28)
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then the non-vanishing components of stress in the
cylindrical coordinate system can be expressed as

tqz =
1

√3
se (29)

Since there is no higher order stresses, the overall
torque Q can be obtained from the integration over
the cross section of torques produced by the stress
components as follows

Q = E2p

0
Ea

0

tqzr2drdq =
2pa3

(N + 3)(√3)N + 1 (30)

S0(ka)NF1 +
3(N + 3)

N + 1 S l
aD2G

The normalized torque can be written as

Q
a3 =

2pS0

(N + 3)(√3)N + 1(ka)NF1 +
3(N + 3)

N + 1 S l
aD2G

(31)

The comparisons of equation (31) with test results
for copper wires of different diameters are shown in
Fig. 3. From Fig. 3 we can find that all curves pre-
dicted by equation (31) for different diameters are
consistent with the test results and herel = 2.82 µm.

From equation (29) we know thattqz is the only
non-vanishing component of the stresses and it
depends only onr. It is easy to verify that all the
equilibrium equations are met and the traction free
conditions on the lateral boundary of the wire are also
satisfied. Hence equation (15) provides a true dis-
placement field for our theory.

4.2. Bending of thin beams

In 1998, Stolken and Evans [22] did the bending
experiment and observed a strong size effect whereby
thin beams display much stronger plastic work hard-

Fig. 3. Plots of torque against the surface strain for copper
wires with different diameters. The solid lines denote the theor-
etical results by the new hardening law proposed in the present
paper and the various symbols denote the experiment results

[7].

ening than thick ones and no size dependence is
observed in the tension test.

Due to the small deformation considered in bend-
ing, subject to plane strain deformation, Cartesian (x1,
x2, x3) coordinates are adopted as shown in Fig. 4.k
is the curvature andh is the beam’s thickness. The
displacement field is

u1 = kx1x2, u2 = 2k(x2
1 + x2

2)/2, u3 = 0 (32)

The velocity field is,

v1 = k̇x1x2, v2 = 2k̇(x2
1 + x2

2)/2, v3 = 0 (33)

The non-vanishing strain rates are

ė11 = 2ė22 = k̇x2 (34)

The non-vanishing strain components are

e11 = 2e22 = kx2 (35)

The non-vanishing components of curvature ten-
sors are

c31 = 2k (36)

The effective strain and the effective curvature ten-
sor are

ee =
2

√3
k|x2|, ce = !2

3
k (37)

The stretch gradient is given by

h(1)
ijkh(1)

ijk =
76
75

k2 (38)

We know that the length scale for the stretch gradi-
ent is very small andlCR that corresponds to the
rotation gradient is larger [21], then from equation

(5), we can find thatc1 = S l1
lCR

D2

is very small and

Fig. 4. Plot of coordinate system on the ultra-thin beam used
in the present paper.h is the thickness of the beam and the

width is taken to be one unit length.
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h(1)
ijkh(1)

ijk has the same order asc2
e. In order to be con-

sistent with the theory in analyzing the torsion experi-
ment, we can omit the term ofh(1)

ijkh(1)
ijk in equation (5)

and adopth = ce, that is only the rotation gradient is
considered while investigating the bending experi-
ment.

From simulating the tensile test results of thin
beams, the relationship between the stress and plastic
strain can be expressed as [22]

s = S0 + eplEp (39)

whereS0 is the yield strength,epl is the plastic strain
and Ep the hardening coefficient. Then the relation-
ship between the effective stress and effective strain
can be obtained

se =
√3
2

S0 +
3
4
Epeep (40)

whereeep is the effective plastic strain.
a) Stolken and Evans [22] have analyzed this prob-

lem based on the strain gradient theory given by Fleck
and Hutchinson [6]. The hardening relationship
including the effect of strain gradient plasticity is

Se =
√3
2

S0 +
3
4
EpEe,

Ee = √e2e + l2h2, (41)

h = ce = !2
3
cijcij

The strain energy density takes the form

w =
Ee

8
(3EpEe + 4√3S0) (42)

and the total energy per unit length is

W = Eh/2

2h/2

wbdx2 (43)

whereb is the width of the beam.
Then the bending momentM can be obtained

M =
dW
dk

(44)

Combining equations (37) and (41)–(44), we obtain

M = S0bFh
4

√h2 + 2l2

+
1
2
l2ln S√h2/2 + l2 + √2h/2

l DG + (45)

1
12

Epkb(h3 + 6l2h)

The non-dimensional moment is

4M
S0bh2 = Î1 + 2S l

hD2

+ 2S l
hD2

ln

S√h2/2 + l2 + √2h/2
l D (46)

+
1

3S0

EpkSh + 6
l2

hD
The length scalel is determined by fitting equation

(46) to all of the bending moment measurements [22].
The comparisons are shown in Fig. 5 withl = 6.12
µm whereeb denotes the surface strain.

b) Now, using the new hardening relationship, i.e.
equation (14), we investigate the same problem.
According to equation (40), the stress–strain curve in
uniaxial tensile state can be expressed as

s =
√3
2

S0 +
3
4
Epepl (47)

Actually, equation (47) should be represented as
follows

Hs = Ŝ0 + Êpe e$e0
s = Ee e#e0

(48)

where e0 is the yield strain, Ŝ0 =
2√3S0E
4E + 3Ep

and

Êp =
3EpE

4E + 3Ep

, E = 220 GPa is the Young’s modulus

for Ni.
So the relationship of the effective stress and effec-

tive strain is

Fig. 5. Plots of bending moment against the surface strain for
three beams with different thickness. The dot lines denote the
theoretical results by Fleck and Hutchinson [6] and the solid
lines denote the present results, the various symbols denote the

experiment results [22].
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Hse = Ŝ0 + Êpee ee$e0
se = Eee ee#e0

(49)

From equation (47), we can get the yield strength
s0, which corresponds to the yield straine0,

s0 =
√3
2

S0 (50)

then

e0 =
s0

E
=

√3S0

2E
(51)

Substituting equations (50) and (51) into equation
(49), we find that equation (49) is a continuous func-
tion at the point ofee = e0 as shown in Fig. 6.

Considering the strain gradient plasticity, from
equations (49) and (14), we can get

5
ṡe = ÊpėeS1 +

l2h2

e2e
D ee$e0

ṡe = EėeS1 +
l2h2

e2e
D ee#e0 (52)

Substituting equation (37) into equation (52), we
obtain

5
ṡe = ÊpėeS1 +

l2

2x2
2
D ee$e0

ṡe = EėeS1 +
l2

2x2
2
D ee#e0 (53)

From equation (53), we find that the term describ-
ing the strain gradient effect has no direct relation
with the deformation history, so for the problem of
ultra-thin beam bending, we can rewrite equation (53)
as follows,

Fig. 6. Plot of relation curve of effective strain and effective
stress indicated by Eq. (49), at the point ofe = e0, i.e. s = s0

the curve is continuous.

5
se = (Ŝ0 + Êpee)S1 +

l2

2x2
2
D ee$e0

se = EeeS1 +
l2

2x2
2
D ee#e0

(54)

Then it is reasonable and convenient to use equ-
ation (54) to solve the problem of ultra-thin beam
bending.

Combining equations (10), (35) and (37), we obtain

S11 =
sign(x2)

√3
se (55)

then

s11 =
2sign(x2)

√3
se, s22 = 0, s33 =

1
2
s11, sij = 0(iÞj)

(56)

The momentM can be obtained from the inte-
gration over the cross section by the components of
stress as

M = 2Eh/2

0

s11bx2dx2 (57)

Substituting equations (54) and (56) into equation
(57), the momentM can be expressed as

M =
bEe0
√3k2(e

2
0 + 2l2k2) +

b
√3k2F3Ŝ0

2
(e2max

2e20) + Êp(e3max (58)

2e30) + 2Ŝ0l2k2ln
emax

e0
+ 2Êpl2k2(emax2e0)G

where

emax =
kh
√3

(59)

Comparisons of the theoretical prediction of equ-
ation (58) with the bending test results of different
thickness are shown in Fig. 5, From Fig. 5 we can
find that the calculation results agree well with the
test results and the length scalel = 3.3 µm.

From equation (56), we know thats11 ands33 are
the non-vanishing components of stresses and depend
only onx2. It is obvious that all the conventional equi-
librium equations are met and the traction free con-
ditions on the boundary of the beam are also satisfied.
Hence, equation (32) is a true displacement field for
our theory.
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5. CONCLUSION

The new hardening law of the strain gradient
theory outlined in Section 3 retains the algebraic nat-
ure of the normality rules of conventionalJ2 defor-
mation theories. There are no higher-order stress,
higher-order strain rates or extra boundary conditions
introduced for the present strain gradient theory. Only
the tangent modulus is changed while considering the
material size effects, and the term of strain gradient
plasticity is only an internal variable in the hardening
law to influence the tangent modulus.

The present paper suggests that the strain gradient
strengthening is associated with the ratio of the effec-
tive strain gradient to the effective strain. Using the
proposed hardening relationship to investigate the
problems of thin wire torsion and the micro bending,
the theoretical results agree well with the experiment
results. The length scale for copper isl = 2.82 µm
and l = 3.3 µm for Ni.

The investigation for micro-indentation or nano-
indentation based on the proposed new hardening law
is carried on and will be presented in another paper.

Acknowledgements—This work is supported by the National
Natural Science Foundation of China (No. 19704100), National
Science Foundation of Chinese Academy of Sciences (Project
KJ951–1–20), CAS K. C. Wong Post-doctoral Research Award
Fund and Post-doctoral Science Funds of China.

APPENDIX A

a) The conventionalJ2 deformation theory [11, 12]
can be expressed as follows. The constitutive
relations are

Sij = Leij, sm = Kem (A1)

where

L =
2se

3ee
(A2)

Sij denotes the deviatoric stress,eij denotes the
deviatoric strain,sm is the spherical part of stress and
em is the spherical part of strain.

The hardening relationship between the effective
stress and effective strain takes the form

se = A(ee) (A3)

Then

L =
2se

3ee
=

2
3
A(ee)
ee

(A4)

From equations (A1) and (A3), the incremental
version of conventionalJ2 deformation theory can
be obtained

Ṡij = Lėij + L̇eij, ṡm = Kėm (A5)

ṡe = A9(ee)ėe (A6)

whereL can be obtained from the following equation

L̇ = F2
3
A9(ee)2LGėe/ee (A7)

b) In the present strain gradient theory, the consti-
tutive relations are the same as that in the conven-
tionally incrementalJ2 deformation theory, i.e. equ-
ation (A5). But the increment version of the
hardening law between the effective stress and the
effective strain is different from the conventional one
(i.e. equation (A6)) while considering the strain gradi-
ent effect. It means that theL is different from the
conventional one.

From equation (A2), we have

se =
3
2

Lee (A8)

Combining equations (A8) and (14), we obtain the
equation aboutL in the present strain gradient theory,

ṡe =
3
2
[Lėe + L̇ee] = Bėe (A9)

whereB = A9(ee)S1 +
l2h2

e2e
Da.

Then one can easily obtain the following equation

L̇ = F2
3
B2LGėe/ee (A10)

Comparing equations (A7) and (A10), we can find
the difference between the incremental version of
conventionalJ2 deformation theory and the present
strain gradient theory.

APPENDIX B

As for the flow theory, we can put it conveniently as
follows. The relationship of the plastic strain rate and
the deviatoric stress for the conventionalJ2 flow
theory is

ėpij = lSij (B1)

where

l =
3
2
ėpe
se

(B2)
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here ėpe is the rate of the effective plastic strain and

ėpe = !2
3
ėpij ėpij. The relationship of the spherical

strain rate and the spherical stress rate is

ėm = ṡm/K (B3)

whereK =
E

122n
, E is Young’s modulus andn Pois-

son’s ratio.
Considering the elastic strain, the constitutive

relationship is

5
ėij =

1
2m

Ṡij +
3
2
ėpe
se

Sij

ėm =
122n

E
ṡm

(B4)

then, we have

5Ṡij = 2mSėij2
3
2
ėpe
se

SijD
ṡm = Kėm

(B5)

The hardening relation in the conventionalJ2 flow
theory is

ṡe = A9(epe)ėpe (B6)

The strain gradient flow theory takes the same
constitutive equation (B5) as the constitutive equ-
ation.

While considering the strain gradient effect, the
hardening relation, i.e. equation (14), should be used
instead of equation (B6),

ṡe = B(ee,lh)ėe (B7)

Comparing the conventional flow theory and the
strain gradient flow theory, we can find that the differ-
ence is only between equations (B6) and (B7).
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