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Abstract

In this paper, the possible error sources of the composite natural frequencies due to modeling the shape memory alloy (SMA) wire as
an axial force or an elastic foundation and anisotropy are discussed. The great benefit of modeling the SMA wire as an axial force and an
elastic foundation is that the complex constitutive relation of SMA can be avoided. But as the SMA wire and graphite-epoxy are rigidly
bonded together, such constraint causes the re-distribution of the stress in the composite. This, together with anisotropy, which also
reduces the structural stiffness can cause the relatively large error between the experimental data and theoretical results.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction: the problem

In Fig. 16 of their paper [1], Epps and Chandra noticed
that if the influence of shape memory alloy (SMA) wire is
simply modeled as an axial force on the beam, the analysis
over-predicts the natural frequency, especially when the
temperature is high. The stress inside their SMA wire is
tensile, which tends to stiffen the composite structure. Epps
and Chandra presented another model which models the
SMA wire as an elastic foundation [1]. The elastic founda-
tion property is a function of SMA tension as shown in
their appendix [1]. Such elastic foundation modeling dra-
matically reduce the their computation difference with the
experimental data when the temperature is high. While,
at low temperature, the two models (axial force and elastic
foundation models) hold almost the same relatively large
error compared with the experimental data. As it is noticed
that the in Epps and Chandra�s governing equation (their
Eq. (12)) [1], the tensile effect due to SMA wire is only
implicitly included in elastic foundation spring constant
k(x). Because the SMA wire and the epoxy are bonded, this
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constraint redistributes the stress inside SMA wire, which
affects the actual stress distribution in both SMA wire
and epoxy layer. As the SMA wire is modeled as the elastic
foundation, Eq. (12) in Epps and Chandra�s paper [1] actu-
ally is the governing equation for the epoxy layer, in which
axial force does not show explicitly. The paper aims to dis-
cuss such constraint influence on the stress redistribution,
which directly affects the computation of the composite
structure natural frequencies. Other factor influencing the
computation like the anisotropy is also discussed.

The detailed formulation of 1-D and 2-D models of
SMA layer/wire embedded in an orthotropic graphite/
epoxy composite matrix layer is presented by Jia and Rog-
ers [2], and Xue and Mei [3]. Their method basically is to
apply Hooks Law (constitutive relations) to SMA and
composite matrix separately and sum both forces of the
SMA layer and composite matrix together to find out the
effective Youngs modulus, coefficients of thermal expan-
sion, thus to find out the constitutive relations. The consti-
tutive relations found by this way is widely used in many
papers [1,3,4]. The very essence of their traditional method
is to assume one strain variable in the constitutive rela-
tions, which implicitly includes the constraint. Assuming
the continuity of strain in the different layer of the compos-
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ite is the traditional method (and as the result, the stress is
discontinuous in the different layer). All the stress redistri-
bution due to the constraint is implicitly included in the
assumption. In this paper, the traditional method is re-sta-
ted, analyzed and compared with the modeling SMA as an
axial force or an elastic foundation. Modeling the SMA
layer/wire as an axial force or an elastic foundation can
avoid the complex constitutive relation for SMA, which
reduces the computation effort. However, the potential
danger of neglecting such constraint exists. Traditional
method of modeling the SMA layer/wire in the composite
is strongly suggested for the analysis of the composite to
avoid such danger.

2. Statement and analysis of constitutive relation on the

composite material

The following is a simplified 2-D effective constitutive
relation of the composite structure presented by Xue and
Mei [3]. Fig. 1 shows the schematic diagram of a composite
beam/plate with the SMA layer embedded. SMA has the
following constitutive relations:

rs1 ¼ Es�1 þ rr ðT > T s1; SMA activatedÞ; ð1Þ
and

rs1 ¼ Esð�1 � as1DT Þ ðT < T s1; SMA inactivatedÞ. ð2Þ
For graphite/epoxy composite matrix material, it is

rm1 ¼ Em1ð�� am1DT Þ. ð3Þ
Es,Em1 are the Young�s moduli of SMA and composite ma-
trix material. rr is the recovery stress and its detailed
expression is given in Liang and Roger�s paper [5]. In gen-
eral, Es and rr are both temperature dependent. The sub-
script 1 stands for the direction indicated in Fig. 1. T is
the temperature and Ts1 is the temperature when SMA is
activated. as1 and am1 are the coefficients of thermal expan-
sion (CTE) for SMA and composite matrix material in 1
direction, respectively. Thermal effects are generally greater
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Fig. 1. A schematic diagram of the composite with SMA embedded and
its layers� dimensions. The composite is treated as an orthotropic
structure.
at higher temperature [6]. Thus CTE is temperature depen-
dent in general and in the model above, it is taken as a con-
stant. DT is the composite temperature difference with the
ambient environment. �1 and � stand for the strain of
SMA and the strain of the composite matrix in 1 direction,
respectively. Here we deliberately write the strains for the
SMA and composite matrix as two variables to emphasize
the assumption of one strain variable. In Xue and Mei�s pa-
per [3], it is only one strain variable for the strains in SMA
and composite matrix layer (Eqs. (1), (2) and (4) in their
paper). By assuming such one strain variable, the continu-
ity of strain/displacement of SMA and composite matrix at
interfaces is guaranteed and obviously the stress is discon-
tinuous at interfaces. From now on, only one strain vari-
able �1 is used in 1 direction. It is worth pointing out that
�1 is the total strain [6], which includes mechanical, thermal
and recovery ones. The resultant force F1 in 1 direction is:

F 1 ¼ r1A1 ¼ rs1As þ rm1Am. ð4Þ
A1 is the total area in 1 direction, As is the SMA layer area
and Am is the composite matrix area. Thus, the effective
stress for the whole composite beam is:

r1 ¼ rs1V s þ rm1V m. ð5Þ
Here Vs and Vm are called volume fractions and the follow-
ing expressions hold for them:

V s ¼
As

A1

; V m ¼
Am

A1

.

In the case of T > Ts, the constitutive relation (Eq. (5)) can
be rewritten as follows:

r1 ¼ ðEs�1 þ rrÞV s þ Em1ð�1 � am1DT ÞV m

¼ E1�1 þ rrV s � Em1am1DTV m. ð6Þ

In the case of T < Ts, it is

r1 ¼ Esð�1 � asDT ÞV s þ Em1ð�1 � am1DT ÞV m. ð7Þ
Here E1 is the effective Young�s modulus for the whole
composite structure in 1 direction

E1 ¼ EsV s þ Em1V m. ð8Þ
In 2 direction, there is no recovery stress. The following
equations hold for SMA and composite matrix in 2 direc-
tion [3]:

rs2 ¼ Esð�s � asDT Þ; ð9Þ

and

rm2 ¼ Em2ð�m � am2DT Þ. ð10Þ
Here �s and �m are the SMA strain and composite matrix
strain, respectively. Unlike the case in 1 direction, they
are two independent variables in 2 direction. Here SMA
is assumed isotropic and composite matrix material is
anisotropic. Em2 and am2 are the composite matrix Young�s
modulus and CTE in 2 direction, respectively. Eqs. (9) and
(10) can also be rewritten as

�s ¼ ðrs2 þ asEsDT Þ=Es; ð11Þ
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and

�m ¼ ðrm2 þ am2Em2DT Þ=Em2. ð12Þ
In 2 direction, r2 = rs2 = rm2, the average strain and stress
in 2 direction are found to be

�2 ¼
r2ðV sEm2 þ V mEsÞ

EsEm2

þ ðam2V m þ asV sÞDT ; ð13Þ

and

r2 ¼
EsEm2½�2 � ðam2V m þ asV sÞDT �

V sEm2 þ V mEs

. ð14Þ

Therefore, the effective Young�s modulus and CTE in 2
direction is

E2 ¼
EsEm2

V sEm2 þ V mEs

; ð15Þ

and

a2 ¼ am2V m þ asV s. ð16Þ
In 1 direction, the SMA and composite matrix share one
strain variable. In the special case of extension in 1 direc-
tion alone, they have the same strain/displacement across
the whole cross-section. In 2 direction, the SMA and
composite matrix share the same loading force/stress. So
if SMA and composite layers are treated as springs, the
effective moduli of 1 and 2 directions are obtained as
the springs are in parallel and serial configurations,
respectively. Here the effective moduli E1 and E2 are actu-
ally uniaxial moduli [7]. In the simplified constitutive rela-
tions above, Poisson�s ratio does not appear and other
composite material properties like effective bulk modulus,
shear modulus, etc., are not included. For a more general
and comprehensive approach of deriving the properties of
the composite materials, the reader should refer to Chap-
ter 3 (Effective moduli: cylindrical and lamellar systems)
of Christensen�s book [7].

The constitutive relations (Eqs. (6), (7) and (14)) do not
explicitly show any stress/force between the SMA and com-
posite matrix layer due to the constraint. The constraint in
those constitutive relations appear as a simple strain vari-
able, which physically means the interlamellar strain conti-
nuity of, i.e., the SMA and composite matrix layer are
rigidly bonded. Now we would like to analyze quantita-
tively the stress/force due to the constraint.

3. Analysis of a composite bar subject to temperature change

Here the analysis of a composite bar subject to temper-
ature change is presented. Though the analysis presented
includes the thermal effect only, the analysis of composite
bar under mechanical loading shares the very essence as
that of the thermal analysis. the principle of superposition
holds provided that total stresses (thermal, mechanical and
of phase transformation) remain within linear elastic limit
[8].

In Fig. 2, there are two extension scenarios of a com-
posite bar subject to temperature. Case 1 is the case that
the SMA layer and composite matrix layer extend freely
without any constraint, and the free extension lengths
are asDTL and am1DTL, respectively. The CTEs of the
two materials forming the composite bar are different.
When there is a temperature difference with the ambient
environment, the material tends to expand by different
amount. Under the free extension state, there is no con-
straint between SMA and composite matrix layer, thus
no interlamellar stress/force. As in case 2, the SMA and
composite matrix layer are rigidly jointed. In the exten-
sion case, they share the same extension length. To com-
pute the extension of case 2, the following two rules are
applied [8]:

Rule 1: The compression of SMA + the extension of
composite matrix = difference in ‘‘free’’ lengths.

Rule 2: The tensile force applied to the short member by
the long member is equal in magnitude to the
compressive force applied to the long member
by the short member.

Rule 2 can be further translated as the tensile force in
composite matrix = the compressive force in SMA. And
the difference of ‘‘free’’ lengths in rule 1 is defined as
am1DTL � asDTL. As shown in Fig. 2, rule 1 is the geomet-
ric constraint to let the SMA and composite matrix layer
have the same extension. Rule 2 here is nothing more than
Newton�s 3rd law. Mathematically, we translate the two
rules as the following two equations:

rs1L
Es

þ rm1L
Em1

¼ ðam1 � asÞDTL;

rs1As ¼ rm1Am1.

ð17Þ

Here rs1 and rm1 are the axial stresses of 1 direction in
SMA and composite matrix layer, respectively. Es,Em1

and as,am1 are the Young�s moduli and CTEs for the
two different layers in 1 direction. From the two rules,
the exact stress distributions (rs1 and rm1) in the different
layers with the rigidly jointed constraint condition can
easily be computed. The SMA here is assumed isotropic.
As it is noticed the example above only shows the exten-
sion scenario and temperature effect only, the mechanical
loading analysis is also presented in Hearn�s book [8].
Actually for all the stresses due to phase transformation,
mechanical and thermal loading in the extension analysis,
the analysis is to model the different layer as the different
springs in parallel configuration in 1 direction. In 2
direction, it is the springs in serial configuration. For
the analysis of the transverse deflection, rule 1 needs to
be adjusted as ‘‘the strain/displacement at the layer inter-
face is continuous’’. The one strain variable approach
covers both extension and deflection cases. For the anal-
ysis of the transverse deflection, rule 2 is changed as the
governing equation. Traditional method of computing
neutral axis, using one strain variable to establish the
governing for the structure is the best way to enforce
rule 1.
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Fig. 2. The influence of constraint on the composite deformation. Here an elongation example due to thermal expansion is shown. Two scenarios are
shown. One is that the composite expands without any constraint, the other is that the composite expands with the constraint which requires all the
composite layers expand with the same lengths.
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4. Discussion on the possible error sources on modeling the

SMA as axial force and elastic foundation

Before we discuss the error sources, we would like to
present the equation of motion by Epps and Chandra [1],
which is used to computed the composite structure natural
frequencies. It is their Eq. (12) and has the following
expression:

m
o2w
ot2
þ EI

o4w
ox4
þ kðxÞw ¼ 0.

Here m is the beam mass per unit length. w is the beam
deflection, EI is the beam bending stiffness. k is the elastic
foundation spring constant, it is a function of beam span
(x) and SMA tension. Clearly from their equation of mo-
tion above, the beam is modeled as Euler–Bernoulli beam.

The first error source is due to the stress redistribution.
As shown in the simple analysis of the extension due to
thermal expansion, the thermal stress, for example, the
SMA layer, cannot be simply determined as �EasDT.
The two rules determine the stress distribution in the exten-
sion case. In the transverse vibration, it is quite difficult to
show how exact the stress distribution in each layer (it is
not constant in each layer as that in the extension case).
But as the constraint of rigid jointing holds, the re-distribu-
tion of stress must happen. Mathematically, the use of one
strain variable is responsible for this re-distribution.
Though Epps and Chandra measure the SMA wire
in situ and accurately, the fact of stress re-distribution
inside composite matrix layer is not reflected in their gov-
erning Eq. (12). As the temperature reaches the phase
transformation one, the appearance of recovery stress rr

enhances the stress re-distribution due to the constraint
and exacerbates the axial force modeling results as shown
in their Fig. 16 [1].

The second one is due to the anisotropy of the compos-
ite matrix material. As mentioned above, the constitutive
relations derived in (1) and (2) are actually uniaxial type.
They are applicable to the uniaxial loading case. For the
flexural vibration study, the model adopted by Epps and
Chandra [1] is Euler–Bernoulli beam theory for the equiv-
alent homogeneous and isotropic material. As the graphite/
epoxy composite matrix is anisotropic, for such composite
structure, it is proper for the whole structure to be treated
as an anisotropic beam. As King [9] shows the fact that the
beam is restricted to rotate due to the anisotropy, which
makes the change of the beam bending stiffness compared
with that of the isotropic beam. The anisotropy results in
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some difference of the flexural vibration frequency change
as King shows the comparison of the frequencies of aniso-
tropic beam model with those of Timoshenko beam theory
[9]. Compared with Euler–Bernoulli beam theory, Timo-
shenko beam theory considers the strain due to the shear
effect and such strain effect can be ignored as the aspect
ratio of the thickness to the length is small for isotropic
materials. For the ‘‘ideal’’ composite, in which the fiber is
inextensible [10], Timoshenko beam theory and anisotropic
beam model are suggested even for the composite structure
with the small aspect ratio [9]. However, modeling the com-
posite beam as the anisotropic beam or Timoshenko beam
dramatically increases the modeling difficulties. Modeling
the composite beam structure as Timoshenko beam or
anisotropic beam reduces the structural stiffness compared
with the Euler–Bernoulli beam theory. Therefore, the nat-
ural frequencies decreases and it is noticed that the
Euler–Bernoulli beam axial force model by Epps and
Chandra [1] overpredicts the natural frequencies.
5. Summary

We demonstrate the thermal stress distribution in a com-
posite bar with the rigidly jointed layers due to the temper-
ature effect. The influence of the stress re-distribution due
to the constraint on the composite bar extension also holds
for the transverse deflection (though in a different way).
Due to the constraint that the different layers are rigidly
bonded, the stress re-distributes. Measuring one layer stress
is not enough to determine the other layers stress states.
That is the potential danger of modeling one layer function
as an axial force or an elastic foundation while neglecting
the other layer stress change due to the constraint. The tra-
dition method of one strain variable, which implicitly
includes the constraint effect, is very effective to deal with
such problem though it increases the modeling difficulties.
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