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Abstract

The one-mode analysis method on the pull-in instability of micro-structure under electrostatic loading is presented. Taylor series are used to
expand the electrostatic loading term in the one-mode analysis method, which makes analytical solution available. The one-mode analysis is
the combination of Galerkin method and Cardan solution of cubic equation. The one-mode analysis offers a direct computation method on the
pull-in voltage and displacement. In low axial loading range, it shows little difference with the established multi-mode analysis on predicting the
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ull-in voltages for three different structures (cantilever, clamped–clamped beams and the plate with four edges simply-supported) studied here.
or numerical multi-mode analysis, we also show that using the structural symmetry to select the symmetric mode can greatly reduce both the
omputation effort and the numerical fluctuation.

2006 Elsevier B.V. All rights reserved.
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. Introduction

In microelectromechanical systems (MEMS), electrical actu-
tion is widely used as an exciting or control mechanism in elec-
rostatic actuator [1], resonant sensor [2–4] and optical scanner
5]. Electrical actuation mechanism offers many advantages like
ast response and simple drive electronics [5]. Microstructure is
abricated by MEMS technology and used in microsensors and
icroactuators. During the manufacturing, electrostatic loading

an be left over to become a pronounced factor affecting the
ehavior of microbeam in some electrostatic devices [6]. As the
icrostructure is balanced between electrostatic attractive force

nd mechanical (elastic) restoring force, both electrostatic and
lastic restoring force increase when the electrostatic voltage
ncreases. When the voltage reaches the critical value, the pull-
n value, pull-in instability happens. Pull-in is the point at which
he elastic restoring force can no longer balance the electrostatic
orce. Further increasing the voltage will cause the structure
o have dramatic displacement jump which causes structure

collapse and failure. Pull-in instability is a snap-through like
behavior and it is saddle-node bifurcation type of instability.
Larger maximum displacement can provide the structure better
sensitivity and tuning range and a large range of beam deflection
can be extremely useful for a wide variety of tuning application
[1]. In contrast, pull-in instability restricts the structure maxi-
mum displacement. Pull-in instability is also a major structural
safety concern for MEMS structural design and test [7–9].

For its importance in MEMS structural safety, pull-in insta-
bility is widely studied. Single degree of freedom (DOF) mass-
spring system model is the simplest one used to predict the pull-
in voltage and maximum displacement [1]. Bochobza-Degani
and Nemirovsky [10,11] develop the lumped two DOF model
for the pull-in analysis of the structure with bending/torsion
coupling. For single DOF model, the stiffness of the continu-
ous system is simplified as one spring constant. For structure
like beam or plate, the stiffness is influenced by the axial load-
ing, intrinsic stress gradient [12] and geometric nonlinearity
due to large deflection [2]. At the same time, the electrostatic
force is dependent on the deflection and this deflection depen-
dence property is responsible for the pull-in instability. How to
∗ Corresponding author. Tel.: +86 10 62648720; fax: +86 10 62561284.
E-mail address: zhangyin@lnm.imech.ac.cn (Y. Zhang).

extract the parameters like the spring stiffness and electrostatic
force for one DOF system from the physical continuous system
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determines the accuracy of one DOF modeling. As for the stiff-
ening effect on the structure, the spring is treated as Duffing
spring (hardening spring) [13–16]. The nonlinear cubic term in
the Duffing spring is due to the mid-plane stretching of the struc-
ture and such nonlinear term has pronounced influence on the
structure secondary resonance for the dynamic study [16]. Such
nonlinear term contribution to the stiffening of the structure is
also deflection-dependent for the continuous system. Axial force
appears in the governing equation as a linear second order term,
which can either stiffen (tensile load) or soften (compressive
load) the structure. The axial force influence on the beam pull-in
displacement and voltage is investigated by many [2,3,6,17] and
is clearly indicated by the ratio of the two dimensionless num-
bers [17]. Electrostatic force also has the softening effect on
the structure stiffness [18]. Pamidighantam et al. [19] derived
the close form solution for the beam continuous system with
fixed–fixed and fixed–free boundary conditions by introducing
the concept of the effective stiffness.

Very similarly, Lobontiu and Garcia [20] use lumped effective
inertia and stiffness to derive the close form compliance/stiffness
equations for the cantilever structure in atomic force microscopy
design. As demonstrated by Hu et al. [18], there is significant
computational difference on the pull-in voltage between lumped
model and modal expansion method (Galerkin method) and
the experimental results match the results of Galerkin method
very well. Meanwhile, using the orthogonality of the mode
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enforcing the pull-in conditions that the first and second order
derivatives of the system energy functional are zero. In their
model, the pull-in voltage and displacement are coupled in the
two governing equations. For our analytical one-mode analysis
presented here, it directly calculates pull-in voltage and displace-
ment in one governing equation. The accuracy of the one-mode
analysis depends on Taylor series expansion on electrostatic
force term which has the truncation error. Compared with the
Taylor series expansion on electrostatic force done by Hu et al.
[18], our one-mode analysis method keeps more Taylor series
expansion terms. In multi-mode analysis, the fact that the slope
of voltage–displacement around the pull-in approaches infin-
ity is used as the criterion to determine when pull-in happens
[21,24]. Therefore, for the numerical multi-mode analysis, the
pull-in displacement can have relatively large numerical fluc-
tuation because any tiny change of electrostatic voltage around
pull-in point can cause very large displacement change. That is
also why the pull-in displacement is extremely sensitive to the
voltage step size around the pull-in point in the numerical multi-
mode analysis. However, there is no such numerical fluctuation
in the analytical one-mode analysis. The analytical one-mode
analysis offers an efficient, direct and fast method to calculate
pull-in voltage and displacement.

In this paper, we first analyze the pull-in instability of sin-
gle degree of freedom system. The governing equation of single
DOF system derived from the balance of mechanical (elastic)
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hapes can greatly reduce the computation effort [18]. Choi
nd Lovell [6] provide a model on the continuous system, but
heir model on mechanical restoring force part is linear. Because

any MEMS structures may experience large deflection, Abdel-
ahman et al. [2] provide a refined model which includes

he nonlinear mechanical restoring force due to the mid-plane
tretching, which stiffens the structure. The models presented
ere account the influence of both axial force and mid-plane
tretching.

For multi-mode analysis [10,11,15,16,21], generally speak-
ng, Newton–Rhapson method is used as the solving method
nd the gradients are calculated for each iteration step. Rela-
ive large computational difference is shown for pull-in voltage
etween one-mode analysis and two mode analysis [10]. Maybe
his is due to the trial function for beam deflection used in their
ayleigh-Ritz method though physically it is also well possi-
le that the second mode shape contributes significantly to the
eflection. As for the Galerkin method which uses the struc-
ure mode shape as its weight function, Wang et al. [21] show
he very good convergence on the computation of the pull-in
oltage as the mode number increases. Bochobza-Degani et al.
22] presented an algorithm called displacement iteration pull-in
xtraction (DIPIE) algorithm. DIPIE algorithm uses a relaxation
cheme to avoid the numerical calculation of the electrostatic
nd mechanical fields gradients. The algorithm iterates until the
eflection is converged.

The analytical one-mode analysis presented here does not
eed any iteration. Rong et al. [23] present an analytical method
or pull-in analysis of clamped–clamped multilayer beam. Their
ethod is Rayleigh-Ritz method and assumes one deflection

hape function. They derive the two governing equations by
estoring and electrostatic forces is a cubic equation. The ana-
ytical Cardan solution of a cubic equation is shown here that it
an also be used to predicate the pull-in instability. The analyt-
cal study on the continuous system is based on the assumption
hat the first mode shape is the dominant deflection shape and
nly the first mode shape is used for the discretization. The con-
inuous system is discretized and computed by modal analysis
Galerkin method). Such analytical study is also compared with
he numerical multi-modal analysis to show its validity (in cer-
ain range) and evaluate its applicability range.

. Pull-in instability of single degree of freedom system

The governing equation for single DOF system shown in
ig. 1 is given as

w = C

(d − w)2 (1)

is the plate displacement, d the gap distance between plate
nd electrode before actuation, k the spring stiffness and C is a
onstant given as C = εAV2/2 [1] (ε, permittivity of free space;
, plate area; and V, voltage.) Left side of Eq. (1) is the elastic

estoring force and right side is the electrostatic force. For elec-
rostatic force, the expression above does not account for the
ringing fields effect [13,23]. By simple manipulation, Eq. (1)
an be rewritten as

3 − 2dw2 + d2w− C0 = 0 (2)

0 = C/k. This is cubic equation and can be analytically solved
y Cardan solution [25]. In cubic equation, Q is the parameter
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Fig. 1. Schematics of single DOF spring–mass system and cantilever,
clamped–clamped beams.

indicating the solution scenarios of the three roots. Q is given as

Q =
(p

3

)3 +
(q

2

)2
(3)

Here

p = − (−2d)2

3
+ d2 = −d2

3
and

q = 2

(−2d

3

)3

− 1

3
(−2d)d2 − C0 = 2d3

27
− C0

When Q < 0, there are three real roots.
When Q = 0, there are three real roots, at least two roots are

the same.
When Q > 0, there are one real roots, two complex conjugate

roots.
Without loss of generality and for the simplicity, d is set

as 1 in Eq. (2). The three roots of Eq. (2) are given in Fig. 2
as C0 changes from 0 to 4/27. The three real roots exist until
C0 = 4/27. At C0 = 4/27, Q = 0. After C0 = 4/27, only w3 exists
in real domain.w3 can be excluded becausew3 ≥ 1, which phys-
ically means that the plate penetrates the electrode. w2 can also
be excluded because it is an unstable solution. So only w1 is
the stable and physically reasonable solution for Eq. (2). From
Fig. 2, it is shown that at C0 = 4/27, w1 = w2 = 1/3. After that,
w andw cease existing in real domain and onlyw is left. Fur-
t
r
s

Fig. 2. Three roots change of single DOF system as C0 changes.

pull-in instability. This 1/3 value is the widely used criterion
among electrical engineers, which is only valid for single DOF
system. As it will be shown later, for the continuous system, the
axial load will play an important role in this critical value and
this 1/3 value can no longer be valid. By analyzing the single
DOF case, the conclusion can be made that changing C0 results
in the change of Q from negative to 0. Q = 0 indicates pull-in
instability. It is also shown that w1 and w2 are two repeated
roots at Q = 0. This property can also mathematically help to
select w1 from the three roots at Q = 0 from Cardan solution.

Another way to look at the problem is to look at the balance
between mechanical restoring force fm and electrical attrac-
tive force fe. fm is defined as fm = kw and fe is defined as
fe = C/(d − w)2. Without losing generality and to make things
simple, the spring stiffness k is taken as one. In Fig. 3, it is shown

F
g
d

1 2 3
her increasing C0, the (real) solution will jump fromw1 tow3 in
eal domain. This indicates the pull-in instability happening for
ingle DOF case. 1/3 is the maximum plate displacement before
ig. 3. The balance of mechanical restoring force and electrical force of sin-
le DOF system. The spring stiffness k = 1 and C = C0 = 2/27. There are three
istinctive intersection points.
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Fig. 4. The balance of mechanical restoring force and electrical force for sin-
gle DOF system. The spring stiffness k = 1 and C = C0 = 4/27. There are two
intersection points. The mechanical force curve is tangent to the electrical force
curve and pull-in instability happens.

that when C = C/k = C0 = 2/27 (pull-in does not happen), there
are three distinctive intersection points, w1, w2 and w3. These
three intersection points are the equilibria of the single DOF
system. Clearly w3(w3 > 1.0) is physically impossible and w2
is an unstable solution. Only w1 is the stable and physically
reasonable solution. As C increases, w1 and w2 come closer to
each other. As it is shown in Fig. 4, at the point C = 4/27 (pull-
in happens), the two points collide and the mechanical force
curve (the straight line) is tangent to the electrical force curve.
If C keeps increasing, there will be no intersection point(s) in
w < 1.0 domain. The only intersection point will be w3 and
w3 > 1.0, which means there is no physical equilibrium after
C > 4/27.

3. Pull-in instability of continuous system: cantilever
and clamped–clamped beams

3.1. One-mode analysis of beam

The nonlinear differential governing equation for electrically
actuating beam which accounts for the mid-plane stretching is
given as [2]

EI
d4w

4 =
[
EA

∫ l
(

dw
)2

dx+ P

]
d2w

2 + εbV 2
p

2 (4)

a
c
t
t
c

tions at the ends are:

w(0) = 0,
dw(0)

dx
= 0; w(l) = 0,

dw(l)

dx
= 0 (5)

For cantilever beam, the boundary conditions at the ends are
[27]:

w(0) = 0,
dw(0)

dx
= 0;

d2w(l)

dx2 = 0,

EI
d3w(l)

dx3 − P
dw(l)

dx
= 0 (6)

Following Abdel-Rahman’s nondimensionalization scheme
[2], let

W = w

d
, ξ = x

l
, N = Pl2

EI
,

α1 = 6

(
d

h

)2

, α2 = 6εl4

Eh3d3 (7)

Eq. (4) is nondimensionalized as

d4W

dξ4 =
[
α1

∫ 1

0

(
dW

dξ

)2

dξ +N

]
d2W

dξ2 + α2V
2
p

(1 −W)2 (8)

To use the analysis of cubic equations, this nonlinear equa-
t
l

p
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dx 2 0 dx dx 2(d − w)

E is the effective Young’s modulus, I the moment of inertia
nd I = bh3/12 (b, h: beam width and thickness). A the beam
ross section area (A = bh), ε the dielectric constant, Vp the elec-
rostatic voltage,w the beam deflection, d the gap distance and l
he beam length. P is the axial load, P > 0 is tensile and P < 0 is
ompressive. For clamped–clamped beam, the boundary condi-
ion needs to have such following manipulation on the electrical
oading term

α2V
2
p

(1 −W)2 = α2V
2
p

1 − (2W −W2)

= α2V
2
p [1 + (2W −W2)

+ (2W −W2)
2 + (2W −W2)

3 + · · ·]
≈ α2V

2
p (1 + 2W + 3W2 + 4W3) (9)

This Taylor series expansion requires |2W–W2|<1. Because
hysically 0 ≤ W < 1, this requirement can be satisfied. Now Eq.
8) is changed as

d4W

dξ4 =
[
α1

∫ 1

0

(
dW

dξ

)2

dξ +N

]
d2W

dξ2

+α2V
2
p (1 + 2W + 3W2 + 4W3) (10)

The dimensionless beam deflection W is assumed to have only
ne mode, W = a1φ1.φ1 is the first mode shape of cantilever beam
r clamped–clamped beam. When the transverse displacement

increases, the Taylor series expansion becomes less accu-
ate because the terms taken in the Taylor series above are only
p to cubic term. The mode shapes of the beam with different
oundary conditions are given by Chang and Craig [26]. The
ode shapes given by Chang and Craig are the mode shapes

f the beam without axial loading. For the clamped–clamped
eam, the axial load does not change the boundary conditions.
or clamped–clamped beam case, the computation results using

he mode shapes of zero axial load case make little difference



370 Y. Zhang, Y.-p. Zhao / Sensors and Actuators A 127 (2006) 366–380

Fig. 5. Different cantilever first mode shapes as the axial load at the end changes.

from those using mode shapes of nonzero axial load when the
axial load is moderate. But for cantilever beam, one of bound-
ary condition (El(d3w(l)/dx3) − P(dw(l)/dx) = 0) in Eq. (6) is
directly related to the axial load P. The mode shape for the can-
tilever beam must be computed every time when the axial load
P(N) changes. The computation of the cantilever beam mode
shape with axial load is given in the appendix. Fig. 5 shows the
changes of the cantilever beam dimensionless first mode shapes
under the different axial loads Ns.

Substitute W = a1φ1 into Eq. (10), timesφ1 and integrate from
0 to 1. The mode shape φ1 now plays another role of weight
function in Galerkin method. Eq. (10) now becomes

∫ 1

0
φ1
a1d4φ1

dξ4 dξ

=
∫ 1

0
φ1

[
α1

∫ 1

0

(
a1 dφ1

dξ

)2

dξ +N

]
d2(a1φ1)

dξ2 dξ

+
∫ 1

0
α2V

2
p (φ1 + 2a1φ

2
1 + 3a2

1φ
3
1 + 4a3

1φ
4
1)dξ (11)

This is a cubic equation of a1 and it can be rewritten as

a3
1 + aa2

1 + ba1 + c = 0 (12)

)/(

G

Also let

Q =
(p

3

)3 +
(q

2

)2
,

(
p = −a

2

3
+ b, q = 2

(a
3

)3 − ab

3
+ c

)
(15)

a, b, c contain α2V
2
p . For pull-in instability, α2V

2
p can be deter-

mined from the nonlinear equationQ(α2V
2
p ) = 0 as we discuss

in one DOF case. Once α2V
2
p is solved, it can be substituted

into Eq. (12) to solve for a1. The maximum displacement of
clamped–clamped beam is at the center, so Wmax = a1φ1(0.5).
For the cantilever beam, the maximum displacement is at the
beam tip, so Wmax = a1φ1(1.0).

There is one problem of solving α2V
2
p from the one variable

nonlinear equation Q(α2V
2
p ) = 0. Physically there is only one

α2V
2
p for the pull-in instability to happen. But Q(α2V

2
p ) = 0

of Eq. (15) can give more than one solution. The very intu-
itive and reasonable choice is to take the smallest positive α2V

2
p

from the solutions of nonlinear equation Q(α2V
2
p ) = 0. But it

happens to be wrong. Remember the physical constraint for
clamped–clamped beam requires Wmax = a1φ1(0.5) ≤ 1. If sub-
stitute the smallest α2V

2
p calculated fromQ(α2V

2
p ) = 0 into Eq.

(12) to solve for a1, it will make Wmax = a1φ1(0.5) > 1. When
Q = 0, there are three roots in Eq. (12), two are repeated, a1 is
a, b, c are defined as

a = 3α2V
2
p

∫ 1
0 φ

3
1 dξ

G
, b = 2α2V

2
p

∫ 1
0 φ

2
1 dξ +N

∫ 1
0 φ1((d2(φ1

And G is

G = 4α2V
2
p

∫ 1

0
φ4

1dξ + α1

∫ 1

0
φ1

d2(φ1)

dξ2

∫ 1

0

(
dφ1

dξ

)2

dξ dξ

(14)
dξ2))dξ − ∫ 1
0 φ1((d4φ1)/(dξ4))dξ

, c = α2V
2
p

∫ 1
0 φ1dξ

G
(13)

taken as the repeated one. It happens to be the second small-
est α2V

2
p from equation Q(α2V

2
p ) = 0 indicating the pull-in

instability of the clamped–clamped beam. For the cantilever
beam case, it happens to be the smallest α2V

2
p computed from

Q(α2V
2
p ) = 0 of Eq. (15) indicating pull-in instability.

3.2. Multi-mode analysis of beam

For the multi-mode analysis here, there is no Taylor series
expansion operation for the electrical part.

The governing equation is Eq. (8).

d4W

dξ4 =
[
α1

∫ 1

0

(
dW

dξ

)2

dξ +N

]
d2W

dξ2 + α2V
2
p

(1 −W)2 (8)

The displacement is assumed to have the following form

W =
M∑

i=1,2,3...

aiφi(ξ) (16)

ai is unknown constant (modal amplitude) to be computed from
the equation, φi is the clamped–clamped beam mode shape or
cantilever beam mode shape. The similar Galerkin method is
applied here as for one-mode analysis. The final equation set
(Eq. (17) shown below) is M coupled polynomial equations for
M ais (i = 1 to M). M is the mode number. Newton–Rhapson
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method is used to solve such equation set.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

0
φ1

⎧⎨
⎩

M∑
i=1

aiφ
′′′′
i −

⎡
⎣α1

∫ 1

0

(
M∑
i=1

aiφ
′
i

)2

dξ +N

⎤
⎦ M∑
i=1

aiφ
′′
i − α2V

2
p

(1 −∑M
i=1aiφi)

2

⎫⎬
⎭ dξ = 0

∫ 1

0
φ2

⎧⎨
⎩

M∑
i=1

aiφ
′′′′
i −

⎡
⎣α1

∫ 1

0

(
M∑
i=1

aiφ
′
i

)2

dξ +N

⎤
⎦ M∑
i=1

aiφ
′′
i − α2V

2
p

(1 −∑M
i=1aiφi)

2

⎫⎬
⎭ dξ = 0

...∫ 1

0
φM−1

⎧⎨
⎩

M∑
i=1

aiφ
′′′′
i −

⎡
⎣α1

∫ 1

0

(
M∑
i=1

aiφ
′
i

)2

dξ +N

⎤
⎦ M∑
i=1

aiφ
′′
i − α2V

2
p

(1 −∑M
i=1a1φi)

2

⎫⎬
⎭ dξ = 0

∫ 1

0
φM

⎧⎨
⎩

M∑
i=1

aiφ
′′′′
i −

⎡
⎣α1

∫ 1

0

(
M∑
i=1

aiφ
′
i

)2

dξ +N

⎤
⎦ M∑
i=1

aiφ
′′
i − α2V

2
p

(1 −∑M
i=1aiφi)

2

⎫⎬
⎭ dξ = 0

(17)

4. Comparative study of the pull-in instability of the
beams under one-mode and multi-mode analysis

Fig. 6 shows the maximum α2V
2
p can be reached before pull-

in instability happens for the different nondimensional axial
force N for the clamped–clamped beam. Fig. 7 shows the same
thing for the cantilever beam. α1 for both beam structures here
i
c
m
b
g
a
r

m
c
p

F
α

It is noticed that in both figures, the one-mode analysis only
predicts the trend of critical maximum displacement. As the
axial load N increases and the difference between multi-mode
and one-mode analysis is very significant. To explain this, the
maximum beam deflection (W(0.5)) of the clamped–clamped
beam is shown in Fig. 10 and the maximum of beam deflec-
tion (W(1.0)) of the cantilever beam is shown in Fig. 11. For
both figures, the x-axis is α2V

2
p , which increases from zero to

the critical pull-in value. The critical pull-in points are marked
by the circles. Those pull-in displacements in Figs. 8 and 9 are
the same as those of Figs. 10 and 11. Clearly the deflections in
both Figs. 10 and 11 show the similar behavior as w1 shows in
Fig. 2. The slopes of those curves dramatically change to a large
number around the critical pull-in α2V

2
p . At the critical pull-in

α2V
2
p , the slopes are infinite. So small change of α2V

2
p around

the critical value can cause the huge change of the maximum
beam displacements. Although the odd-mode method offers the

F
α

s taken as 3.7. In both figures, the one-mode analysis results are
ompared with the multi-mode analysis results. In the multi-
ode analysis for both the clamped–clamped and cantilever

eams, M here is taken as 5, which shows very good conver-
ence. The critical pull-in α2V

2
p increases almost linearly as

xial load N increases. The one-mode analysis shows very accu-
ate prediction on the pull-in α2V

2
p . Fig. 8 shows the critical

aximum displacement (W(0.5)) at the pull-in α2V
2
p for the

lamped–clamped beam. Fig. 9 shows the critical maximum dis-
lacement (W(1.0)) at the pull-in α2V

2
p for the cantilever beam.

ig. 6. Comparison of one-mode analysis and multi-mode analysis on pull-in

2V
2
p for clamped–clamped beam under different axial load Ns.
ig. 7. Comparison of one-mode analysis and multi-mode analysis on pull-in

2V
2
p for cantilever beam under different axial load Ns.
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Fig. 8. Comparison of one-mode analysis and multi-mode analysis on pull-in
Wmax(0.5) for clamped–clamped beam under different axial load Ns.

better convergence for the symmetric structure which we will
discuss in the next section, the Galerkin computation method of
multi-mode analysis still experiences the convergence difficul-
ties around the pull-in α2V

2
p . That is the reason why one-mode

analysis offers much more accurate pull-in α2V
2
p than critical

maximum displacements.
It is also noticed that in Fig. 8 the critical maximum dis-

placements of the clamped–clamped beam (W (0.5)) decrease
monotonically as the axial load N increases. But in the Fig. 9,
the critical maximum displacements of cantilever beam (W (1.0))
are the opposite. They increase monotonically as the axial load
N increases. To explain these two opposite trends, the weighted
mechanical restoring force Fm and weighted electrical force Fe

F
W

Fig. 10. α2V
2
p vs. Wmax(0.5) for clamped–clamped beam under different axial

load Ns.

are introduced. Fm is defined as

Fm =
∫ 1

0
φ1
a1d4φ1

dξ4 dξ −
∫ 1

0
φ1

×
[
α1

∫ 1

0

(
a1dφ1

dξ

)2

dξ +N

]
d2(a1φ1)

dξ2 dξ (18)

And Fe is defined as

Fe =
∫ 1

0
α2V

2
p (φ1 + 2a1φ

2
1 + 3a2

1φ
3
1 + 4a3

1φ
4
1)dξ (19)

φ1 here plays two roles: mode shape and weight function.
As it can be clearly shown in Fig. 4, when the mechani-

cal force curve is tangent to the electrical force curve, pull-in
instability happens. In both Figs. 12 and 13, α1 is defined

F

ig. 9. Comparison of one-mode analysis and multi-mode analysis on pull-in

max(1.0) for cantilever beam under different axial load Ns.
 ig. 11. α2V
2
p vs. Wmax(1.0) for cantilever beam under different axial load Ns.
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Fig. 12. The mechanical restoring force and electrical force curves of
clamped–clamped beam at two pull-in states (N = 0.2 and 24).

as 3.7. In Fig. 12, the x-axis is a1φ1(0.5) of the maximum
clamped–clamped beam displacement at the center (here φ1:
the first mode shape of clamped–clamped beam). In Fig. 13, the
x-axis is a1φ1(1.0) of the maximum cantilever beam displace-
ment at the tip (here φ1: the first mode shape of cantilever beam).
In Fig. 12, there are two pull-in states for the clamped–clamped
beam under N = 0.2 and 24. Clearly, when N increases from
0.2 to 24, the beam stiffness increases, which is reflected by
the slope increment of the mechanical force curve. At the same
time, the pull-in α2V

2
p also increases, which is reflected by the

moving-up of the electrical force curve. The exact same thing
happens in Fig. 13 for cantilever beam. For clamped–clamped
beam in Fig. 12, the tangent point, which indicates the critical
maximum beam displacement, decreases from 0.664 to 0.576

F
b

Fig. 14. Axial load N vs. the pull-in α2V
2
p for cantilever beam. This figure shows

the effect of α1 on the pull-in α2V
2
p . The two curves have two different values

of α1 = 3.7 and 20.

as N increases from 0.2 to 24. However, for cantilever beam in
Fig. 13, the tangent point increases from 0.487 to 0.5525 as N
increases from 0 to 4. For both clamped–clamped and cantilever
beams, as the axial load N increases, both the beam stiffness and
the pull-in α2V

2
p increase. As these two factors compete to each

other, the x coordinate of the tangent point (critical maximum
beam displacement) may decrease (clamped–clamped beam) or
increase (cantilever beam). So far, the parameter α1 is always
defined as 3.7 for all the results shown above. In Eq. (8), the
parameter α1 can be viewed as a parameter indicating the non-
linearity of a part of mechanical force. Small α1 indicates weak
nonlinearity and big α1 indicates strong nonlinearity. In Fig. 14,
the two curves with different α1’s show how the pull-in α2V

2
p

changes with the axial load N. For cantilever beam, it is inter-
esting to notice that the two curves cross each other at N = 4.41.
The results shown in Fig. 14 are done by one-mode analysis. For
clamped–clamped beam, it is shown by Abdel-Rahman et al. [2]
that the curves with different α1 never cross each other. It is also
shown by Abdel-Rahman et al. that for clamped–clamped beam,
bigger the α1 is, larger the pull-in α2V

2
p is. This agrees with intu-

ition because when onlyα1 increases, it means the nonlinear part
of the mechanical force increases. As the result, the whole beam
mechanical restoring force is expected to increase. So the bigger
pull-in α2V

2
p is expected. But as Eqs. (12)–(14) indicate that the

change of α1 will change every coefficient of Eq. (12). Although
the mechanical restoring force increases due to the increment
o
F
o
n
f
n
f
α

d

ig. 13. The mechanical restoring force and electrical force curves of cantilever
eam at two pull-in states (N = 0.0 and 4).
f α1, the critical maximum beam displacement also changes.
ig. 15 shows the critical maximum beam displacement (W(1.0))
f the cantilever beam as the axial load N changes. It is worthy
oticing that the two curves also cross each other at N = 4.41. So
or cantilever beam, although bigger α1 means the bigger beam
onlinearity of mechanical force and more restoring mechanical
orce, the required critical maximum displacement with bigger
1 is also smaller until N = 4.41. The smaller critical maximum
isplacement requires the less pull-in α2V

2
p to let the system



374 Y. Zhang, Y.-p. Zhao / Sensors and Actuators A 127 (2006) 366–380

Fig. 15. Axial load N vs. the pull-in maximum displacement Wmax(1.0) for
cantilever beam. This figure shows the effect of α1 on the pull-in maximum
displacement Wmax(1.0). The two curves have two different α1 = 3.7 and 20.

to reach the pull-in position. But as the system gets stiffer due
to the increment of parameter α1, its restoring force increases.
These two factors compete to each other, as the result, cantilever
beam with bigger α1 actually has smaller pull-in α2V

2
p shown

in Fig. 15 until N = 4.41.

5. Comparison of all-mode method (AMM) and
odd-mode method (OMM) for clamped–clamped beam

For clamped–clamped beam case, if W is expanded as the fol-
lowing odd-mode only series, the computation results are better
than those of all-mode expansion.

W =
M∑

i=1,2,3...

a2i−1φ2i−1(ξ) (20)

Odd modes are symmetric modes and even modes are the anti-
symmetric modes. For clamped–clamped beam, the boundary
conditions are symmetric. From the governing equation of (8)
for clamped–clamped beam, it can also be shown that the through
the whole domain, the electrical force is uniformly distributed.
One of odd-mode method advantages is obvious. It dramatically
reduces the mode number required to have the same precision as
all-mode method expansion. It also reduces the numerical fluc-
tuation around the pull-in instability area. The fluctuation is due
t
a
i
s
o
o

F
α

u

Fig. 16. Comparison of α2V
2
p vs. Wmax computed by OMM and AMM at N = 30,

α1 = 3.7.

results are almost exactly the same except those in the tiny area
of 135.3 < α2V

2
p < 135.8, which is very close to the pull-in.

There is obvious numerical fluctuation in AMM and it happens
to be no numerical fluctuation in this case for OMM. Gener-
ally speaking, OMM has much less numerical fluctuation than
AMM.

6. Continuous system: plate with four edges
simply-supported

6.1. Plate governing equation and nondimensionalization

For the pull-in study on the plate, here only the case of
the plate with four edges simply-supported is selected for the
simplicity reason. The schematic diagram of the plate and its
coordinate are shown in Fig. 17. The governing equation for the
o the slope of voltage–displacement curve increases to infinity
t the pull-in point. And the numerical computation on the pull-
n displacement is extremely sensitive to the step size. For the
ake of brevity, we only show this sensitivity in the computation
f plate in the next section. In contrast, for the analytical solution
f one-mode analysis, there is no such problem.

The numerical fluctuation around the pull-in is shown in
ig. 16. Fig. 16 shows the comparison of AMM and OMM at
1 = 3.7 and N = 30. There are five modes φ1, φ2, φ3, φ4, φ5
sed in AMM and three modes φ1, φ3, φ5 used in OMM. The
 Fig. 17. Schematics of plate coordinate and load scenario.
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plate under axial and transverse loads is given as [28]

∂4w

∂x4 + 2
∂4w

∂x2∂y2 + ∂4w

∂y4

= 1

D

(
q+Nx

∂2w

∂x2 +Ny
∂2w

∂y2 + 2Nxy
∂2w

∂x∂y

)
(21)

w = w(x, y) is the plate transverse deflection. D is flexural rigid-
ity of the plate and is given as D = Eh3/12(l −µ2), here E is
Young’s modulus, h the plate thickness and µ is Poisson’s ratio.
Nx, Ny and Nxy are the loads per unit length of different direc-
tions shown in Fig. 17. Nx and Ny are normal loadings. Nxy is
shear loading. q = q(x, y) is the transverse load intensity (load
per unit area). Here only the electrical loading contributes to
this load intensity. Therefore, the load intensity is given as
q = εV 2/2(d − w)2 [1]. ε, d and V are defined the same as those
for one DOF system and beams above.

In order to nondimensionalize Eq. (21), the following dimen-
sionless numbers are introduced

W = w

d
, ξ = x

a
, η = y

b
(22)

a and b are the plate length and width shown in Fig. 17.
Eq. (21) now is nondimensionalized as

∂4W + 2 ∂4W + ∂4W

The dimensionless deflection W here is assumed to have
only one-mode shape expansion, which is W = b11φ11(ξ, η).
b11 is the modal amplitude to be determined and φ11 is the
plate mode shape with the lowest eigenfrequency. For rect-
angular plates with different boundary conditions, the mode
shapes with different eigenfrequencies are given by Gorman
[29]. For the plate with four edges simply-supported, the expan-
sion can be simply expressed as W = b11sin(πξ) sin(πη) Sub-
stitute this expression into Eq. (25), times φ11 and integrate
in the [0 1; 0 1] domain, now the governing equation changes
as

b11

∫ 1

0

∫ 1

0
φ11

(
∂4φ11

∂ξ4 + 2

ψ2

∂4φ11

∂ξ2∂η2 + ∂4φ11

ψ4∂η4

)
dξdη

= a1

∫ 1

0

∫ 1

0
φ11[1 + 2b11φ11 + 3(b11φ11)2

+ 4(b11φ11)3]dξdη+
∫ 1

0

∫ 1

0
b11φ11

×
(
a2
∂2φ11

∂ξ2 + a3
∂2φ11

∂η2 + a4
∂2φ11

∂ξ∂η

)
dξdη (26)

After the integration, the equation above can be written as a

1

)

=

J here is defined as J = 4a1
∫ 1

0

∫ 1
0 φ

4
11 dξ dη.

Very similarly as the Cardan solution used in one DOF system
and beams cases, now Q is defined as

Q =
(p

3

)3 +
(q

2

)2
,(

p = −κ
2
1 + κ2, q = 2

(κ1
)3 −

(κ1κ2
)

+ κ3

)
(29)
∂ξ4 ψ2 ∂ξ2∂η2 ψ4∂η4

= a1

(1 −W)2 + a2
∂2W

∂ξ2 + a3
∂2W

∂η2 + a4
∂2W

∂ξ∂η
(23)

Here ψ is the aspect ratio defined as ψ = b/a. a1, a2, a3 and
a4 are defined as follows

a1 = a4V 2

2Dd3 , a2 = Nxa
2

D
, a3 = Nya

2

ψ2D
, a4 = 2Nxya2

ψD
(24)

6.2. One-mode analysis of plate

κ2 =

∫ 1
0

∫ 1
0 φ11

(
2a1φ11 + a2((∂2φ

−((∂4φ11)/(∂ξ4)) − (2/ψ2

κ1 = 3a1
∫ 1

0

∫ 1
0 φ

3
11 dξdη

J
, κ3
The one-mode analysis is very similar to those of beams.
The electrical load intensity part q(x, y) is expanded into Taylor
series, therefore, Eq. (23) is changed as the following

∂4W

∂ξ4 + 2

ψ2

∂4W

∂ξ2∂η2 + ∂4W

ψ4∂η4

= a1(1 + 2W + 3W2 + 4W3) + a2
∂2W

∂ξ2

+a3
∂2W

∂η2 + a4
∂2W

∂ξ∂η
(25)
cubic equation of b11 as follows

b3
11 + κ1b

2
11 + κ2b11 + κ3 = 0 (27)

Here κ1, κ2 and κ3 are defined as

1)/(∂ξ2)) + a3((∂2φ11)/(∂η2)) + a4((∂2φ11)/(∂ξ∂η))

((∂4φ11)/(∂ξ2∂η2)) − ((∂4φ11)/(ψ4∂η4))
)

dξdη

J

a1
∫ 1

0

∫ 1
0 φ11 dξdη

J
(28)
3 3 3

κ1, κ2 and κ3 contain a1. The pull-in point can be determined
from equation Q = (a1) = 0 as Q defined in Eq. (29). Thus, a1
can be calculated from the equation Q(a1) = 0. Once a1 is deter-
mined, the pull-in displacement can also be determined from
Cardan solution. Therefore, the one-mode analysis basically
is to solve the cubic equation of the modal amplitude of the
plate mode shape with the lowest eigenfrequency. The one-
mode analysis does not assume the effective stiffness to treat
the continuous system as the one DOF system. The discretiza-
tion, which assumes only one-mode shape of plate deflection,
and Taylor series expansion together help to generate this cubic
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Fig. 18. The first four lowest four mode shapes used in the numerical multi-mode analysis computation.

equation for the continuous system. By setting Q(a1) = 0, this
cubic equation can directly solve the system pull-in a1, thus the
voltage and displacement. Although this one-mode analysis in
practice requires some numerical methods to deal with the inte-
gration and root solving, fundamentally it is a cubic equation
with the available analytical solution.

6.3. Multi-mode analysis of plate

Once again, for the numerical multi-mode analysis, it is
unnecessary to have a Taylor series expansion for the electri-
cal loading part. The plate is assumed to have such expansion

W =
M1∑

i=1,2,3...

M2∑
j=1,2,3...

bijφij(ξ, η) (30)

Here M1 and M2 are mode numbers. M1 and M2 may not
necessarily equal each other. bij is the modal amplitude to be
determined. φij is the plate mode shape. The four mode shapes
with the lowest four eigenfrequencies are shown in Fig. 18.
They are 1–1, 1–2, 2–1, 2–2 types of the mode shapes. Sub-
stitute the expression above into Eq. (23) and use the same
Galerkin method shown in one-mode analysis on the plate above.
For M1 × M2 modal expansion, there are M1 × M2 equations.
Newton–Rhapson method is applied to the nonlinear equation
s
a
s

valid for the plate studied here as its boundary conditions (four
edges simply-supported) and electrical load are symmetric. Only
these two modes can be useful during the computation.

7. Results and discussion for the pull-in instability of
the plate

Fig. 19 shows the pull-in a1 calculated by the one-mode anal-
ysis method. The plate for all the cases computed here is a square
plate, which means the aspect ratio ψ = 1. Here a4 is set to be
zero, which is no shear loading case. β is set as β = a3/a2, which
indicates the relation of the axial loads in x and y directions.
The pull-in a1 versus a2 for three sets of different βs are shown
in Fig. 19. As it is shown, the pull-in a1 increases as the axial
loading increases. When the axial loading increases, the plate
becomes stiffer. The plate is stiffened by the axial loadings of
both directions. As the result, larger voltage is required to have
the system to pull-in.

As we mention above that the multi-mode computation of
pull-in displacement is largely dependent on the step size of a1.
Because the slope of a1 versus displacement curve becomes very
large and approaches infinity around the pull-in point, any tiny
change of a1 can cause very large change of pull-in displace-
ment. Fig. 20 shows this pull-in computation sensitivity to step
size of a1. In Fig. 20, the plate center deflection (W(1/2, 1/2))
i
v
p

et. It is also noticed that for the four modes, only 1–1 and 2–2
re symmetric among all of these four mode shapes. The discus-
ion on the AMM and OMM for clamped–clamped beam case is
ncreases as the a1 gradually changes from zero to its pull-in
alue. The three computation results of plate center pull-in dis-
lacement under different a1 step sizes of 0.2, 0.3 and 0.4 are
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Fig. 19. Different pull-in a1 for different load cases calculated by one-mode
analysis.

shown in Fig. 20. The plate center pull-in displacement is com-
puted as 0.5142, 0.479 and 0.6172, respectively. For one-mode
analysis, this value is calculated as 0.5827. In Fig. 20 case, the
plate is under no axial loading in both directions. While, the
pull-in a1 is not affected by this step size very much. The pull-in
a1 computed by the three different step sizes is 41.2, 41.4 and
41.6, respectively. For the multi-mode analysis here, increas-
ing mode number does not help to improve the computation
accuracy much because the first mode shape is the predominant
deflection shape. However, it may affect the convergence around
the pull-in point.

Fig. 21 shows the plate center deflection changes from a1 = 0
to its pull-in value for the different x-direction axial load cases
(a2). The other load related parameters a3 and a4 are both set
to be zero. The step size of a1 is set to be 0.2 for all the cases
shown in Fig. 21. As the axial load (a2) increases, the pull-

F
a

Fig. 21. The plate center deflection as a1 gradually approaching its pull-in value
for different load cases.

in a1 also increases. For the plate center pull-in displacement,
it is irregular. The similar irregularity property is also shown
in the computation results of the pull-in center displacement
of the clamped–clamped beam by Abdel-Rahman et al. [2].
Fig. 22 shows the comparison of the pull-in a1 computed by
one-mode and multi-mode analysis method. a3 and a4 are also
set zero in this case. As it is shown, the pull-in a1 increases
linearly as a2 increases. This phenomenon is also shown in the
clamped–clamped beam structure under axial loading we show
above and the study of Abdel-Rahman et al. [2]. As it is shown
in Fig. 19, this linear relation still keeps under both x and y
directional axial loadings. The multi-mode analysis pull-in a1
value is always smaller than the one-mode analysis result. And
as the axial load (a2) increases, the computation difference of

F
a

ig. 20. Step size influence on the computation of the numerical multi-mode
nalysis.
ig. 22. Comparison of the pull-in a1 computed by the analytical one-mode
nalysis and numerical multi-mode analysis.
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Fig. 23. Comparison of the plate center pull-in displacement computed by the
analytical one-mode analysis and numerical multi-mode analysis.

the two methods enlarges. Although the one-mode analysis is to
use the analytical solution of the cubic equation and the multi-
mode analysis is to use Newton–Rhapson methods, the solution
method is not the main reason causing the difference. Fig. 23
shows the plate center pull-in displacement for different axial
a2 cases. a3, a4 are also both set to be zero. For the one-mode
analysis, the plate center pull-in displacement keeps constant
as 0.5827 for different loading cases. While for the multi-mode
analysis, it is irregular pattern. The a1 step size used in the com-
putation is also 0.2.

8. Summary and conclusions

The pull-in α2V
2
p and critical maximum displacements

of clamped–clamped and cantilever beam are compared.
For both clamped–clamped and cantilever beams, the pull-
in α2V

2
p s increase as axial load N increases. But when

axial load N increases, the critical maximum displacement of
clamped–clamped beam W(0.5) monotonically decreases but
the critical maximum displacement of cantilever beam W(1.0)
monotonically increases. Although increasing axial load N
increases beam mechanical stiffness and the pull-in α2V

2
p , it

will not necessarily improve the critical maximum beam dis-
placement. In other words, the tuning range of voltage can be
definitely improved by increasing axial load. But the tuning
r
b
a
p
a
n
a

t
c

transform the nonlinear differential equation into a cubic equa-
tion. The validity of one-mode analysis relies on the fact that the
first mode is the dominant deflection shape for the beam/plate
structure under electrical actuation and small axial load. The
advantages of one-mode analysis are the analytical solution
available and only small amount of computation needed. For
one-mode analysis, it should also be aware that the truncation
error due to Taylor series expansion may be large when axial
loading or structural deflection is large. Multi-mode analysis is
a more general analysis tool. It does not need to use Taylor series
to approximate the electrical force. In that sense, it is more accu-
rate than one-mode analysis. It uses Newton–Rhapson method
to solve the equation and pays the price of much more computa-
tion effort than one-mode analysis. Multi-mode and one-mode
analysis are two quite different methods, which as a result, can
be used to verify each other.

As mentioned above, the first mode shape is the dominant
beam/plate deflection shape. Mode number is not a major factor
influencing the computation results of the multi-mode analysis.
The error sources of one-mode analysis are the truncation error
due to the Taylor series expansion on the electrical force part and
the possible participation of higher mode shapes into the deflec-
tion. As the axial load increases, the pull-in voltage increases.
The pull-in voltage behaves like a magnification factor which
enlarges the difference between the two analysis results when the
axial loading increases. Numerically we use the property of the
s
t
a
t
a
I
v
s
(

A

N
n
R
Z
N
n
e
9

A

E

y
o
p

ange of critical maximum displacements will not necessarily
e improved by doing the same thing. As a structure in MEMS
ctuators, switcher, etc. under electrical actuation, the tuning dis-
lacement range of clamped–clamped beam will decrease as the
xial load N increases. Cantilever beam has much smaller stiff-
ess, but both the tuning voltage and displacement will increase
s the axial load N increases.

One-mode analysis method shows its accurate prediction on
he pull-in α2V

2
p . One-mode analysis given in this paper basi-

ally is to use Taylor series expansion and Galerkin method to
lope of voltage–displacement approaching infinity to determine
he pull-in instability, the computational results of multi-mode
nalysis is largely dependent on the voltages step size. Therefore,
he pull-in displacement computed by multi-mode analysis can
lso problematic when using the inappropriate voltage step sizes.
n practice, the control parameter is the voltage and the pull-in
oltages computed by one-mode analysis and multi-mode analy-
is agree well with each other for the range of small axial loading
both compressive and tensile).
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ppendix A

The linear dynamic governing equation for beam is

I
∂4y

∂x4 − p
∂2y

∂x2 +m
∂2y

∂t2
= 0 (31)

is the beam transverse displacement, m the mass per unit length
f the beam, p the axial load, when p > 0, it is tension and when
< 0, it is compression.
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The beam length is l. Assume y has such solution form,
y = V(x)eiωt. Substitute this solution form into Eq. (31) and intro-
duce nondimensional parameter ξ = x/l. The governing Eq. (31)
becomes

−mω2l4V + EIV
′′′′ − pl2V ′′ = 0 (32)

Here ()′ = ∂/∂ξ. Let k2 =
∣∣∣pl2EI

∣∣∣ and β = mω2l4/EI. For tension

case (p > 0), the governing equation is

V
′′′′ − k2V ′′ − β4V = 0 (33)

For compression case (p < 0), the governing equation is

V
′′′′ + k2V ′′ − β4V = 0 (34)

For tension case, the solution of V is

V = A ef2ξ + B e−f2ξ + C sin(f1ξ) +D cos(f1ξ) (35)

A, B, C, D are four unknown constants. f1 and f2 are defined
as f1 =

√
β1 − (k2/2) and f2 =

√
β1 + (k2/2). Here β1 =√

β4 + (k4/4). The four dimenisonless boundary conditions are
given as

V (0) = 0,
∂V (0)

∂ξ
= 0;

∂2V (1)

∂ξ2 = 0,

∂3V (1) 2 ∂V (1)

t
w
e
s
f

V

V

o

R

[5] H. Toshiyoshi, W. Piyawattanametha, C.T. Chan, M.C. Wu, Linearization
of electrostatically actuated surface micromachined 2D optical scanner,
J. Microelectromech. Syst. 10 (2001) 205–214.

[6] B. Choi, E.G. Lovell, Improved analysis of microbeams under mechan-
ical and electrostatic loads, J. Micromech. Microeng. 7 (1997) 24–
29.

[7] H.C. Nathanson, W.E. Newell, R.A. Wickstrom, J.R. Davis, The res-
onant gate transistor, IEEE Trans. Electron Dev. ED-14 (1967) 117–
133.

[8] J.I. Seeger, S.B. Crary, Stabilization of electrostatically actuated mechan-
ical devices, TRANDUCERS’97, International Conference on Solid-
State Sensors and Actuators, Chicago, IL, 1997, pp. 1133–1136.

[9] P.M. Osterberg, S.D. Senturia, M-TEST: A test chip for MEMS material
property measurement using electrostatically actuated test structures, J.
Microelectromech. Syst. 6 (1997) 107–118.

[10] O. Bochobza-Degani, Y. Nemirovsky, Modeling the pull-in parameters
of electrostatic actuators with a novel lumped two degrees of freedom
pull-in model, Sens. Actuators A 97–98 (2002) 569–578.

[11] O. Bochobza-Degani, Y. Nemirovsky, Experimental verification of a
design methodology for torsion actuators based on a rapid pull-in solver,
J. Microelectromech. Syst. 13 (2004) 121–130.

[12] G.D. Gray, M.J. Morgan, P.A. Kohl, Electrostatic actuators with
expanded tuning range due to biaxial intrinsic stress gradients, J. Micro-
electromech. Syst. 13 (2004) 51–62.

[13] Y. Nemirovsky, O. Bochobza-Degani, A methodology and model for the
pull-in parameters of electrostatic actuators, J. Microelectromech. Syst.
10 (2001) 601–615.

[14] S.D. Senturia, Microsystem Design, Kluwer Academic, Boston, MA,
2001.

[15] L.D. Gabby, J.E. Mehner, S.D. Senturia, Computer-aided generation of
nonlinear reduced-order dynamic macromodels—II: non-stress-stiffened

[

[

[

[

[

[

[

[

[

[

[

[

[

[

∂ξ3 − k
∂ξ

= 0 (36)

Substitute the V solution form into these four boundary condi-
ions, then there is a 4 × 4 determinant. Solving the determinant
ill give the eigenfrequencies of the systems and by substituting

ach individual eigenfrequency into that 4 × 4 matrix, the mode
hape can be found. For compression case, the solution has the
orm

= A ef1ξ + B e−f1ξ + C sin(f2ξ) +D cos(f2ξ) (37)

And the boundary conditions change as

(0) = 0,
∂V (0)

∂ξ
= 0;

∂2V (1)

∂ξ2 = 0,

∂3V (1)

∂ξ3 + k2 ∂V (1)

∂ξ
= 0 (38)

The similar procedure to tension case is repeated here to find
ut eigenfrequencies and mode shapes for the compression case.
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