
Analysis of Residual Stress Gradient in MEMS Multi-layer 
Structure 

Jin Qian1, Ya-Pu Zhao1*, Ru-Zeng Zhu1, Tong-Xi Yu2 
1. State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese 

Academy of Sciences, Beijing 100080, China 
2. Department of Mechanical Engineering, Hong Kong University of Science and Technology, 

Clear Water Bay, Kowloon, Hong Kong SAR, China 

Abstract 

Residual stress and its gradient through the thickness are among the most important properties of 
as-deposited films. Recently, a new mechanism based on a revised Thomas-Fermi-Dirac (TFD) model was 
proposed for the origin of intrinsic stress in solid films, giving the first order approximation of the stress gradient. 
The electron density at the boundary of the atoms (EDBA) defined by TFD model is taken as a dominating 
parameter inducing the stress. This paper applies the TFD model to multi-layer case, which is a typical structure 
in MEMS devices. The theoretical calculations suggest possibilities to control and reduce the residual stress. 
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1. Introduction 

   Microelectromechanical Systems (MEMS) 
are among the most significant technological 
advances of this decade. Thin films are good 
candidates for fabrication of MEMS devices 
compatible with microelectronics technology. 
However, the process generally produces 
as-deposited films with high residual stress and 
residual stress gradient through the thickness, 
which can be detrimental to devices’ 
performance. In order to obtain reliable thin 
films, residual stress and its gradient distribution 
must be identified and controlled. 
   Generally, residual stress in thin films is 
measured using wafer curvature method, in 
which the Stoney formula [1] serves as a 
cornerstone. The relationship between residual 
stress fσ  and wafer curvature κ  is 
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where  and  are the biaxial elastic 
modulus and the thickness of the substrate, and 

 is the thickness of the film. The formula 
does not presume any distribution of the film 
stress through the thickness, conflicting with the 
curving deformation of released structures. 
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   As pointed out by Ommen et al [2], there are 
two major causes for the occurrence of stress in 
thin films: intrinsic stress due to the volume 
change during the silicidation reaction, and 
thermal stress due to the temperature change 
after the reaction. In general, thermal stress thσ  
is uniform through the thickness and it can be 
calculated from [3] 

( ) ( )[ ] TTTM sffth d∫ −= αασ ,    (2) 

where  is the biaxial elastic modulus of the fM
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film, fα  and sα  are the thermal expansion 
coefficients of the film and the substrate 
respectively. Recently, a new mechanism based 
on a revised Thomas-Fermi-Dirac (TFD) model 
was proposed for the origin of intrinsic stress in 
thin solid films [4]. According to this model, 
intrinsic stress in films is induced by the 
difference between the EDBAs of the film and 
the substrate. The occurrence of intrinsic stress 
is a requirement of the continuity of the EDBA 
at the interface. 
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2. EDBA difference model 
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Fig. 1. Orientation of the rectangular coordinate with 
respect to a film of thickness  and a substrate of 

thickness . 
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   A free film-substrate system is referred to a 
rectangular coordinate system oriented as shown 
in Fig. 1. The thickness of the film and the 
substrate are both much less than the lateral 
dimension . Under the conditions stated, it 
follows that all shear components of stress and 
the normal stress in 

l

Z  direction can be 
neglected, and the normal components of stress 
in X  and Y  directions must be equal. Thus: 

σσ = ( )zyyσ ,         (3a) 

0==== xzyzzz ττσ .      (3b) 
Eqs. (3a) and (3b) presume the bi-layer is 
invariant under translation in either X  
direction or Y  direction. 
   The volume strain is 

 ( ) ( ) ( )Gzz 23 +λσθ ,       (4) 
where  and  are Lam é ’s constants, 
accords with the Laplacian equation: 
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Therefore, ( )zθ  is linear through the thickness. 
Suppose 
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where the subscripts  and  denote the film 
and the substrate respectively, 

f s

0θ  is the 
volume strain at the interface. 
   If the bi-layer is cut by a plane normal to the 
layer surface, then the absence of any externally 
applied loading implies that the net force must 
be zero, i.e. 
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Substituting the normal stress in term of the 
volume strain into Eq. (8) gives 
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   At the interface 0=z  and along either side, 
one has 
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where  is the EDBA at the interface, 
connected with pressure 

n
p  in the TFD model, 

and p  is the same as the pressure of the elastic 
equation. Combining Eqs. (9), (10a) and (10b), 
one gets the expression for  n
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The stress in the film due to EDBA difference is 
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If sf hh << , it follows . The sf AA <<



intrinsic stress in the film is 
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The solution based on EDBA difference model 
gives the first order approximation of the stress 
gradient. 

3. EDBA difference model for multi-layer 
case 
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Fig. 2. The internal stress distribution due to the 
deposition of film1. 

 
   EDBA difference model gives the intrinsic 
stress distribution of the film-substrate bi-layer 
system. As an extension of the model, a general 
tri-layer system is considered. The internal stress 
distribution due to the first deposition, shown as 
Fig. 2, has been given above. Then attention will 
be focused on the additional internal stress due 
to the second deposition. Suppose 
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where the subscripts 1, 2 and s denote film1, 
film2 and substrate in Fig. 3 respectively, 0θ  is 
the volume strain at interface2. Applying the 
condition imposed by overall equilibrium 
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one has 
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At interface2 0=z  and along either side, 
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Substituting Eqs. (17a) and (17b) into Eq. (16) 
determines the EDBA at interface2, then the 
additional internal stress can be given by 
insertion the value of the EDBA into Eqs. (14a), 
(14b) and (14c). If , then the 
intrinsic stress in film2 is 
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Fig. 3. The additional internal stress distribution due 
to the deposition of film2. 

 
   If film1 is etched as a sacrificed layer, film2 
will bend due to the internal stress gradient. The 
curvature-radius of the bending can be 
calculated as 
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where  is the biaxial elastic modulus of 
film2. 

2M

   The total internal stress distribution of the 
tri-layer system should be the sum of the stress 
distributions in Fig. 2 and Fig. 3. Repeating 
similar course as above, results for structures 



containing more layers can be obtained. A 
computational procedure based on this model 
will be helpful because of the taxing calculation 
when the layer-number increasing. 

4. Discussion 
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Fig. 4. The relationship between the thickness ratio 

( sf hh ) and intrinsic stress.  (
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   The expression of intrinsic stress in thin 
films, shown as Eq. (12), suggests possibilities 
to control and reduce it. In MEMS materials 
selection, films with relatively low value of 

np dd  are welcome preventing high intrinsic 
stress. In geometry design, because intrinsic 
stress is inverse proportional to the thickness 
ratio sf hh , as shown in Fig. 4, the reduction 
of film thickness will induce increase in stress. 
When the thickness ratio surpasses a critical 
value, the high stress will cause the film to tear 
off. In fabrication process, techniques reducing 
EDBA difference between the film and the 
substrate would be effective to diminish the 
intrinsic stress. Dose implantation has been 
taken to modify the EDBA of substrate by Liu et 
al [4], the experiment resulted in considerable 
reduction of intrinsic stress. 

5. Conclusions 

   The following conclusions can be obtained: 

 In thin films, the normal stress is much 
smaller than the lateral stresses. The lateral 
stresses have a linear distribution through 
the thickness. 

 The thickness ratio sf hh  is an important 
parameter in film design. When the ratio is 
lower than a critical value, stress will be 
high enough to tear film off. 

 The magnitude of internal stress is 
proportional to the difference in electron 
density of the materials at interface and to 
the derivative of pressure with respect to 
electron density. Hence the stability of the 
composite demands a small difference in 
electron densities between the two layers at 
interface. 
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