Numerical approximation improves well survey calculation
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It is now possible to improve the preci-
sion of well survey calculations by order
of magnitude with numerical approxima-
tion.

Although the most precise method of
simulating and calculating a wellbore tra-
jectory generally requires more calculation
than other, less-accurate meth-
ods, the wider use of comput-
ers in oil fields now eliminates
this as an obstacle.

The results of various calcu-
lations show that there is a
deviation of more than 10 m
among the different methods
of calculation for a directional
well of 3,000 m.!

Consequently, it is important to
improve the precision and reli-
ability of survey calculation—
the fundamental, necessary
work of quantitatively monitor-
ing and controlling wellbore
trajectories.

Inclinometers can only give
parameters from separate sur-
vey stations and cannot give the
real profile of wellbore trajectory.
Therefore, every method of survey calcula-
tion is based on some assumptions, and
most of them in each course are straight
lines, polygonal lines, cylinder helixes, or
circular arcs.?® These models are simple,
but they are not precise enough for excep-
tional wells such as extended-reach wells
and multiple-target wells.

Theoretical basis

Engineering areas such as mathematics,

mechanics, and other disciplines have
used spline function since I1.]. Schoenberg
proposed it in 1946. The spline, made of

i a slender batten or other elastic material,
| was originally a simple device used for

drawing a curve. Users lay it on the plate,
put some paperweights on it, and form it
into the shape of the given curve. When
the bending deflection of the spline is
tiny, Equation 1 can express the equation
of its shape (see equation box).
Engineers can regard the spline as an
elastic, slender beam, and the elementary
theory of beams shows that the curve

CURVE STRUCTURE METHOD

0)

Equation 1 expresses is the shape of the
beam loaded with a series of concentrated
forces. The whole curve consists of sec-
tional, cubic curves.

The first and second derivatives on the
whole curve are continuous, and the
inflection points are at the paperweights.
With regard to efficacy, the paperweights
operate simply as support points.

Mathematical spline is the curve that a
series of sectional cubic curves approach
on the elastic curve of a drawing spline.

Its continuity is through to the second
derivative, and its third derivative skips
being continuous at the inflection points.

For many important engineering appli-
cations, the mathematical model of the
drawing spline is highly accurate and true
to nature.

During the process of drilling, the
deformation of the drillstring is limited to
the wellbore wall, and the contact points
can be simplified as a series of fulcrums.

These fulcrums equal the paperweights
used in a curve drawing, and the whole
drillstring makes up a kind of elastic slen-
der beam. Furthermore, a well-
bore trajectory is continuous and
smooth. Consequently, the drill-
string in a wellbore is an elastic
spline, and in every way simu-
lates a wellbore trajectory using
the spline function.*

In order to discuss the behav-
ior of a function relation that has
no explicit expression—such as
that on some experiments’
datasheets, observations, or sur-
veys—it is common first to
make an approximate mathemat-
ical relation. Interpolation is
effective for creating such an
approximate function. There are
many interpolation methods, but
the interpolating function of
cubic spline is the best and the
most common choice.

Fig. 1

Trajectory spline function

Depth, inclination, and azimuth are the
three essential parameters for determining
trajectory, and, based on them, the engi-
neer can calculate other parameters to
simulate a real trajectory. As a rule, depth
is the independent variable among these
parameters.

For the whole trajectory or a part of it,
assuming that there is a series of mea-
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sured results arranged in the order of sur-
vey depth:

If a(L) and &(L) are no more than
cubic multinomials over subinterval
[Li. L; + 1], and they have the continuous
first and second derivatives over [a,b], and
they meet Equation 2, then a(L) and $(L)
are termed the inclination spline function
and the azimuth spline function, respec-
tively, based on the nodes {L;}.*

According to the definitions of inclina-
tion spline function, Equation 3 can
express a(L). Except for the measured
parameters, the equation shows that a(L)
only relates to the second derivatives, m,
which meet the relations shown as
Equation 4. But, because there are only
n — 2 equations available here for n
unknowns, (m;,m,, ..., m,), there is a
need for two more equations for the ends
of the simulated trajectory.

There are generally three ways to give
these supplementary equations:*

* When the rate of inclination change
expresses as the first derivative, if ¢ and &,
are known, then Equation 5 can determine
the boundary equations.

* When the curvature of the inclination curve
expresses as the second derivative, if a; and
'o'tn are known, then Equation 6 can deter-
mine the boundary equations.

* Undoubtedly, however, the best way to give
the boundary condition from the first and
the last several survey stations is: If cubic
interpolation multinomials are used, then
Equation 7 can determine the boundary
equations.

When one of these boundary condi-
tions joins Equation 4, a linear equation
group will emerge. It can be proven that
the coefficient matrix of the equation
group is not singular. Thus, the equation
provides a unique solution for the deter-
mination of a(L).

Similarly, Equation 8 can determine the
azimuth spline function.

Trajectory curvature, torsion

A wellbore trajectory generally is a
curve in space that is both curved and tor-
tuous. For many years, engineers have
focused critical attention on the trajectory
curvature, regarding it as an important
index.*”

Drilling practice shows, however, that a
tight trip sometimes occurs even if trajec-
tory curvature is not high and weight on
bit cannot be applied successfully during
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CALCULATED RESULTS, CYLINDER HELIX

Table 1
North course  East course Course vertical Course hole
Methods coordinate, m coordinate, m depth, m deviation, m Error, m
Balanced tangential 9.8904 13.4644 24,8105 16.7349 0.1186
Average angle 10.0133 13.4596 248711 16,7758 0.0308
Radius of curvature 9.9995 13.4410 24.8509 16.7622 0.0000
Rectified average angle 99995 13.4410 24,8509 16.7622 0.0000
Minimum curvature 9.9100 13.4911 24.8597 16.7491 0.1029
Chord step 9.9198 13.5044 24.8843 16.7563 0.1071
Natural parameter 9.9723 13.4612 24.8509 16.7622 0.0338
Curve structure 10.0085 13.4421 24.8850 16.7622 0.0353
Numerical integral 9.9995 13.4410 24 8509 16.7622 0.0000
CALCULATED RESULTS, ARC CURVE IN SPACE Table 2

North course

East course Course vertical Course hole

Methods coordinate, m coordinate, m depth, m deviation, m Error, m
Balanced tangential 8.7910 13.2893 25.3324 16.0249 0.0487
Average angle 8.9400 133152 25.3532 16.0380 0.1363
Radius of curvature 8.9206 13.2862 25.3463 16.0336 0.1210
Rectified average angle 8.9206 13.2862 25.3463 16.0336 0.1210
Minimum curvature 8.8053 13.3110 25.3737 15.9901 0.0000
Chord step 8.8125 13.3218 25.3943 159728 0.0244
Natural parameter 8.8903 13.3065 25.3463 16.0336 0.0894
Curve structure 8.8126 13.3218 25.3943 15.9900 0.0244
Numerical integral 8.8055 13.3107 283137 15.9900 0.0003

regular drilling, especially when bent subs
or houses are in the drillstring.

The research results show that the
value of trajectory torsion is usually high-
er than that of trajectory curvature and
changes more sharply. Evidently, there are
many factors that influence frictional
resistance—bottom hole assembly, hole
curvature, inclination, performance of
drilling mud, hole condition, and a differ-
ence in the degree of influence between
hole curvature and its torsion.

Research also shows, however, that fric-
tional resistance greatly increases as the
drilling string is twisted in the tortuous
hole even if its deflection is not as consid-
erable. Therefore, hole torsion is another
important parameter for describing and
calculating a wellbore trajectory.’

According to the definitions, the para-
meters relating to the hole curvature and
torsion can be calculated by Equations 9,
10, and 11.5"

Survey calculation

Based on the idea and theory discussed
previously, there are two methods for
describing and calculating a drilled well-
bore trajectory—the curve structure
method and the numerical integral
method.

In the curve structure method, accord-
ing to the theory of curve, the shape of a
curve in a vicinal area depends on its

structural elements. For example, an arc
can be the curve in which k = constant
and 7= 0.

Evidently, the results are more precise
when the hole curvature and torsion are
synchronously involved over every course
length. Thus, it is reasonable to simulate a
wellbore trajectory using the curve struc-
tural theory.

Fig. 1 illustrates this method. When the
coordinate system O — XYZ exists, then
Equation 12 can express the Position B
relative to Position A on a 3D trajectory.

And when the coordinate system
A — & m { exists in the axis directions of
tangent, principal normal, and binormal,
Equation 13 can express r .

From the definitions of trajectory para-
meters and the theories of curve structure
and analytic geometry, the transformation
correlation of the two coordinate systems
appears as Equation 14."

The method uses the structural ele-
ments at the upper point A to calculate the
course coordinates of wellbore trajectory.
Apparently, it can be the same with the
lower point B.

It is not hard to imagine that the calcu-
lation precision will be improved if the
two points of the course ends are used. In
this case, Equation 15 can calculate the
course coordinates.

The second method is the numerical
integral method.
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The basic idea of spline interpolation
function is to express a spline curve as
sectionalized polynomial expressions, to
turn the whole function into an erectable
one, and to keep the curve smooth at the
nodes. It is very suitable to a numerical
calculation because such a function has
kept the elegance of polynomial expres-
sion and overcomes its shortcomings on
agility and stabilization.

After determining the inclination spline

function and the azimuth spline function
using Equations 3 and 8, the engineer can
then use Equation 16 to calculate the
course coordinates based on the differen-
tial model of wellbore trajectory.

Because it is not easy to find the object
function in Equation 16, it is generally
advisable to obtain the result through
numerical integral. This is the basis for the
method name.*"

Verification

We chose two typical theoretical
curves—a cylinder helix and an arc curve
in space—to verify the calculated results
of these methods and to compare the
results with those from the commonly
used methods in the oil field.

In the calculations for the following
two examples, the parameters at the upper
survey station are the same:

o, = 30° ¢, = 50° and AL = 30m, but
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Second derivative of bending deflection, 1/m

Inclination function vs. measured depth, degrees
Azimuth function vs. measured depth, degrees
Rate of inclination change (dropping off is a negative value),

Rate of azimuth change (decreasing azimuth is a negative value),

Rate of inclination change, viz. k,, degrees/m
Second derivative of inclination angle, degrees/m?
Rate of azimuth change, viz.k,, degrees/m
Curvature of well bore trajectory, degrees/m
Torsion of well bore trajectory, degrees/m

North coordinate (south is negative), m

East coordinate (west is negative), m

Course principal normal coordinate, m

Coordinate vector of well bore trajectory

Unit tangent vector of well bore trajectory
Unit principal normal vector of well bore trajectory
Unit binormal vector of well bore trajectory

Second derivative of inclination angle, viz. &, degrees/m?®

Second derivative of azimuth angle, viz. ¢, degrees/m?

Intermediate variable, dimensionless

y (X} = Bending deflection at x, m
& = AL (%)
: n = Number of survey stations
e = — Kn ALZ - = Megsured depth, m
2 a = Inclination angle, degrees
[0 = Azimuth angle, degrees
(] ] ka Ta AL® a i
B T AT e =
6 iau(L) z
degrees/m
AX  AY  AZI" = [TAl &g Mg Lal" + [Tgl [Ex ma Ca)' e el
« =
where: "!', =
1 ¢
&= A 5
X =
1 X
M = — Ky AL2 7 = \Vertical depth, m
8 o Hole deviation, m
Al = Curved course length, m
{p = — wa1a AL® AX = North course coordinate, m
AY = East course coordinate, m
AZ = Course vertical depth, m
AS Course hole deviation, m
£ = Course tangent coordinate, m
1 M =
£y = ; AL 4 = Course binormal coordinate, m
r
1 i Unit vector on X axis
M= kp A2 i = Unit vector on Y axis
8 k = Unit vector on Z axis
t =
{p = — kg 1g AL® ; :
uy = Transformation matrix
h Curved course length, viz. AL, m
m 2
e M
AX = JLA sin a(l) cos (L) dl L b Integral constant, degrees/m
e c Integral constant, degrees
Al J sin all) sin &(L) dL B Integral constant, degrees/m
L: c Integral constant, degrees
AZ = | cos afl) dL 5 Z . ; >
a A = Intermediate variable, degrees/m
-8
as = [ sin all) dL
La
Subscripts
A = Upper station point of the course
NOMENCLATURE B = Lower station point of the course
i = Variable
E = Elastic modulus, N/m?
| = Sectional inertia moment, m*
M (x) = Bending momentatx, Nem

ap and ¢y need determination according
to the given curves.

In the first example, assume the course
to be a cylinder helix curve. Its curvature
in a vertical plot is ky = 8°/30 m, and
its curvature in a horizontal plot is
Ky = 12°/30 m. Based on the characteris-
tics of a cylinder helix, the inclination and
azimuth at the lower survey station can be
obtained: o = 38°, and by = 56.7049°.
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Table 1 shows the detailed calculated
results from the different methods.

In the second example, assume the
course to be an arc curve in space. Its cur-
vature is k = 8°/30m, and its initial tool-
face angle is w = 60°. So the inclination
and azimuth at the lower survey station
are: oy = 34.6335°, and ¢y = 62.2440°.

Table 2 shows the detailed calculated
results from the different methods.

With respect to the cylinder helix, the

calculated results of the radius of curva-
ture method are exact. With respect to the
arc curve in space, the calculated results of
minimum curvature method are exact.'
The errors in Tables 1 and 2 are the
square roots of the square sum of the sin-
gle coordinate error between the calculat-
ed result and the exact solution with
north course coordinate, east course coor-
dinate, and course vertical depth.
The error of the minimum curvature

53




TYPICAL METHODS, EVALUATED RESULTS

Tabiei%» 2

Precision

Methods Assumption order Conclu: :
Numerical integral « and & are cubic multinomials; the coordinates 1 Perfect

are determined through numerical integral. v
Curve structure The course is broken into two sections. The 2 Excellent

coordinates are determined by « and = at the e

two survey stations. ; 7 -
Natural parameter A 3-D curve with k, = constant and k,, = constant. “ Very good -
Radius of curvature A 3-D curve with k = constant and ky, = constant. 4 o
Minimum curvature An arc with k = constant and t = 0. 4 : 7
Rectified average angle  An approximate calculation from the radius of B ] Goodr‘

curvature, e
Chord step An arc with k = constant and = = 0, but the 6

measured course length is assumed as its chord. . -
Average angle A linear section. 6 Usable
Balanced tangential A polygonal line. 7

method in Table 1, for example, is shown
below:

that the order of calculated precision for
the commonly used methods is as shown

The example results and many actual
calculated figures in the oil fields indicate
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in Table 3. Precision order in the table

only means the relative order, not the

exact grade, in respect to its calculated
precision.

For example, the result of the curve
structure method is inferior to that of the
numerical integral method but superior to
that of other methods. The results of the
rectified average angle method are gener-
ally very close to that of the radius of cur-
vature method, but it ranks lower only
because it is an approximate calculation. It
is important to choose the most appropri-
ate method, especially for exceptional
wells. Currently, calculating course coordi-
nates through numerical integral is the
most precise method to simulate and cal-
culate a wellbore trajectory. 4
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