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Abstract—A new hardening law of the strain gradient theory is proposed in this paper, which retains the
essential structure of the incremental version of conventindéformation theory and obeys thermodynamic
restrictions. The key feature of the new proposal is that the term of strain gradient plasticity is represented
as an internal variable to increase the tangent modulus. This feature which is in contrast to several proposed
theories, allows the problem of incremental equilibrium equations to be stated without higher-order stress,
higher-order strain rates or extra boundary conditions. The general idea is presented and compared with the
theory given by Fleck and Hutchinson (Adv. in Appl. Mech. (1997) 295). The new hardening law is demon-
strated by two experimental tests i.e. thin wire torsion and ultra-thin beam bending tests. The present theoreti-
cal results agree well with the experiment resulfs2000 Acta Metallurgica Inc. Published by Elsevier
Science Ltd. All rights reserved.
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1. INTRODUCTION observed as the beam thickness decreases from 50 to

Many experiments have shown that materials diSpIa12.5.m|crons, while data from simple tension displays
0 size dependence.

strong size effects when the characteristic length scale . - . . .
. . . . >~ “The classical plasticity theories can not predict this
associated with non-uniform plastic deformation is in.

the order of microns. For an aluminum-silicon matri>§ ::Zaeledf)zigﬂzgcfhgifr Tg;i:?d tit\)/zh?T\w/cl)%reEt tr:)isrggogo
reinforced by silicon carbide particles, Lloyd [13] P

observed a substantial strength increase when the pwﬁ]rnarldlern?th sxce}le;.n the size effect developin
ticle diameter was reduced from 16 to 7.5 microns t'o € tﬁ € p? €S ? € le_c, edegpFlg ak‘
with the particle volume fraction fixed at 15%. ipcontinuum tneory tor micron Ievel Is needed. Fec

experiments of measuring micro-indentation hardne d Hutchlnlsor_1 [?] :nd Flecgt al. [7] d_e;/tlaloper(]j a |
of metallic materials, the square of hardness increasgdénomenologica ¢ eory and a material length scale
as introduced for dimensional grounds. From these

linearly as the depth of indentation decreases [14, 1% X
17, 19]. The overall properties of a polycrystal ardheoretical developments and consequent attempts at

functions ofl/a, which reflects the grain size effect,@xplaining experimental findings of indentation [4,
wherel is the intrinsic length scale introduced intol4: 201, and fracture [23], it has been found necessary

crystal’s constitutive law by the gradient effects andP introduce two length parameters [4, 6]. One length,
ais the grain size [21]. The most compelling experi!R’ refers to rotatpnal grad|eqts as originally proposed
mental evidence that strong size effects exist haj@ connection with the torsion measurements. The
been provided by Fleclet al. [7] and Stolken and other, I, refers to stretch gradients. The latter is
Evans [22]. The former is to measure torsion stregi¢€ded to rationalize length scale phenomena found
strain performed on copper wires, the scaled shelyindentation and fracture. In 1998, Nix and Gao [18]
strength increases by a factor of 3 as the thin coppéiarted from the Taylor relation and gave one kind of
wires diameter decreases from 170 to 12 micron§ardening law for gradient plasticity. Using the law,
while the increase of work-hardening in simple tenthey derived the relationship between the indentation
sion is negligible. The latter is to bend ultra thinhardnes$d and the depth of indentation, which could
beams and measure the bend moments, a significahow excellent agreement with the experiment results
increase in the normalized bending hardening i®easured by McElhanest al.[15]. Motivated by the
indentation hardening law, Gaet al. [8] proposed a
mechanism-based theory of strain gradient plasticity
* To whom all correspondence should be addressed. (MSG) based on a multiscale framework linking the
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microscale notion of statistically stored and geometri-
cally necessary dislocations to the mesoscale notionin Begley and Hutchinson [4], Equation (3)
of plastic strain and strain gradient. becomes

All the above strain gradient plasticity theories
introduce the higher order stress which is required for EZ =2 + 1in{inf + 12sx2 4)
this class of strain gradient theories to satisfy the
Clausiius—Duhem thermodynamic restrictions on the Where
constitutive model for second deformation gradients P 2
[2, 9, 10]. In comparison, no work conjugate of straincs = 215 + 125/5, &, = \/ggijgijl Xi =0y Xe = \/glijlij
gradient has been defined in the alternative gradiegﬁm2 = V6/5l.,.
theories [3, 16, 24, 25] which represent the strain gqation (4) can be represented in the following
gradient effects as terms relative with Laplacian ofy;m,
effective strain. Retaining the essential structure of
conventional plasticity and obeying thermodynamic E2=g2+ 172
restrictions, Acharya and Bassani [1] conclude that { (5)
the only possible formulation is a flow theory with
strain gradient effects represented as an internal vari-
able, which acts to increase the current tangent-hard- . . . .
ening modulus. However, there has not been a Sy\g/peren is callezd the effective strain gradient and
tematic way of constructing the tangent modulus sp=|_ ¢, = (Ll> )
as to validate this framework. lcs,

In the present paper, the essential structure of the The overall stress measui as the work conju-
incremental version of conventiond deformation gate ofE. is
theory is retained and no work conjugate of strain
gradient is defined, the only new formulation is con- s = dWE) ©6)
structing a kind of new hardening law with strain ¢ dE
gradient effects as an internal variable which acts to
increase the current tangent modulus. It is tested byFor the purpose of the following section we shall
the wire torsion and ultra-thin beam bending experdopt a simple functional relationship betwe&h
ment results respectively and compared with thandE.
theoretical results obtained from the strain gradient
theory proposed by Fleck and Hutchinson [5, 6]. As 3. =AE) @)
far as the case of micro-indentation or nano-inden-
tation goes, a detailed analysis will be presented in

another paper. 3. A NEW HARDENING LAW

n =Vening + 12

The proposed new hardening law of the strain
gradient theory preserves the essential structure of the
incremental version of conventiond), deformation

In the theory proposed by Fleck and Hutchinson itheory and no extra boundary value conditions
1997, there are three material length scdles,, I, beyond the conventional ones are required to solve
in which the first one is related to the stretch gradiergroblems, no higher-order stress or higher-order
and the other two are related to the rotation gradierdtrain rates are introduced either. The key feature of
This strain gradient theory is briefly introduced inthe new proposal is that the gradient measures

2. FLECK AND HUTCHINSON’S STRAIN GRADIENT
THEORY

this section. explicitly enter the constitutive relations only through
Assuming the displacement ig, the strain tensor the instantaneous tangent modulus and the boundary

is g and the strain gradient is defined as value problem of incremental equilibrium is the same
as in the conventional theories. The tangent hardening

TMijk = Ui (1) modulus is influenced by not only the effective strain

. . ) but also the effective strain gradient.
The deviatoric part of the strain gradient tensors |, ihe conventional plasticity theories, is the
could be decomposed into three unique, mutually,q., conjugate ok, and defined by
orthogonal third orders deviatoric tensors [20]

, dWe,
Mige = 115+ 1R+ 1R &) 0. = % ®)
Fleck and Hutchinson [6] introduced the gen-
eralized effective strain 3
where o, = /ES,-S,J- is the usual Von Mises effec-

2
2 =S L 12 MW @) 4 127N 4+ [273)(3
ES= i + 1inin§ + Enfn@ + 15ni@nR - (3) tive stress.
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The work done on the solid per unit volume equals On each incremental step, both the effective strain

the increment in strain energy &, and the effective strain gradientcan be obtained
from the updated displacement fields. Herlgeis
OW = §;8¢; + 0,0€m (9) only a given parameter in equation (14) and it doesn’t

invoke higher-order stress or higher-order strain rates.
The components; of the deviatoric stress tensorThe conventional incremental constitutive relation

can be obtained as equation (12) is still adaptable in the present theory.
The difference between the present strain gradient
20, theory and the incremental version of conventiohal
S = Qfﬁ (10)  deformation theory is shown in Appendix A.

The present strain gradient theory can be easily
From equation (10), we know that the normality i€xtended to strain gradient flow theory as shown in
assumed to be met and there is a yield surface. Appendix B.
The hardening relationship of equation (9) can be

expressed as follows 4. COMPARISONS BETWEEN THE THEORETICAL

PREDICTIONS AND EXPERIMENT RESULTS
Oo = Al€e) (11) . o
4.1. Torsion of thin wires

The incremental form of equation (10) can be A Cartesian coordinate Systemll(xz, X3) and a

expressed as cylindrical polar coordinate system,,x;) are intro-
. duced as shown in Fig. 1 and axis is parallel to
5 = ﬁc’r + ﬁa 7%-8 (12) the axis of the wire. The radius of the wireds is

b3, ® 3, ° 32 ¢ the twist per unit length of the wire and taken to be

positive without loss of generality. Take the displace-
ment field as in classical torsion
and the incremental form of equation (11) is
Up = —KXoX3, Us = KX1X3, Uz = 0 (15)
e = A'(€c)Ee (13)

and the velocity field is as follows,
whereA'(g,) is the tangent hardening modulus in the

incremental version of conventiondh-deformation V1= —KXoX3, Vo = kXXs, V3 =0 (16)
theory.
While the strain gradient is considered, the harden- A X3

ing strength is related not only with the density of
statistically stored dislocation but also the density of .
geometrically necessary dislocation. The former is . Q, K
related to the homogeneous deformatimrthe latter
with the non-homogeneous deformation and the strain
gradientln in a material. We know that when the 2a—> <
characteristic length of the deformation fidldusu-
ally corresponding to the smallest dimension of
geometry is much larger than the material length X1
the strain gradient terms become negligible in com- |
parison with strains, and strain gradient plasticity
theory then degenerates to the conventional plasticity
theory. However, whe. becomes comparable to
strain gradient effects begin to play a dominating role.
Instructed by this idea, we propose a new incremental

hardening relationship instead of equation (13), X
5o = A 1 +@ .= B(eaIn)t 14 !
Oc = (ge) Sé Ee = (864 n)ge ( ) .0

p X

wheren is the effective strain gradient defined in equ-

ation (5),B(exIn) is the hardening function including Fig. 1. Plots of two coordinate systems on a thin wire, one is

th? effect of Strai_n gradient ardis the exponent, in the Cartesian coordinate systera, &, ) and the other is the
this papera = 1 is taken. polar coordinate systent, (8, Xs).
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700 4
—— F-H's results

The associated non-vanishing components of stra e | . 2 2a=12um 5,=237MPa |=3.75um
rate and strain are :
500 4

400 °

€13 = €31 = _EKXZ' Ex3=E3x = E’(Xl “w ” .
) < 7
€13 = €1 = ~oKX, E23 = E52 = KX 200
100
The non-vanishing components of the curvatur 0 . . . . . ]
tensor are 00 05 1.0 15 2.0 25 30

Ka

— - _- — (18) Fig. 2. Plots of torque against the surface strain for copper
X11= X2z 2t X3 =K wires with different diameters. The solid lines denote the theor-
etical results by Fleck and Hutchinson [6] and the various sym-

bols denote the experiment results [7].

then, the effective strain and the effective strain gradi-
ent are
and Hutchinson [6] agree very well with experiment
_1 _ results for the case ofa2= 30 pm and 170um. But
€= gl Xe= K (19) it seems underestimate the effect of strain gradient on
the torsional response for the case af215 um and
The stretch gradient in equation (3) can be calcdl2 Hm.

lated according to Smyshlyaev and Fleck [20] b) Now, we use the incremental version of the
strain gradient, deformation theory and the new
nPn® =0 (20) hardening relationship, equation (14), to investigate

the same problem and here take= 1. According to
The generalized effective strain takes the form €guation (22), we have

1 Aee) = 0oee, 00 =20 (25)
E.=Vez+ 132 =« §r2+l2 (21)

a) Flecket al.[7] took a simple power law relation- so equation (14) becomes

ship between the generalized effective stress and
effective strain

) 12n2\.
Oe= choeg‘*l(l + >£e = (26)

€z
- N — 2 4 |242)N/2 2
3o = SoEY = Xo(ed + 1) (22) No Ogg,l(ﬁs?lz ) ;.
Substituting equations (19) and (22) into the fol-

lowing equation From equation (26), we find that the term reflecting
the effect of strain gradient has no relation with the
c p deformation history, so for the problem of thin wire
JW(Ee)dvz J(j EEe(Ee)dEe)dV: JQ(K)dK torsion, after integrating equation (26) one can obtain
1 Jo ) following equation,
(23)
2
- N -
Finally, the torque given by Flec&t al. [7] is e = 0-089(1 * r2> (27)

“N+3 3 ation (27) to solve the problem of thin wire torsion.
In this problem,n =&, and the non-vanishing
From simulating the tensile curves of experimergomponents of stress can be obtained according to

we takeN = 0.22. If we choose a torsional respons&duation (10),
curve of 22=30 pm as a calibration curve, we get
| =3.75 pm. The comparisons of predicted results N :@0 S :@0 28)
with the experiment results are shown in Fig. 2. The BT ge, e BT T ge e
theoretical predictions given by the theory of Fleck

6 1 (N +3)/2 Thus, it is reasonable and convenient to use equ-
Q= 2 KN|:<a2+|2> _|N+3:| (24) q

0
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then the non-vanishing components of stress in threning than thick ones and no size dependence is
cylindrical coordinate system can be expressed as observed in the tension test.
Due to the small deformation considered in bend-
1 ing, subject to plane strain deformation, Carteskan (
Toz = j30e (29) 4, x,) coordinates are adopted as shown in Figk 4.
is the curvature anth is the beam’s thickness. The
Since there is no higher order stresses, the overglisplacement field is
torque Q can be obtained from the integration over
the cross section of torques produced by the stress Ui = KXiXo, U, = —k(E +X§)/2,us =0 (32)
components as follows
The velocity field is,

2r (fa 27Ta3
Q = J J rezrzdrde = W (30) VvV, = i(X1X2, Vo = _I-((Xi + X%)/Z, V3 = 0 (33)
oJo
So(ka)| 1 + 3(N+3)(1)° The non-vanishing strain rates are
0 N+1\a
£11= —E€2 = KXo (34)

The normalized torque can be written as

The non-vanishing strain components are
Q 272,

T 3N+ 31
@ (N+3)pa) - 1@ [“ N+ 1 (

2
a) ] &= TEn = KX (35)
(31)
The non-vanishing components of curvature ten-
The comparisons of equation (31) with test resultsors are
for copper wires of different diameters are shown in

Fig. 3. From Fig. 3 we can find that all curves pre- Xs1= —K (36)
dicted by equation (31) for different diameters are
consistent with the test results and here2.82 um. The effective strain and the effective curvature ten-

From equation (29) we know that, is the only sor are
non-vanishing component of the stresses and it

depends only om. It is easy to verify that all the 2 2
Ee = T§K|X2|v Xe = §K

equilibrium equations are met and the traction free @7

conditions on the lateral boundary of the wire are also

satisfied. Hence equation (15) provides a true dis- The stretch gradient is given by

placement field for our theory.

4.2. Bending of thin beams non® = 76 , (38)
ij ij

=K
In 1998, Stolken and Evans [22] did the bending S
experiment and observed a strong size effect WherebyW

thin beams display much stronger plastic work hardé e know that the length scale for the stretch gradi-

nt is very small andcg that corresponds to the
rotation gradient is larger [21], then from equation

o

Presentresults ~ (5), we can find thak:lz(

2
> is very small and
1=2.82um

A x2

lCR

Q/a’

0 T T T T T 1
0.0 05 1.0 15 2.0 25 3.0
Ka

Fig. 3. Plots of torque against the surface strain for coppe: X3

wires with different diameters. The solid lines denote the theoq:itg_ 4. Plot of coordinate system on the ultra-thin beam used
etical results by thg new hardening law proposed in the presgffine present papeh is the thickness of the beam and the
paper and the various symbols denote the experiment results width is taken to be one unit length.

[71.
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n§PnsY has the same order gé. In order to be con-
sistent with the theory in analyzing the torsion experi-
ment, we can omit the term of{Yn§ in equation (5)
and adopty = y,, that is only the rotation gradientis The non-dimensional moment is
considered while investigating the bending experi-

1
TEob(® + 62h)

ment. aIM 1\?
From simulating the tensile test results of thin S bre Y1+ Ziﬁ + Z(H) In
beams, the relationship between the stress and plastic \(/JhZ/2—+I2 +V2h/2
strain can be expressed as [22] (I) (46)
0=30+ &, (39) 1 12
pl=p + 320Ep;< h+ &h

where 3} is the yield strengthg,, is the plastic strain ~ The length scaléis determined by fitting equation
and E, the hardening coefficient. Then the relation{46) to all of the bending moment measurements [22].
ship between the effective stress and effective strairhe comparisons are shown in Fig. 5 witk 6.12

can be obtained pm whereg,, denotes the surface strain.
b) Now, using the new hardening relationship, i.e.
V3 3 equation (14), we investigate the same problem.
Ge = 720 + ZEPEep (40) According to equation (40), the stress—strain curve in
uniaxial tensile state can be expressed as
wheree,, is the effective plastic strain. _ o= EEO + §E . (47)
a) Stolken and Evans [22] have analyzed this prob- 2 4

lem based on the strain gradient theory given by Fleck
and Hutchinson [6]. The hardening relationship Actually, equation (47) should be represented as
including the effect of strain gradient plasticity is follows

v3_ 3 c=30+Eg £=¢
3= 30+ EE, { 0" 5 =60 (48)
2 4 o=Ee £=¢g,
E.= Ve + I°n?, (41)
/2
=2 =/ ik i ) - 2V33 E
where g, is the yield strain, X, = 4E+73Ep and
i i A 3E.E .
The strain energy density takes the form = = E =200 GPais the Young's modulus
4E + 3E,
_Ee = for Ni.
W= 8(3EpEe + 4V3%0) (42) So the relationship of the effective stress and effec-
tive strain is
and the total energy per unit length is 6
W — present results, 1=3.3um
P F-H's results, 1=6.12um : h=12.5um
W:j whdx, (43) *] . TN
—hr2 :
whereb is the width of the beam. Eo
Then the bending momemM can be obtained s
dw
M=—— (44)
dk

Combining equations (37) and (41)—(44), we obtai

M =3 b\/m Fig. 5. Plots of bending moment against the surface strain for
TS0 three beams with different thickness. The dot lines denote the
TS5 L3 5 theoretical results by Fleck and Hutchinson [6] and the solid
+ 1|2|n M (45) lines denote the present results, the various symbols denote the
2 I experiment results [22].
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0e=30+ Eg. £260 . ( |2)
49 0= o+ Eg)|1+-]| e=¢
{ - Ee. e (49) (Go+ B\ 1+ 55 2220
- (54)
From equation (47), we can get the yield strength O = E£e<1 +ﬁ> =&
0o, Which corresponds to the yield stradp, 2
NG Then it is reasonable and convenient to use equ-
00:720 (50) ation (54) to solve the problem of ultra-thin beam
bending.
Combining equations (10), (35) and (37), we obtain
then
_ sign)
. _@_\/320 (51) S.I.l_ \/é O-E (55)
°"E 2E

Substituting equations (50) and (51) into equatioi'hen
(49), we find that equation (49) is a continuous func-
tion at the point ofe, = £, as shown in Fig. 6.

Considering the strain gradient plasticity, from _ 2sign) _ _1 P
equations (49) and (14), we can get Ou=""y3 O 022= 0, 05 = 201 Oj = 0G#J)
(56)
. ~ . 212
Oe = Ep£e<1 +£g) €e=£o The momentM can be obtained from the inte-
{ 22 (52) gration over the cross section by the components of
5. = E'ge(l + EZ ) =ty stress as
. . . . . h/2
Sgbstltutlng equation (37) into equation (52), we M=2| oubxdx (57)
obtain .
A 2 _ Substituting equations (54) and (56) into equation
Oc = Bree| 1 T o) ko (57), the momenM can be expressed as
{ . (53)
.O-e = Ez.':e(l +7> Ee=&p S
26 M= P20z gy ¢ D[Sz
V3k? V3 2
From equation (53), we find that the term describ- —€5) + Ey(ehax (58)

ing the strain gradient effect has no direct relation
with the deformation history, so for the problem of
ultra-thin beam bending, we can rewrite equation (53)

~ £ ~
—£d) + 220I2;<2In€Lax + 2Ep|2K2(£max£0)]
(0]

as follows,
where
150 2,=103MPa
E =1.05GPa xh
P =
120 E=220GPa Emax= 3 (59)

Comparisons of the theoretical prediction of equ-
ation (58) with the bending test results of different
thickness are shown in Fig. 5, From Fig. 5 we can
find that the calculation results agree well with the
test results and the length scle 3.3 um.

From equation (56), we know that,, and o5 are
the non-vanishing components of stresses and depend

0.000 0.004 0.008 0012 0016 0020  only onx,. It is obvious that all the conventional equi-
& librium equations are met and the traction free con-
Fig. 6. Plot of relation curve of effective strain and effectivedltlons on the,boundary of the be‘,’im are also S.at'Sf'ed'
stress indicated by Eq. (49), at the pointet &, i.e.c =0, HENCE, equation (32) is a true displacement field for
the curve is continuous. our theory.
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5. CONCLUSION S = Ag; + Agj, G = Kép, (A5)

The new hardening law of the strain gradient
theory outlined in Section 3 retains the algebraic nat-
ure of the normality rules of conventiond} defor-
mation theories. There are no higher-order stress,
higher-order strain rates or extra boundary conditions . . .
introduced for the present strain gradient theory. OnwhereA can be obtained from the following equation
the tangent modulus is changed while considering the
mate_ri._';ll s_ize effects, and the t_erm Qf strain grad_ient A= [ZA’(ge) A]'e Jee (A7)
plasticity is only an internal variable in the hardening 3
law to influence the tangent modulus.

The present paper suggests that the strain gradien®) In the present strain gradient theory, the consti-
strengthening is associated with the ratio of the effedutive relations are the same as that in the conven-
tive strain gradient to the effective strain. Using thédionally incrementald, deformation theory, i.e. equ-
proposed hardening relationship to investigate tHion (AS5). But the increment version of the
problems of thin wire torsion and the micro bendinghardening law between the effective stress and the
the theoretical results agree well with the experimer@ffective strain is different from the conventional one
results. The length scale for copperlis 2.82 um (i-e. equation (A6)) while considering the strain gradi-
andl = 3.3 pm for Ni. ent effect. It means that th& is different from the

The investigation for micro-indentation or nano-conventional one.
indentation based on the proposed new hardening lawFrom equation (A2), we have
is carried on and will be presented in another paper.

Oe = A'(€e)Ee (A6)

0. = g/\se (A8)
AcknowledgementsThis work is supported by the National
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Science Foundation of Chinese Academy of Sciences (Project COMbining equations (A8) and (14), we obtain the
KJ951-1-20), CAS K. C. Wong Post-doctoral Research Awardquation aboul\ in the present strain gradient theory,
Fund and Post-doctoral Science Funds of China.

.3 .
O = E[Age + Agg] = Be, (A9)
APPENDIX A
a) The conventional, deformation theory [11, 12]
can be expressed as follows. The constitutive |22\
relations are whereB = A'(ee)(l * 2 )
e
Then one can easily obtain the following equation
S = Agj, o= Kep, (A1)
- 2 )
A= [3BA]ee/£e (A10)
where
Comparing equations (A7) and (A10), we can find
_ 20, the difference between the incremental version of
A= (A2) X .
3ee conventionalJ, deformation theory and the present

§; denotes the deviatoric stress; denotes the strain gradient theory.
deviatoric straing,, is the spherical part of stress and
&m is the spherical part of strain.

The hardening relationship between the effective APPENDIX B
stress and effective strain takes the form As for the flow theory, we can put it conveniently as
follows. The relationship of the plastic strain rate and
0. = Alge) (A3) the deviatoric stress for the conventiongl flow
theory is
Then
& =15 (B1)
_ 20, _ 2A(ge)
A= %, 3e (A4)
where
From equations (Al) and (A3), the incremental .
version of conventionall, deformation theory can 2 :382 (B2)

be obtained 20,



CHEN and WANG: STRAIN GRADIENT PLASTICITY 4005

Comparing the conventional flow theory and the
strain gradient flow theory, we can find that the differ-

heree® is the rate of the effective plastic strain andence is only between equations (B6) and (B7).

. 2. . ) ) .
L= \/geﬁef,-’. The relationship of the spherical
strain rate and the spherical stress rate is 1
&€m = 0,/K (B3) )
3
E , .
whereK = 1= E is Young's modulus and Pois- 4
son’s ratio.
Considering the elastic strain, the constitutive
relationship is 5.
6.
_ 1. 3ee
1j Sj S
B4
{ . 1-2v. ( ) 7
gm_ E O-m
8
9
then, we have 10
11
: . 3ep
= — ' 12
{S” o (el ZGeS’) (B5)
Om=Kén, 13,
14,
The hardening relation in the conventiodalflow  15.
theory is
16.
0. = A'(eB)eR (B6) 17.
18.

The strain gradient flow theory takes the same
constitutive equation (B5) as the constitutive equ1
ation.

While considering the strain gradient effect, the;.

hardening relation, i.e. equation (14), should be used
instead of equation (B6),

0o = B(&alN)és (B7)

24.
25.
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