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Abstract. Finite-fringe interferograms produced for axisymmetric shock wave flows are analyzed by Fourier
transform fringe analysis and an Abel inversion method to produce density field data for the validation
of numerical models. For the Abel inversion process, we use basis functions to model phase data from
axially-symmetric shock wave structure. Steady and unsteady flow problems are studied, and compared
with numerical simulations. Good agreement between theoretical and experimental results is obtained
when one set of basis functions is used during the inversion process, but the shock front is smeared when
another is used. This is because each function in the second set of basis functions is infinitely differentiable,
making them poorly-suited to the modelling of a step function as is required in the representation of a
shock wave.

Key words: Abel, inversion, basis, functions
PACS: 47.40.-x, 42.40.Kw, 02.30.Zz

1 Introduction

As described by Takayama [1] and Houwing et al. [2], holo-
graphic interferometry can be used to study a variety of
high speed flow problems of interest to physicists and en-
gineers. In particular, it is a powerful experimental tech-
nique for producing quantitative data against which com-
putational fluid dynamic (CFD) models can be verified or
validated.

In the case of two-dimensional flows, comparisons
between CFD and experiment are reasonably straight-
forward, since fringes in infinite-fringe interferograms cor-
respond directly to density contours.

In the case of axisymmetric or three-dimensional flows,
this is not true and a direct comparison between theoret-
ical and experimental density is no longer possible, al-
though Boyce et al. [3] show that post-processing of CFD
results can be used to produce theoretical phase maps
against which experimental phase data can be compared.

In the special case of axisymmetric flows, with which
the current work is concerned, Abel deconvolution as de-
scribed by Bracewell [4] can be used, but this often in-

volves computationally-intensive numerical integration to
produce the required density field. For certain Abel trans-
forms, however, numerical integration is unnecessary dur-
ing deconvolution because their inverse transforms can be
determined analytically. Such Abel transforms and their
inverse functions are provided by [4]. In the current work,
we use these transforms as basis functions in a vector
representation of the experimental phase data, whereas
their corresponding inverse transforms are used as basis
functions in a vector representation of the deconvoluted
density. This allows us to recover the axially-symmetric
density field in a straight-forward manner by determining
the components of these vectors through a least square fit
of the theoretical phase vector to the experimental phase
data. Furthermore, we shall demonstrate that the basis
functions we select can resolve the discontinuous density
jump across shock waves, whereas power law basis func-
tions result in this jump being smeared. A further aim
of our work is to show that the basis function inversion
method produces experimental data suitable for CFD val-
idation. To fulfil these objectives we performed two exper-
iments as described below.
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Fig. 1. Schematics of a steady axisymmetric shock layer flow
experiment and b unsteady axisymmetric shock reflection ex-
periment

2 The experiments

Two different axisymmetric flow problems were studied.
One was a steady hypersonic flow incident upon a sta-
tionary axisymmetric body, as illustrated in Fig. 1(a). The
other was an unsteady flow produced by the reflection of
a shock wave over a cone, as illustrated in Fig. 1(b).

2.1 Experimental facilities and test conditions

The steady flow experiment was performed in the hy-
personic stream produced by a free-piston shock tunnel
as described by Koremoto [5]. The axisymmetric body
used was a spherically-blunted cylinder with a diameter
of 50 mm, whose axis was aligned with the axis of symme-
try of the incident flow. The model was placed centrally
within the inviscid core flow downstream of the nozzle
of the shock tunnel. The nozzle was conical with an exit
diameter of 130 mm, whereas the inviscid core flow at
the location of the model was estimated from Pitot pres-
sure measurements by Koremoto [5] to be approximately
100 mm in diameter. For the unsteady flow experiment,
a diaphragmless shock tube as described by Mitobe [6],
with a 100 mm × 180 mm rectangular cross-section, was
used. In this case, the axisymmetric model was a cone
with a base diameter of 90 mm, a half-angle of 49◦, and
whose axis of symmetry was aligned with the direction of
propagation of the incident shock

2.2 Test conditions for steady flow experiment

The freestream conditions for the steady flow experiment
are given in Table 1. The conditions at the exit of the

Table 1. Freestream conditions for steady flow experiment

T∞ p∞ u∞ ρ∞ M∞
(K) (kPa) (km/s) (kg/m3)

387 2.26 2.75 0.02 7.1

Table 2. Initial conditions for unsteady flow experiment

T1 p1 MS

(K) (kPa)

292 14.1 2.33

nozzle were determined by the computer code STUBE
written by Vardavas [7] using the measured primary shock
speed and the nozzle reservoir pressure as input. Based on
the uncertainties in the measured values, the uncertainty
in the calculated values given in Table 1 are estimated
to be ± 5%. The test gas was partially dissociated air,
for which the mass fractions were calculated by STUBE
to be 67% N2, 13% O2, 1% Ar and 19% NO. The theo-
retical calculations used in the current work assume that
the flow remains in thermal equilibrium during the ex-
pansion through the shock tunnel’s nozzle. Based on this
assumption, the code determines the flow at the exit of
the nozzle to have an effective ratio of specific heats of
1.33. Having said this, it is important to note that Palma
et al. [8] show that the rotational and vibrational temper-
atures differ significantly in the hypersonic nozzle flows of
free-piston shock tunnels. Hence, the assumption of ther-
mal equilibrium is expected to result in systematic errors
in the calculated flow conditions. However a determina-
tion of the influence of these effects on the steady flow
problem are beyond the scope of the current work and
must be postponed to future consideration.

2.3 Test conditions for unsteady flow experiment

The initial conditions for the unsteady flow experiment are
shown in Table 2. The incident shock Mach number was
determined by measuring the shock transit time between
transducers upstream of the model. The pressure and tem-
perature ahead of the incident shock were measured as de-
scribed by Mitobe [6]. The errors in these measured values
are less than 1%, and the flow conditions were such that
perfect gas behavior, with a ratio of specific heats of 1.4,
can be assumed. However, viscous effects are expected to
play a role in the reflection process.

3 Numerical methods

As stated in Sect. 1, one of the purposes of our work is
to show how the experimental density information pro-
duced by our deconvolution method can be used to test
computational fluid dynamics (CFD) simulations.

For the two different flow problems studied here, we
used two different CFD methods. For the steady flow
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problem, we used the compressible flow solver, CFD-
FASTRANTM [9], and assumed inviscid perfect gas flow
with a ratio of specific heats γ = 1.33.

For the unsteady flow problem, the numerical tech-
nique devised by Jiang [10] was used. His computational
scheme meets the dispersion conditions described by Jiang
et al. [11], which make it possible to capture a disconti-
nuity without any numerical oscillations, and without re-
quiring artificial viscosity.

3.1 Finite-fringe holographic interferometry

In our work, a double-exposure finite-fringe holographic
interferometry system is used. This system and the fringe
analysis method used to recover phase data from finite-
fringe interferograms are discussed by Houwing et al. [2].
The details will not be repeated here.

3.2 Determination of density from the phase data

For an axially-symmetric flow, the projected phase φ(y, z)
for each line-of-sight perpendicular to the axis of symme-
try is given by,

φ(y, z) − φref =
2π

λ

∫
[nref − nflow(

√
x2 + y2, z)]dx , (1)

where λ is the wavelength of light and n is the refractive
index. The subscripts ‘ref’ and ‘flow’ refer to ‘reference’
and ‘flow’ conditions, respectively. In the above equation,
x, y and z are coordinates in an xyz Cartesian coordinate
system, where x in the direction of the line-of-sight and z
is along the axis of symmetry. Because of the axial sym-
metry, the flow properties depend only on the values of z

and r =
√

y2 + z2, where r and z are the radial and axial
coordinates respectively, in a cylindrical polar coordinate
system. The integral in Eq. (1) is the Abel transform of
2π
λ [nref − nflow (r, z)].

Following Bracewell [4], the inverse Abel transform can
be used to write the radial distribution of the refractive
index in terms of the projected phase:

nref − nflow(r, z) =
−λ

2π2

∫ ∞

r

[
1√

y2 − r2

dφ(y, z)
dy

]dy . (2)

In general, the above form can be used to determine the
refractive index and, ultimately, the density, to which it
is proportional, by numerical integration. However, in the
current work, we make use of basis functions to avoid such
numerical integration. This is more desirable because it
avoids the numerical evaluation of the derivative dφ(y,z)

dy

in Eq. (2), which we found contributes to numerical noise
during the inversion process. For a perfect gas of uniform
composition, the refractive index can be related directly
to the density, ρ, of the gas and its value at a standard
density, ρs, as described by Liepmann and Roshko [12]:

n = 1 + β
ρ

ρs
. (3)

Values for β and ρs for the gases used in the current work
are available in the same reference.

In general, by using Eqs. (3) and (2), it is possible to
determine the radial density distribution. In our approach,
the experimental phase data is modelled by a linear com-
bination of basis functions for which the analytic solutions
to Eq. (2) are known. In the current work, we refer to this
linear combination as a vector representation of the phase
data. Once the phase data has been modelled in this way,
the density can be readily determined by a linear com-
bination of the corresponding inverse functions, with the
same coefficient being used for each basis function and its
corresponding inverse. We have found this approach to be
a more efficient and more accurate way of performing the
deconvolution than through direct numerical evaluation of
the integral in Eq. (2).

We have found that the choice of basis functions is very
important, with the suitability of any particular basis de-
termined by two properties: (i) the overlap (inner product)
of each basis function with the object in question; and (ii)
the difference (orthogonality) of each basis function with
each other basis function. The first property ensures that
the basis has common features with the object, and the
second property ensures that each basis function is suffi-
ciently different so as to be able to resolve as many of the
object features as possible. From these considerations, we
have chosen five of the functions provided by [4] as being
suitable for modelling shock waves. In the current work,
we refer to these as ‘well-suited’ basis functions. We now
describe how we can make use of these functions to deter-
mine the density distribution in axisymmetric shock wave
flows.

First, we assume that the refractive index distribution,
nflow(r, z) − nref , can be described by a function f (r, z),
which is equal to a linear combination of basis functions,
fi (r, z):

f (r, z) =
∑

i

ci (z) fi (r, z) , (4)

where ci (z) are fitting coefficients for a particular axial
location z and where the basis functions fi (r, z) depend
also on the value of z.

The integral of the refractive index along the line of
sight is then given by

fA (y, z) =
∑

i

ci (z) fA,i (y, z) , (5)

where fA,i (y, z) are the Abel transforms of the basis
functions fi (r, z). The five “well-suited basis functions”,
f1 (r, z) , . . . , f5 (r, z) selected from [4] are defined below:

f1 (r, z) = Π (r/2a(z)) ; (6)

f2 (r, z) =
(
a(z)2 − r2)− 1

2 Π (r/2a(z)) ; (7)

f3 (r, z) =
(
a(z)2 − r2) 1

2 Π (r/2a(z)) ; (8)

f4 (r, z) =
(
a(z)2 − r2) Π (r/2a(z)) ; (9)

f5 (r, z) =
(
a(z)2 − r2) 3

2 Π (r/2a(z)) ; (10)
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where a(z) is the radial position of the shock for a given
value of z and

Π(ζ) = 1 for |ζ| <
1
2

(11)

and
Π(ζ) = 0 for |ζ| ≥ 1

2
(12)

The Abel transforms, fA,1 (y, z) , . . . , fA,5 (y, z), of these
functions are:

fA,1 (y, z) = 2
(
a(z)2 − y2) 1

2 Π (y/2a(z)) ; (13)

fA,2 (y, z) = πΠ (y/2a(z)) ; (14)

fA,3 (y, z) =
1
2
π

(
a(z)2 − y2) Π (y/2a(z)) ; (15)

fA,4 (y, z) =
4
3

(
a(z)2 − y2) 3

2 Π (y/2a(z)) ; (16)

fA,5 (y, z) =
3π

8
(
a(z)2 − y2)2

Π (y/2a(z)) . (17)

Using Eq. (1), the coefficients ci (z) and the value of
a(z) at each value of z are determined by fitting the
phase to the experimentally determined phase distribu-
tion, φ (y, z) − φref , according to the equation:

fA (y, z) =
λ

2π
[φ (y, z) − φref ] . (18)

The values of ci (z) and a(z) are determined by treating
them as free parameters in a least squares fitting routine
that minimizes the value of∑

j

(
fA (yj , z) − λ

2π [φ (yj , z) − φref ]
)2

,

where the summation is over the fitted data points
for a given value of z. Once these values are determined,
f (r, z) can be evaluated from Eq. (4), and the density is
given by

ρ (r, z) =
ρs

β
f (r, z) + ρref . (19)

4 Experimental results and discussion

4.1 Interferograms

Finite fringe interferograms produced in the two exper-
iments are shown in Figs 2 and 3. The interferogram in
Fig. 2 shows a continuous fringe shift across the shock even
though the density is expected to rise discontinuously at
its location. This is a consequence of the gradual increase
in the optical path length with z.

Figure 3 shows a portion of an interferogram for shock
reflection at the surface of the cone. In this figure, the
fringe shift at the top right corner of the interferogram
is due to the incident shock wave, which has almost ar-
rived at the shoulder of the cone at the time of the second
exposure of the hologram. A slipstream discontinuity can
be observed downstream of the triple point. The reflected

Fig. 2. A portion of an interferogram of hypersonic flow over a
spherically-blunted cylinder (from the steady flow experiment).
The diameter of the hemispherical forebody is 50 mm

Fig. 3. A portion of an interferogram of shock reflection flow
over a cone (from the unsteady flow experiment). The base
diameter of the cone is 90 mm

shock wave is the dominant feature in this interferogram
and can be seen extending from the triple point to a re-
gion in front of the cone. Like Fig. 2, this interferogram
shows a gradual increase in fringe across the shock, again
because of the gradual increase in the optical path length
with z.

4.2 Deconvolution with ill-suited basis functions

To demonstrate the importance of choosing appropriate
basis functions for the deconvolution process, we compare
the results obtained by using the well-suited basis func-
tions against results produced by using power-law basis
functions. This was achieved by fitting a fifth-order poly-
nomial to the phase, using numerical integration to de-
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Fig. 4. Profiles of density obtained using power-law basis func-
tions for the steady flow case: a r = 15 mm; b r = 20 mm; c
r = 25 mm

termine the refractive index from Eq. (2) and then using
Eq. (3) to determine the density.

Density profiles produced from analyzing the steady
flow in this manner are shown in Fig. 4. In these profiles,
one can observe the density jumps across the shock waves
as well as the density changes associated with expansion
waves, indicating that the method has revealed the es-
sential qualitative features of the flow behind a curved
shock on a bluff body. However, the method has not been
entirely successful in producing the steep density jump
across the shock wave. The power-law-based deconvolu-
tion has ‘smeared’ the shock wave. This is because power-
law basis functions are infinitely differentiable, making
them poorly-suited to the modelling of step functions.

4.3 Deconvolution with well-suited basis functions

To determine the flow density using the well-suited ba-
sis functions, we first analyzed the interferograms as de-
scribed by Houwing et al. [2] to produce phase maps and
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Fig. 5. Comparisons of profiles of density obtained using
different basis functions for the steady flow experiment for
r = 25 mm

then analyzed the phase data as described in Sect. 3.2
The first step in analyzing the phase data involved fitting
the function fA(r, z) given in Eq. (5) to the experimental
phase data, so that Eq. (18) was satisfied. This was accom-
plished through the application of a least-squares fitting
algorithm, which provided the values of the coefficients
ci(z), that appear in Eq. (5). Once these coefficients were
determined, they were substituted into Eq. (4) to provide
values for f(r, z), that were subsequently substituted into
Eq. (19), to produce values for the density.

4.4 Comparison of deconvolutions
using different basis functions

Figure 5 compares a density profile obtained using the
power-law basis functions with one obtained using the
well-suited basis functions for the hypersonic flow over the
spherically-blunted cylinder. From this comparison, two
distinct differences are immediately obvious. Firstly, the
inversion using the well-suited basis functions was more
successful at reproducing the sharp density rises across
the shock than the reconstruction using the power-law ba-
sis functions. Secondly, the deconvolution using the well-
suited basis functions resulted in larger values for the post-
shock density than that using the power-law basis func-
tions.

We believe that these differences are largely due to the
fact that the basis function defined in Eq. (13) is ideally-
suited to representing the phase shift behind the shock
front, it being the Abel transform of the top-hat func-
tion defined in Eq. (6). The absence of this basis function
in the deconvolution using the power-law basis functions
means that this deconvolution fails to produce the sharp
rise across the shock. It is possible that this difference be-
tween the two types of basis functions is responsible for
the different density levels behind the shock, however fur-
ther analysis is required to determine how this is caused.
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Fig. 6. Steady flow case: density profiles along axial cuts for:
a r = 10 mm; b r = 20 mm; c r = 25 mm

5 Comparison of CFD
and experimental results

Figure 6 shows theoretical and experimental density pro-
files for the steady flow. Profiles are presented for ax-
ial cuts at different radial positions. Apart from a very
large overshoot close to the shock vertex, agreement be-
tween theory and experiment is very good. The cut at
r = 10 mm is close to the stagnation region, where the
density is essentially constant. Cuts at r = 20 mm and
25 mm are through both the shock wave and the expansion

40 35 30 25 20 15 10 5 0
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
(a)

r (mm)

CFD

exp

40 35 30 25 20 15 10 5 0
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
(b)

r (mm)

CFD

exp

body

body

de
ns

ity
 (

kg
/m

   
)3

de
ns

ity
 (

kg
/m

   
)3

Fig. 7. Unsteady flow case: density profiles along radial cuts
for: a z = 5 mm; b z = 10 mm

wave near the shoulder of the model, for which the density
rises sharply across the shock and decreases continuously
through the expansion wave. These trends are observed
in both the CFD and experimental results and the CFD
code correctly predicts the shock standoff distance from
the model surface, providing confidence in the accuracy
of the CFD modelling for these conditions. Quantitative
agreement between the measured and calculated density
is also very good.



A.F.P. Houwing et al.: Abel inversion

-5 0 5 10 15 20 25 30
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
(a)

z (mm)

exp

CFD

-5 0 5 10 15 20 25 30
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
(b)

z (mm)

exp

CFD

-5 0 5 10 15 20 25 30
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
(c)

z (mm)

exp

CFD

body

body

bo
dy

de
ns

ity
 (

kg
/m

   
)3

de
ns

ity
 (

kg
/m

   
)3

de
ns

ity
 (

kg
/m

   
)3

Fig. 8. Unsteady flow case: density profiles along axial cuts
for: a r = 10 mm; b r = 20 mm; c r = 30 mm

6 Uncertainties

Based on the uncertainties in the measured primary shock
speed and the nozzle reservoir pressure, we expect an un-
certainty of approximately ± 10% in the CFD-calculated
density distribution for the steady flow case. In contrast,
based on the uncertainties in the initial conditions and the
measured speed of the incident shock, we expect an un-
certainty of approximately ± 5% in the CFD-calculated
density distribution for the unsteady flow case. Provided
sufficient data points are available for accurate fitting to
the phase distribution, and neglecting the overshoot prob-
lem close to the shock front, errors from the interferomet-
ric measurements of density are estimated to be approx-
imately ±3%. However, within 2 or 3 pixels (less than
1 mm) of the shock front, errors of the order of 100% can
sometimes be encountered due to the overshoot problem
caused by uncertainties in locating the radial position of
the shock, as discussed below.

The overshoot problem occurs near the shock front
and is related to the difficulty of fitting the phase accu-
rately close to the shock front, which is in turn related to
the uncertainty in locating the radial position a(z) of the
shock front. This comes about as follows: The fitting al-
gorithm used in the current work experienced difficulties
in iterating towards the best value for the radial posi-
tion a(z) of the shock. It was found that when a(z) was
used as a free parameter in the fitting algorithm, the al-
gorithm failed to converge to a solution for the fitting co-
efficients. To overcome this problem, we modified the fit-
ting technique so that the shock position was found first.
This was achieved by finding the coordinates (y, z) in
the map of the projected phase φ(y, z) where the phase
changed due to the presence of the shock wave. The co-
ordinates (yshock, zshock) effectively locates the shock po-
sition in a symmetry plane of the flow, where the shock
is at its most-upstream location, that is (rshock, zshock) =
(yshock, zshock).

Because of the continuous change in the projected
phase across a shock in an axisymmetric flow, and be-
cause of non-zero noise levels, there will be an error as-
sociated with finding the value of a(z) = rshock(z). This
error contributes to errors in the fitted function, with the
largest errors occurring within two or three pixels of the
shock. These errors will sometimes cause an overshoot
in the value of the density at the shock front, however,
this overshoot rapidly decays as one moves away from the
shock.

For some of the results using the well-suited basis func-
tions, the overshoot at the shock front is particularly large.
This is a result of two compounding effects: (i) close to
the shock vertex, the number of data points available for
fitting through Eq. (18) is small; and (ii) errors in locat-
ing the radial position of the near-normal shock wave are
larger as one moves closer to the shock vertex. These two
effects result in large errors in determining the density di-
rectly behind the shock near the shock vertex, often caus-
ing a very large overshoot in its value. As one moves away
from the shock vertex, the uncertainty in the radial po-
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sition of the shock decreases, and this overshoot decays
away.

Figure 7 shows comparisons of CFD and experimental
density results for the unsteady flow case, showing density
profiles along radial cuts for different axial positions. Fig-
ure 8 shows comparisons of CFD and experimental density
results for the same case, but shows density profiles along
radial cuts for different radial positions. As shown in both
these figures, agreement between the CFD and experimen-
tal results is very good. We estimate the discrepancy to be
less than 10% in most parts of the flow. The largest dis-
crepancy is again due to the overshoot problem. However,
for these unsteady flow results, the density and hence the
fringe shifts are much larger than those in the steady flow
results. Hence errors in locating the radial position a(z) of
the shock are much less. As a result, the relative magni-
tudes of errors and overshoots in the unsteady flow case is
much less than that in the steady flow case. For both the
steady and unsteady flow experiments, the good quantita-
tive agreement between the theoretical and experimental
density fields, as well as the good agreement between the
theoretical and experimental shock shapes, provides con-
fidence in the accuracy of the CFD modelling.

7 Conclusions

We have demonstrated the use of well-suited basis func-
tions to deconvolute shock wave phase data produced in
axisymmetric flows to determine the density in two dif-
ferent flow experiments and compared the results to re-
sults using power-law basis functions. In so doing, we have
shown that the former method produces better results
than the latter, with the former method more successfully
resolving the discontinuous density changes across shock
waves. Results from CFD simulations have been success-
fully compared with the experimental results, with the
good quantitative agreement giving confidence in the va-
lidity of the CFD simulations used.
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