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3-D network model and its parameter calibration
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Abstract A material model, whose framework is parallel spring-bundles oriented in 3-D space, is
proposed. Based on a discussion of the discrete schemes and optimum discretization of the solid
angles, a 3-D network cell consisted of one-dimensional components is developed with its geomet-
rical and physical parameters calibrated. It is proved that the 3-D network model is able to exactly
simulate materials with arbitrary Poisson ratio from 0 to 1/2, breaking through the limit that the pre-
vious models in the literature are only suitable for materials with Poisson ratio from 0 to 1/3. A sim-
plified model is also proposed to realize high computation accuracy within low computation cost.
Examples demonstrate that the 3-D network model has particular superiority in the simulation of
short-fiber reinforced composites.
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Network models, also called lattice model in some references, have been applied to many

fields over the past forty years. Before computer techniques were widely used, facing to large en-

gineering structures consisting of truss elements, one used discrete models for structural analy-

sis[1,2]. In the middle and the late 1980s, with the development of computer techniques, theoretical

physicists introduced a few 2-D network models to study the universal statistical laws of disorder

media during brittle fracture processes[3]. In the 1990s, network models played an important role

in the prediction of mechanical performance and investigation of damage evolution of materials

such as concrete[4], ceramics[5], particle reinforced composites[6] and short-fiber reinforced com-

posites[7�9].

For 2-D network models, their physical and geometrical parameters are able to be uniquely

determined in terms of the spatial symmetry and the equivalence of strain energy between network

and continuum cells[10]. Moreover, it was proved that as the size of 2-D network cell goes smaller

and smaller, the limitation of the predicted deformation field satisfies Lame’s equations in contin-

uum mechanics[7]. However, there are few theoretical studies and applications on 3-D network

models up to now. The reason may be that the complex geometry of 3-D network models makes it

impossible to directly calibrate the geometrical and physical parameters of components in terms of

the spatial symmetry.

Ostojastarzewski[10] pointed out that network method is, in principle, based on the atomic lat-

tice model of materials. Directly starting from the interaction between atoms in a material, a mate-

rial model is drawn out and the discrete schemes are discussed. A 3-D network model is con-
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structed with its geometrical and physical parameters calibrated. A simplified model is also pro-

posed, and its computational accuracy is analyzed. Finally, the superiority and potentiality that the

3-D network model simulates short-fiber reinforced composites is discussed.

1 Material model based on interaction between atoms

1.1 Strain energy of material cell and spring-bundle material model

At the microscopic scale, a macroscopic material cell includes infinite atoms, and the strain

energy of the material cell is determined by the interaction between atoms. Based on the embed-

ded-atom method[11], the strain energy of a material cell is given in terms of an embedding energy

accounting for the interaction between the nuclei and surrounding electron gas, and a second term

accounting for the self-interaction of the nuclei, namely,

[ ( )]i i i
i

W UΦ ρ= +∑ , (1)

where i runs over all atoms in the material cell, iΦ is the total interaction energy of atom i with

all other nuclei, iρ is the ambient electron density at atom i, Ui is the energy required to embed

atom i into electron density iρ .

By virtue of eq. (1), a real material cell can be regarded as a composite of two simple materi-

als undergoing the same deformation and undertaking together the loading subject to the real ma-

terial. The strain energy of the first simple material is given by the first term on the right side of eq.

(1), and the one of the second simple material is given by the second term.

In the first simple material, the interactions between an atom, such as atom A in fig. 1, and

other atoms are represented by springs. In the coordinate system shown in fig. 2, denote the direc-

tion cosines in direction ( ,θ φ ) as

1 2 3sin cos , sin sin , cos ,n n nφ θ φ θ φ= = = (2)

Fig. 2. Coordinate system and unit area in ( ,θ φ ) direction.Fig. 1. Schematic illustrating a spring network.
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the solid angle in a neighborhood of direction ( ,θ φ ) is expressed as sin∆Ω φ∆φ∆θ= . Suppose

there is a unit area cross section P perpendicular to direction ( ,θ φ ) in fig. 2, whose scale is far

much larger than the average distance between atoms. When the material cell is subject to a mac-

roscopic strain increment ∆ε in direction ( ,θ φ ), denote the result force exerted on area P from

all the springs oriented in ∆Ω as ∆F. The elastic modulus of material cell in direction (θ,φ) can be

defined as ( , )H θ φ and

( , ) .
F

H
∆θ φ ∆Ω
∆ε

= (3)

Therefore, under macroscopic strain ijε , the total strain energy of all springs oriented in ∆Ω

in unit volume material will be

1
1

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) sin .
2 i j r s ij rsW H n n n n∆ θ φ θ φ θ φ θ φ θ φ θ φ ε ε φ∆φ∆θ= (4)

With direction ni (i = 1,2,3) going over the above half solid angle (z�0), the total strain energy of

unit volume material

/ 2 2

1 0 0

1
sin ( , ) ( , ) ( , ) ( , ) ( , ) .

2 ij rs i j r sW H n n n n d d
π π

ε ε φ θ φ θ φ θ φ θ φ θ φ θ φ =
  ∫ ∫ (5)

For an isotropic material, the elastic moudlus H is constant. Then eq. (5) becomes

1 ( ),
15 ij rs ij rs ir js is jrW H
π ε ε δ δ δ δ δ δ= + + (6)

where ijδ is Kronecker symbol.

The strain energy of the second simple material is only dependent on the volume deformation.

Under macroscopic strain ijε , the strain energy is written as

2
1

,
2 c ij rs ij rsW ρ δ δ ε ε= (7)

where cρ is the volume modulus.

1.2 Discretization by orientation

For the first simple material, its strain energy can be discretized by orientation. Then eq. (5)

can be written as

1
1

( ) ( ) ( ) ( ) ( ) ,
2 ij rs i j r sW H n n n n d

Ω

ε ε Ω Ω Ω Ω Ω Ω= ∫∫ (8)

where Ω is the solid angle represented by orientation ( )in Ω . Divide the above half (0�φ �π/2)

into M solid angles, and the representative direction of the α th solid angle is ( )n α , then eq. (8)

becomes



1354 SCIENCE IN CHINA (Series A) Vol. 45

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 1

1
.

2

M M

ij rs i j r sW W H n n n nα α α α α α α

α α
∆ ε ε ∆Ω

= =
= =∑ ∑ (9)

On the other hand, for a parallel spring-bundles with orientation ( )
in α and stiffness modulus

( )K α , its unit volume strain energy

( ) ( ) ( ) ( ) ( ) ( )1
.

2 ij rs i j r sW K n n n nα α α α α αε ε= (10)

Compared with eqs. (9) and (10), material cell is composed of M groups of parallel springs, each

of which has stiffness modulus
( ) ( ) ( )
0 .K Hα α α∆Ω= (11)

1.3 Representative directions of discrete solid angles

To ensure the computational accuracy, it is necessary to reasonably choose the sum of dis-

crete solid angles M and the representative orientation of each discrete solid angle ( )n α .

Thinking of the symmetry in the 3-D rectangular coordinate system, fig. 3(a)�(d) shows

several possible discrete manners in the stereographic projection. In fig. 3(a), there are 9 repre-

sentative directions with direction numbers [1,0,0], [0,1,0], [0,0,1], [1,1,0], [1,0,1], [0,1,1],

[1, 1 ,0], [ 1 ,0,1] and [0, 1 ,1], respectively ( 1 represents −1, similarly hereinafter). Fig. 3(b)

shows a manner of 7 representative directions with direction numbers [1,0,0], [0,1,0], [0,0,1],

[1,1,1], [ 1 ,1,1], [1, 1 ,1] and [ 1 , 1 ,1], respectively. Fig. 3(c) shows a manner of 13 representative

directions with direction numbers [1,0,0], [0,1,0], [0,0,1], [1,1,0], [1,0,1], [0,1,1], [1, 1 ,0], [ 1 ,0,1],

[0, 1 ,1], [1,1,1], [ 1 ,1,1], [1, 1 ,1] and [ 1 , 1 ,1], respectively. Fig. 3(d) is a scheme with 37 repre-

sentative directions. The direction numbers of five typical directions are [1,0,0], [1,1,0], [1,1,1],

[2,1,0] and [2,1,1], respectively. With the increase of the number of the discrete solid angles, the

orientation deviation among discrete solid angles decreases and the accuracy of discrete

approximation increases. Of course, the increase of the sum of discrete solid angles leads to the

increase of computational cost. Numerical investigation indicates that the discrete manner shown

in fig. 3(c) is a good compromise in consideration of the accuracy and cost.

Fig. 3. Stereographic projections of representative directions in four discrete manners.
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Without losing generality, the discrete manner shown in fig. 3(c) will be employed and eq. (8)

is discretized by 13 directions. Then eq. (9) becomes
13

( ) ( ) ( ) ( ) ( ) ( )
1

1

1
.

2 ij rs i j r sW H n n n nα α α α α α

α
ε ε ∆Ω

=
= ∑ (12)

1.4 Determination of discrete solid angles

The representative directions shown in fig. 3(c) are divided into three groups. The represen-

tative directions in the first group are [1,0,0], [0,1,0] and [0,0,1]; the second group are [1,1,0],

[1,0,1], [0,1,1], [1, 1 ,0], [ 1 ,0,1] and [0, 1 ,1]; the third group are [1,1,1], [ 1 ,1,1], [1, 1 ,1],

[ 1 , 1 ,1]. Denote the three groups’ solid angles are ∆Ω (1), ∆Ω (2) and ∆Ω (3), respectively. Then,

for an isotropic material, eq. (12) becomes

(1)
1 1 1 1 1 2 2 2 2 3 3 3 3

(2)

1 1 1 1 2 2 2 2 3 3 3 3

(3)

1 1 1 1 2 2

1
{ ( )

2

[( ) ( )]
2

[4( ) 8(
9

ij rs i j r s i j r s i j r s

ij rs ir js is jr i j r s i j r s i j r s

ij rs ir js is jr i j r s i j r

W Hε ε ∆Ω δ δ δ δ δ δ δ δ δ δ δ δ

∆Ω δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ

∆Ω δ δ δ δ δ δ δ δ δ δ δ δ δ

= + +

+ + + − + +

+ + + − + 2 2 3 3 3 3)]}.s i j r sδ δ δ δ δ+

(13)

Comparing eq. (6) with eq. (13) gives

(1) (2) (3)4 2

9 5
∆Ω ∆Ω ∆Ω π+ + = (14)

and (2) (3)1 4 2
.

2 9 15
∆Ω ∆Ω π+ = (15)

As is well known, the smaller the size-difference among these discrete solid angles, the

higher the discrete accuracy. Therefore, the optimum discrete scheme makes
(1) (2) (3) (1) (2) (3)max( , , ) / min( , , )χ ∆Ω ∆Ω ∆Ω ∆Ω ∆Ω ∆Ω= (16)

reach its minimum. Letting (3) (2)/ξ ∆Ω ∆Ω=

and substituting it into eq. (14) and eq. (15) give

(1)∆Ω �
(2)∆Ω �

(3) 8 1

9 2
∆Ω ξ = + 

 
�1�ξ .

(17)

The dependence of χ on ξ is depicted in fig. 4.

When ξ = 1, eq. (17) reaches its minimum. Let-

ting (2) (3)∆Ω ∆Ω= and combining eq. (14)

and eq. (15) give

(3)10 12 12
, , .

51 85 85
∆Ω π ∆Ω π ∆Ω π(1) (2)= = = (18)

The discrete solid angles for other discrete manners can also be determined analogously.

Fig. 4. χ ~ξ curve.
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2 3-D network model

Based on the discrete manner shown in fig. 3(c), the material cell is modeled by parallel

spring-bundles oriented in the 13 directions, and the stiffness moduli of the spring-bundles are

determined by eq. (13). Provided that a spring-bundle can be represented by a 1-D component

with the same orientation and stiffness modulus, a 3-D network model cell shown in fig. 5(a) is

constructed.

Fig. 5. Unit 3-D network cell (a) and a discrete material volume (b).

For a regular hexahedron network cell with volume a3, the length of the components in the

three groups is a/2, 2 / 2a and 3 / 2a , respectively. According to the length and

corresponding discrete solid angle, the stiffness of the α th component in the network cell

( ) 3 ( ) ( ) ( ) 2/( )k a H Lα α α α∆Ω= . (19)

Therefore, the stiffness k(i) (i = 1, 2, 3) of the components in the three groups satisfies
(1)k �

(2)k �
(3)k = 25�9�6. (20)

3 Parameter calibration of 3-D network model

3.1 Strain energy of network cell

When network cell simulates a material, the strain energy of the network can be written as

( , ) ( ) ( )

,

1
[( )

2
U k α β α β

α β
= −∑ u u �

( , ) 2] ,α βn (21)

where α and β are the serial number of the nodes; ,α β sums over all the components; ( )αu

and ( )βu are the displacements of nodes α and β, respectively; ( , )α βn is the unit vector from

nodes α to β; ( , )k α β is the tensile stiffness of the component, one of the k(i), respectively.

Under pure shear deformation ( 1 3,u xγ= 2 0,u = 3 1u xγ= ), the strain energy of network

cell with side a shown in fig. 5(a)
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(2) (3) 2 24
.

3
U k k aγ γ = + 

 
(22)

Under pure dilatation ( 1 1,u xη= 2 2 ,u xη= 3 3u xη= ), the strain energy of network cell

(1) (2) (3) 2 23
3 3 .

4eU k k k a η = + + 
 

(23)

3.2 Balance and objectivity requirements

By differentiating the energy U with respect to ( )αu , the resultant force exerted on node α
can be obtained, which vanishes at equilibrium, so that

( , ) ( ) ( )
( )

,

{[( )
U

F k
u

α β β α
α α

β
α β

∂= − = −
∂ ∑ u u �

( , ) ( , )] } 0.α β α β =n n (24)

When the size of the network cell gets smaller and smaller, node β approaches to node α,

( )βu can be expanded in Taylor series around node α up to the second order as
2

( ) ( ) ( , ) ( , ) ( , ) 2 ( , ) ( , )1
[ ] ( 1,2,3),

2
i i

i i s s t
s s t

u u
u u L n L n n i

x x x
β α α β α β α β α β α β∂ ∂

− = + =
∂ ∂ ∂

(25)

where ( , )L α β and ( , )
sn α β are the length and direction cosine of the component connecting nodes

α and β, respectively.

Substituting eq. (25) into eq. (24), the balance equations require the stiffnesses of compo-

nents satisfy

22 2
2 (1) (2) (3) 31 2

1 2 3
1 1 2 2 3 3

2 2
2 (2) (3) (2) (3)

8

3

8 4
2 0.

3 3

i i i

k i

i k k k

uu u
a k k k

x x x x x x

u u
a k k k k

x x x x

δ δ δ
 ∂∂ ∂  − − +     ∂ ∂ ∂ ∂ ∂ ∂    

∂ ∂   + + + + =   ∂ ∂ ∂ ∂   

(26)

On the other hand, the equilibrium equations of material cell expressed by displace are
2 2

( ) 0,k i
c

i k k k

u u

x x x x
λ ρ µ µ∂ ∂

− + + =
∂ ∂ ∂ ∂

(27)

where λ and µ are the Lame coefficients of the material. Comparing eq. (26) with eq. (27), the

stiffness of the components in network cell satisfies

(1) (2) (3)8
0,

3
k k k− − = (28)

(2) (3)

(2) (3)

8
2

3 .
4
3

c
k k

k k

λ ρ µ
µ

+ − +=
+

(29)

It can be verified that eq. (28) is independent of the coordinate system chosen, namely, the objec-
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tivity requirement. Obviously, the stiffness in eq. (20) satisfies eq. (28). Meanwhile, by virtue of

eq. (20) and eq. (29), the volume modulus of the second simple material

.cρ λ µ= − (30)

3.3 Shear modulus requirement and parameter calibration

Eq. (22) indicates that in order to simulate the shear modulus requirement of material cell,

the stiffness of the components must satisfy

(2) (3)4
2 .

3
k k aµ+ = (31)

Then when satisfying the discretization requirement expression eq. (20) and the shear modulus

requirement expression eq. (31), the stiffness of the components

(1) (2) (3)50 18 12
, , .

17 17 17
k a k a k aµ µ µ= = = (32)

It is verified that the components’ stiffness calibrated satisfies the volume modulus require-

ment of material cell, namely

(1) (2) (3) 2 3 33 3 9
3 3 (3 2 ) ,

4 2 2 ck k k a a aλ µ ρ + + = + − 
 

(33)

and satisfies the tensile modulus requirement, namely

(1) (2) (3) 2 3 31 1 1 1 1
.

4 2 3 2 2 ck k k a a aλ µ ρ   + + = + −   
   

(34)

4 Simplified 3-D network model

When the Poisson ratio = 1/4, λ = µ, and ρ c = 0, the strain energy of the second simple mate-

rial is zero. Because the Poisson ratio of most engineering materials is near 1/4, ρc��k(1), k(2), k(3),

then the effect of the second simple material can be neglectable. Moreover, in many cases, the

effect of hydrostatic stress on the material behavior is not the major factor of problems. In this

case, neglecting ρc and letting

8 8 10
,

9 4 9 4

v
E E

v v
µ µ

′+ ′ ′= =
′ ′+ +

, (35)

and (1) (2) (3)400(1 ) 144(1 ) 96(1 )
, , .

17(9 4 ) 17(9 4 ) 17(9 4 )
k a k a k a

ν ν νµ µ µ
ν ν ν

′ ′ ′+ + +′ ′ ′= = =
′ ′ ′+ + +

(36)

In eqs. (35) and (36), µ′ , E′ and ν ′ are the shear modulus, Young’s modulus and Poisson

ratio of simulated material, respectively. Then the network model becomes a simplified spring

network model.

Fig. 6 shows the relation between Poisson ratio ν ′ and the relative errors of Young’s

modulus and shear modulus of the simplified spring network model. Obviously, the relative errors

are always less than 11%. For most of engineering materials with Poisson ratio between 0.15 and
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0.35, the relative errors are less than 5%. The spring network model takes into account both the

low-cost and high accuracy.

It has been verified[11,12] that, for engineering short-fiber reinforced composite, the matrix

material can be simulated by network cells and the needle-like reinforcers can be represented by

1-D additional long components. In the large-scale analysis, such a discrete manner, shown in fig.

7, greatly reduces the computational cost. Meanwhile, network model is easy to establish the sim-

ple and explicit failure criteria of 1-D component by virtue of the physical mechanism of mi-

cro-crack defects. Liu et al.[11,12] have successfully investigated the strain distribution regularity in

short-fiber reinforced composites.

5 Conclusion

(1) Based on the interaction between discrete particles, a material model, whose framework

is parallel spring-bundles oriented in the 3-D space, is proposed. The optimum discrete manner is

derived, and a 3-D network model composed of 1-D spring components is constructed.

(2) A calibration formulae is derived to determine the geometrical and physical parameters of

the 3-D network model which is able to exactly simulate materials with arbitrary Poisson ratio

from 0 to 0.5.

(3) The simplification of network model is investigated to realize high computation accuracy

within low computation cost. An example shows that such a network model has particular superi-

ority in the simulation of short-fiber reinforced composites.

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos.
19872065 and 19732060), and the project KGCX1-11 supported by the Chinese Academy of Sciences Foundation.

References

1. Hrennikoff, A., Solution of problem of elasticity by the framework method, J. Appl. Mech., 1941, 12: 169�175.

2. Holnicki-szulc, J., Rogula, D., Nonlocal continuum models of large engineering structures, Arch. Mech., 1979, 31(6):

793�802.

Fig. 7. Simulation of short-fiber reinforced composites.Fig. 6. Relative error of E and µ .



1360 SCIENCE IN CHINA (Series A) Vol. 45

3. Herrmann, H. J., Roux, S., Statistical Models for the Fracture of Disordered Media, Elsevier Science, 1992.

4. Schlangen, E., Garboczi, E. J., Fracture simulations of concrete using lattice models: computation aspects, Eng. Fract.

Mech., 1997, 57: 319�332.

5. Curtain, W. A., Scher, H., Brittle fracture in disordered materials: a spring network model, J. Mater. Res., 1990, 5: 535�

553.

6. Chiaia, B., Vervuurt, A., van Mier, J. G. M., Lattice model evaluation of progressive failure in disordered particle compos-

ites, Eng. Fract. Mech., 1997, 57: 301�318.

7. Murat, M., Anholt, M., Wranger, H. D., Fracture behavior of short-fiber reinforced material, J. Mat. Res., 1992, 7: 3120.

8. Monette, L., Anderson, M. P., Ling, S. et al., Effect of modulus and cohesive energy on critical fiber length in fi-

ber-reinforced composites, J. Mater. Sci., 1992, 27: 4393�4405.

9. Liu, X. Y., Yan, W. D., Liang, N., A pseudo-plastic engagement effect on the toughening of discontinuous fiber-reinforced

brittle composites, Metals and Materials, 1998, 4: 242�246.

10. Ostojastarzewski, M., Sheng, P. Y., Alzebdeh, K., Spring network models in elasticity and fracture of composites and poly-

crystals, Comp. Mater. Sci., 1996, 7: 82�93.

11. Liu, Q. Y., Liang, N., Liu, X. Y., Prediction of mechanical property of whisker reinforced metal matrix composite: part-Ι
Model and Formulation, Chinese Journal of Aeronautics, 2000, 13: 182�187.

12. Liu, X. Y., Liu, Q. Y., Liang, N., Prediction of mechanical property of whisker reinforced metal matrix composite: part-II

Verification and Application, Chinese Journal of Aeronautics, 2000, 13: 188�192.


