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Abstract 　　The Boltzmann equation of the sand particle velocity distribution function in wind2blown sand two2phase
flow is established based on the motion equation of single particle in air. And then , the generalized balance law of parti2
cle property in single phase granular flow is extended to gas2particle two2phase flow. The velocity distribution function
of particle phase is expanded into an infinite series by means of Grad’s method and the Gauss distribution is used to re2
place Maxwell distribution. In the case of truncation at the third2order terms , a closed third2order moment dynamical
equation system is constructed. The theory is further simplified according to the measurement results obtained by stro2
boscopic photography in wind tunnel tests.

Keywords :　saltation , blown sand , turbulent boundary flow.

The wind2blown sand transport is a two2phase turbulent boundary layer flow. It is divided

into three types , i. e. suspension , saltation and creep [1 ] . Saltation plays a predominant role in

sand transportation and most of the transported sand moves in saltation at a fast speed. Most the2
ories about wind2blown sand transport are experiential or semi2experiential theories. Many prima2
ry properties in blown sand two2phase turbulent boundary layer were found by Owen[2 ] through

the single t rajectory assumption. In refs. [ 3 ,4 ] and other literature launch velocity dist ribution is

studied by means of experimental measurements and statistical methods. Recently a numerical
simulation method , the so2called self2regular method is developed[5 —7 ] . It is necessary to associate

macroscopic research with microscopic research to establish a dual fluid dynamic model for blown

sand two2phase flow. In this paper , the closed third2order moment theory of particle2gas two2
phase flow and its simplified form , which is useful and convenient for engineering , are obtained.

1 　Velocity distribution function and general ized balance la w of particle phase

It is found that the collision process of sand on the bed plays a predominant role in blown
sand transport possesses[8 ] , so do the blown sand characteristics of granular flow. The motion of

individual particle is fully random. According to the characteristics of blown sand it is supposed

that : (i) all the particles are spheres and have an identical diameter and mass ; (ii) in microscopic

representative volume element of saltation layer , the location and velocity of a sand particle is
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　 33 This work was originally done in Xi’an Jiaotong University.
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random , so the macroscopic movement state of particle phase can be described by means of a ve2
locity dist ribution function ; (iii) the rotation of a particle can be neglected ; (iv) the fluctuation of

gas is not affected by particle motion , and the drag force on particles is only dependent on relative

velocity between a particle and the mean speed of gas. In the present paper , only saltation is tak2
en into account and the Rouse number Ro = τv g/ (κu 3 ) µ 1 . In this case , the particle motion

has no effect on the high2f requency fluctuation of gas , and the random force caused by high fre2
quency fluctuation of gas can be neglected.

Letρa , μa , u , denote density , viscosity coefficient and velocity of air , respectively. Let

r ( x , y , z ) D , ρp , υ denote position , diameter , density and velocity of a sphere particle at time

t . Assume that the force acting on it is F (υ, r , t) . Then its motion equation is

m
dυ
dt

= F , 　F = FD + mg , (1)

where

FD = mβ( u - υ) , 　m = πD3ρp/ 6 , (2)

β = f D ( Re) /τv , 　τv = ρp D2/ 18μa . (3)

According to ref . [ 9 ] , f D can be approximately expressed as f D ( Re) ≈1 + Re
2/ 3

/ 6 , where Re

=ρaD| u - υ| /μa = D | u - υ| /ν is Reynold’s number of a particle. Therefore β can be ex2
pressed as

β = [β0 +β1 | u - υ| 2/ 3 ] ,

β0 = 18μa/ (ρp D2) , 　β1 = 3ρaν
1/ 3/ (ρp D4/ 3) ,

(4)

whereτv is the relaxation time of particle motion. Let f (υ, r , t ) be the velocity dist ribution

function of particle phase. Then at time t , the probable number of particles in the volume ele2
ment dΩr ( = d x d y d z ) centered at the point r with velocity in the range (υ,υ+ dυ) is f (υ, r ,

t) dΩrdΩv (where dΩv = d v x d v y d v z ) . So the Boltzmann equation to determine the particle ve2
locity dist ribution function is

5 f
5 t

+υ·5 f
5 r

+
1
m

F ·5 f
5 υ +

1
m

f
5

5υ·F = DC f , (5)

where“·”means inner product , (5/ 5υ) ·F is caused by viscous drag of interstitial fluid , DC f is

the mean collision rate of change of f . In the saltation layer of blown sand , the mean free length

between particles is one order larger than their diameter , and the particle volume fraction is small2
er then 10 - 4 ; therefore the collision effects of particle can be neglected[10 ,11 ] . So in the follow2
ing , we neglect all the collision terms.

Let n be the number density of particles. Then

n =∫f (υ, r , t) dΩv =∫
∞

- ∞∫
∞

- ∞∫
∞

- ∞
f (υ, r , t) d v x d v y d v z . (6)

Given any particle property ψ=ψ(υ, r , t) , it s mean value〈ψ〉is determined by

〈ψ〉=
1
n∫ψ(υ, r , t) f (υ, r , t) dΩv , (7)

especially when ψ=υ. The mean velocity of particle phase is �υ=〈υ〉. Let C be the fluctuation

of particle velocity. Then
υ = �υ + C . (8)

So any particle property ψcan also be expressed as a function of C , and (7) can be rewritten as
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〈ψ〉=
1
n∫ψ( C , r , t) f ( C , r , t) dΩC . (9)

　　Let ψ be some property of a particle , f rom (5) it can be confirmed that the balance law of

particle property in particle2gas two2phase flow is

5
5 t
〈 nψ〉+

Δ·〈 nυψ〉= n〈Dψ〉, (10)

where

Dψ =
5ψ
5 t

+υ·
5 ψ

5 r
+

1
m

F ·
5ψ
5υ

. (11)

Let ψ= m . Then Dψ= 0 . From (10) , we obtain
Dρ

Dt
+ρ Δ·�υ = 0 ; 　 D

Dt
=

5
5 t

+ �υ·5
5 r

, (12)

where ρ= nm . In the foregoing statement , the independent micro2variables are (υ, r , t) , but it

is more convenient to express ψ as a function of ( C , r , t) . Let
ψ(ν, r , t) = ψ( �υ( r , t) + C , r , t) ≡ψ( C , r , t) . (13)

Except special claim in the following statement we use C instead of υas an independent variable

for any physical quantity. From (11) we obtain

Dψ =
Dψ

Dt
+

1
m

F -
D�υ
5 t

·
5ψ
5 C

+ C ·
5ψ
5 r

- C ·
5ψ
5 C

·5 �υ
5 r

. (14)

Then the balance law of particle property (10) can be expressed by the fluctuation velocity as fol2
lows :

ρD〈ψ〉
Dt

+

Δ·〈ρCψ〉= ρ〈Dψ〉, (15)

where Dψ is determined by (14) . Let ψ= C in (15) . Then we obtain the momentum balance

equations

ρE�υ
Dt

= -

Δ·Ρ + b ,

P =〈ρCC〉, b =∫Ff ( C , r , t) dΩc .

(16)

In the case of ψ=ψ( C) (i. e. ψis not dependent on r and t) ,by means of (16) , the balance law

of particle property (15) can be simplified into

ρD〈ψ〉
Dt

=

Δ·P ·〈
5ψ
5 C〉-

Δ·〈ρCψ〉- ρ〈
5ψ
5 C

C〉∶5 �υ
5 r

+
ρ

m 〈 F ·5ψ
5 C〉-〈 F〉·〈

5ψ
5 C〉 . (17)

2 　Closed third2order moment theory and its simplif ied form in fully developed 22dimensional
static boundary layer

　　Define the N th2order moment :

M i
1

i
2
⋯i

N
=〈Ci

1
Ci

2
⋯Ci

N
〉. (18)

Takingψ = CkCl , in (17) , one obtains the second2order moment balance equations :

ρ
DM kl

Dt
+

5
5 ri

(ρM ikl) + 2 Pil
5 �v k

5 ri
= 2

ρ
m
〈 F( kCl) 〉. (19)
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Takingψ = CkClCm and substituting it in (17) , one obtains the third2order moment balance

equations :

ρ
DM klm

Dt
+

5
5 ri

(ρM iklm ) +ρ M ilm
5 �v k

5 ri
+ M ikm

5 �v l

5 ri
+ M ikl

5 �v m

5 ri

=
5 Pik

5 ri
M lm +

5 Pil

5 ri
M km +

5 Pim

5 ri
M kl +

ρ
m

(〈 FkClCm〉

+〈 FlCkCm〉+〈 Fm CkCl〉-〈 Fk〉M lm -〈 Fl〉M km -〈 Fm〉M kl) . (20)

It is noticed that in general diffusion terms in the N th2order moment balance equations are depen2
dent on ( N + 1) th2order moments. The same as the classical turbulent flow theory , t runcation is

needed to obtain closure simultaneous equations. Following Grad[12 ] the traditional t runcation

method in classical granular flow is expanding the velocity dist ribution function into an infinite se2
ries in the vicinity as Maxwell dist ribution[10 ] . In two2phase turbulent boundary layer flow of

blown sand , because the velocity dist ribution function of particle phase is st rongly anisotropic in

three directions , which has been confirmed by experimental results in wind tunnel , we introduce

the Gauss dist ribution function f 0 instead of Maxwell dist ribution in wind2blown sand two2phase

flow :

f 0 ( C , r , t) =
n

[2π]3/ 2 [ det M ]1/ 2exp -
1
2

C ·M - 1 ·CT , (21)

where M is a 32dimensional 2nd2order symmetric tensor , the components of which are determined

by (18) . det M is the determinant of M , and M
- 1

is the reverse of M . For any particle proper2
ty ψ( C , r , t) , it s another mean value is defined as follows :

〈ψ〉0 =
1
n∫ψ( C , r , t) f 0 ( C , r , t) dΩc , (22)

Define the characteristic function of f 0 ( C , r , t) as φ(η, r , t)

φ(η, r , t) =〈exp{ - 1η·C}〉0 = exp -
1
2
ηMηT . (23)

Using formula e x = 1 + x +
1

2 . x 2 + ⋯and the basic property of characteristic function it is easy

to show that

〈Ci1
Ci2

⋯Ci
N
〉0 = - 1

n αnφ
αηi1

αηi2
⋯αηi

n

| η= 0 = 0 , 　when N is odd , (24)

〈CkCl〉
0 = M kl . (25)

Following Grad[12 ] , we expand the velocity dist ribution function f ( C , r , t) into an infinite series

at the vicinity of f 0 ( C , r , t) :

f ( C , r , t) = 1 + ∑
+ ∞

P = 1

( - 1) P
ai

1
i
2
⋯i

P

P .
5 P

5 Ci
1
5 Ci

2
⋯5 Ci

p

f 0 ( C , r , t) . (26)

For any particle propertyψ( C , r , t) we have

〈ψ〉=〈ψ〉0 + ∑
+ ∞

P = 1

ai
1

i
2
⋯i

P

P . 〈
5 Pψ

5 Ci1
5 Ci2

⋯5 Ci
P

〉
0

. (27)

From (24) —(26) and the definitions of number density n , mean velocity �υ, and the second2or2
der moment M kl , it is easy to obtain ai = 0 , aij = 0 ; therefore (26) can be rewritten as
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f ( C , r , t) = 1 + ∑
+ ∞

P = 3

( - 1) P
ai

1
i
2
⋯i

P

P .
5 P

5 Ci1
5 Ci2

⋯5 Ci
p

f 0 ( C , r , t) . (28)

If only the second2order moments are considered (i. e. ai
1

i
2
⋯i

P
≡0 , for all P ≥3) , then f ( C , r ,

t) = f 0 ( C , r , t) . From the definition of the third2order moment and (27) one can obtain

M lm n =〈ClCm Cn〉=〈ClCm Cn〉
0 +

aijk

3 .〈
53 ( Cl Cm Cn)

5 Ci5 Cj5 Ck 〉
0

.

Using (24) we get M lm n = alm n . Therefore

f ( C , r , t) = 1 -
M ijk

3 .
53

5 Ci5 Cj5 Ck
+ ∑

+ ∞

P = 4

( - 1) P
ai

1
i
2
⋯i

P

P .
5 P

5 Ci1
5 Ci2

⋯5 Ci
p

f 0 ( C , r , t) . (29)

From the difinition of the fourth2order moment and (27) one obtains

M lm np =〈ClCm CnCp〉
0 + alm np =

54φ
5ηk5ηl5ηm 5ηn

| η= 0 + alm np . (30)

Expanding (23) into the fourth2order terms and substituting them into the above equation one ob2
tains

M klm n = M klM m n + M km M ln + M knM lm + alm np . (31)

Using (31) , we can rewrite (21) as

ρ
DM klm

Dt
+

5
5 ri

(ρaiklm ) + Pik
5 M lm

5 ri
+ Pil

5 M km

5 ri
+ Pim

5 M kl

5 ri

+ρ M ilm
5 �v k

5 ri
+ M ikm

5 �v l

5 ri
+ M ikl

5 �v m

5 ri

=
ρ

m
(〈 FkClCm〉+〈 FlCkCm〉+〈 Fm CkCl〉-〈 Fk〉M lm -〈 Fl〉M km -〈 Fm〉M kl) . (32)

For the closed third2order moment theory , it is assumed that the system state variables of particle

phase are n , �v i , M ij , M ijk . Any coefficient of higher2order terms ai1 i2 ⋯i
P
( P ≥4) in (28) should

be expressed with the system state variables based on experiments , which has been done in turbu2
lent flow theory. For lack of experience , following Jekens and Richman[10 ] , we truncate it to the

third2order terms , i. e. let ai
1

i
2
⋯i

P
≡0 for all P ≥4. In the present paper only this case is to be

considered ; therefore (12) , (16) , (19) , (32) and the motion equation of gas phase form the
complete equation system of the closed third2order moment theory.

In order to simplify the equations obtained in the above section , in this section we consider

the fully developed 22dimensional static boundary layer problem. It is assumed that : (i) v z = 0

and (ii) all the macroscopic quantities such as v x and v y are only dependent on y . From assump2
tion (i) , the mass conservation equation (12) can be simplified into ρ�v y ≡constant . Becanuse of
ρ�v y = 0 at infinity , in fully developed 22dimensional static boundary layer problem only the x2
component of the mean velocity of particle phase is non2zero , and we denote it by �v ( y) . In this

case , when any macroscopic quantity is acted on by an operator
D

Dt
=

5
5 t

+ �v i
5

5 ri
, that is equal to

zero. For the same reason , the gas velocity has only one component in x2direction , u ( y) . Be2
cause the motion of particle does not affect the gas fluctuation , Prandtl’s mixing length theory is

also true. The effect of particle on gas can be simplified into a reaction force. Let τa denote the

shear st ress of particle phase ,τs shear st ress of gas phase. Then the momentum balance equation
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in x2direction of the mixture becomes 5 (τa +τs) / 5 y = 0. Integrating it we obtain
τa +τs = τ0 , (33)

whereτ0 is a constant denoting the total shear st ress at boundary , τs = - ρM 12 . According to

Prandtl’s mixing length theory we haveτa =ρa (κy·d u/ d y) 2 . Then the motion equation of gas

phase can be expressed as
ρa (κy ·d u/ d y) 2 = τ0 +ρM 12 , (34)

whereκis the Karman constant . From assumption (ii) it is known that any moment containing

the subscript 3 of particle phase vanishes. Then in the fully developed 22dimensional static bound2
ary layer problem , the system state variables of particle phase for the closed third2order moment

theory are

u ,ρ, �v , M 11 , M 12 , M 22 , M 111 , M 122 , M 112 , M 222 .

Then (21) becomes

f 0 ( C , r , t) =
n 3

2π M 11 M 22 - M 2
12

·exp -
M 11 M 22

( M 11 M 22 - M 2
12)

C2
1

M 11
-

2 M 12 C1 C2

M 11 M 22
+

C2
2

M 22
. (35)

The complete equation system of the closed third2order moment theory of two2dimensional prob2
lem can be written as

ρa κy
d u
d y

2

= τ0 +ρM 12 ,

d
d y

(ρM 12) = ρ[〈β〉( u - �v) -〈βC1〉] ,

d
d y

(ρM 22) = - ρg - ρ〈βC2〉,

d
d y

(ρM 222) = - 2ρ〈βC2 C2〉,

d
d y

(ρM 112) + 2ρM 12
d �v
d y

= 2ρ[〈βC1〉( u - �v) -〈βC1 C1〉] ,

d
d y

(ρM 122) +ρM 22
d �v
d y

= ρ[〈βC2〉( u - �v) - 2〈βC1 C2〉] ,

M 12
d M 11

d y
+ M 111

d �v
d y

= [ (〈βC1 C1〉-〈β〉M 11) ( u - �v )

　　+〈βC1〉M 11 -〈βC1 C1 C1〉] ,

M 12
d M 22

d y
+ 2 M 22

d M 12

d y
+ M 222

d �v
d y

　　 = [ (〈βC2 C2〉-〈β〉M 22) ( u - �v) +〈βC1〉M 22

　　　+ 2〈βC2〉M 12 - 3〈βC1 C2 C2〉] ,

M 22
d M 11

d y
+ 2 M 12

d M 12

d y
+ 2 M 122

d �v
d y

　　 = [2 (〈βC1 C2〉-〈β〉M 12) ( u - �v) +〈βC2〉M 11

　　　+ 2〈βC1〉M 12 - 3〈βC1 C1 C2〉] ,

M 22
d M 22

d y
= [〈βC2〉M 22 -〈βC2 C2 C2〉] ,

(36)
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whereβis determined by (4) . The product terms (i. e. all〈⋯〉terms) in eq. (36) can be calcu2
lated by means of (29) .

3 　Simplif ied equations for engineering application

Experimental researches on wind tunnel for the developed wind2blown sand turbulent bound2
ary layer flow were carried out (limited by space , experimental details are omitted here) . Under
the experimental condition of the present work , the average value of experimental results within

0. 04 m can be given as

M 11 = 1 . 772m2/ s2 , M 12 = - 0 . 472m2/ s2 ,

M 22 = 0 . 179m2/ s2 .
(37)

Experimental results show that M 222 is far smaller than M 22 . Experimental results of the three2
order moments are scattering , and no satisfactory results are obtained. We can only evaluate the

order of magnitude from experimental results. Particle density is indirectly calculated by particle
flux and average particle velocity :ρ = q/ �v . Experimental results show that the particle density
ρapproximately attenuates as negative exponential function with height y . It can be approxi2

Fig. 1. 　Particle density and its fitting curve.

mately expressed as
ρ = exp{ - 54 . 75 y} , (38)

where the dimension of ρ is in kg/ m3 , the dimension

of y is in m. The fitting curve of ρ is compared with

the experimental results in fig. 1. This conclusion is al2
so given by Nalpanis et al. ,[3 ] Wu[13 ] and others.

In the fully developed 22dimensional particle2gas

two2phase turbulent boundary layer flow , dynamic e2
quations of closed third2order moment theory are given
by (36) . In general cases these equations are all cou2
pled together. In our experiments the third2order mo2
ments cannot be measured accurately. All these situa2
tions make these simultaneous equations difficult in en2
gineering. So we simplify eq. (36) according to the order of magnitude obtained in experiments.
The following approximate solution can be obtained (the details are omitted here) :

ρ = ρ0e
-

gy

M
22

, 　　M 222 = 0 , 　　M 22 = const . ,

M 12 = const . , 　　M 11 = const . ,
(39)

ρa (κy
d u
d y

) = τ0 +ρ0 M 12e
-

gy

M
22

,

-
gM 12

M 22
= β0 ( u - �v ) +β1 ( u - �v ) 5/ 3

+
2
3
β1 ( u - �v) - 1/ 3

M 11 .

(40)

The density in eq. (39) is corresponding to eq. (38) . The value of u and �v can be obtained from
eq. (40) . In order to resolve eq. (40) , two boundary conditions are required : (i) particle borne
shear st ress at y = 0 , and (ii) wind speed at y = D . First we consider condition (1) ; although we
can determine M 12 by means of experiments , it is difficult to accurately determine density at

y = 0 ; therefore we still use Owen’s assumption[2 ] : suppose that air borne shear st ress at y = 0
always has a threshold value for the initial saltation :τa =ρau2

3 t . Fromτ0 =ρau2
3 one can obtain
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τs0 = ρ0 M 12 = - ρ0 | M 12 | = - ρa [ u2
3 - u2

3 t ]. (41)

Substituting (41) into the first equation of (40) , and noticingτ0 = ρau2
3 , one can obtain

d u
d y

=
u 3
κy

1 - 1 -
u2

3 t

u2
3

e
-

gy

M
22

1/ 2

. (42)

Assume that the second condition is

u = B u 3 at y = D , (43)

where coefficient B is determined by experiments. In the present paper , B is a little larger than

8. 5 , so we can approximately take B = 8 . 5. From (42) and (43) we obtain

u =
u 3
κ∫

y

D
1 - 1 -

u2
3 t

u2
3

e
-

gy
1

M
22

1/ 2
d y
y1

+ B u 3 . (44)

Substituting the relevant parameters into (44) , and integrating it by numerical method one can
obtain the theoretical profile of wind speed as shown in fig. 2. Below 0. 02 m , the particle borne

shear st ress increases rapidly with the decreasing height , and air st ress is no longer constant ;

therefore the wind speed deviates f rom the logarithmic profile. This situation causes the fitting

curve to deviate f rom the practical wind speed below 0. 02 m. From fig. 2. we can find that the
experimental fitting curve of the wind speed is smaller than the theoretical one. From fig. 2 we

also find that the roughness is increased due to particle shear st ress. In fig. 2 curve 3 is u =
u 3
κ ln

( y/ y0) , where y0 = D/ 30 , corresponding to the assumed case where sands are fixed on the bed ,

u 3 is determined by regression analysis f rom the measured wind speed. Curve 1 is the curve fit2
ting test data and curve 2 is a theoretical curve. In the simplified theory three second2order mo2
ments are constants , and particle density decays exponentially with height , and therefore the par2

Fig. 2. 　Theoretical wind speed profile. Fig. 3. 　Theoretical mean velocity of particle phase.

ticle borne stress also decays exponentially with height :

τs = τsoe
-

gy

M
22 , τs0 = - ρoM 12 , (45)

whereρ0 is the particle density at y = 0 , the value of M 12 is negative. From (45) one can obtain

τa = τ0 - τsoe
-

gy

M 22
= ρa u2

3 +ρ0 M 12e
-

gy

M 22
. (46)
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The variation inτs andτa with height is consistent well with the numerical results given in ref .

[ 6 ] . From the second equation of (40) one can find that ( u - �v) is approximately constant with2
in an appropriate range , which has also been found in experiments. The particle average velocity

determined from (40) and the experimental results are shown in fig. 3. Fig. 3 shows that they

are well consistent with each other.

Appendix 　Balance la w of particle property

∫5 f
5 t
ψdΩv =∫5 ( fψ)

5 t
- f

5ψ
5 t

dΩv =
5
5 t∫ψf dΩv - ∫5ψ

5 t
f dΩv

=
5

5 t
( n〈ψ〉) - n〈5ψ

5 t 〉, (A1)

∫υ·5 f
5 r
ψdΩv =∫5

5 r
·(υψf ) - fυ·5ψ

5 r
dΩv =

5
5 r

·∫υf dΩv - ∫υ·5ψ
5 r

f dΩv

=

Δ·〈 nυψ〉- n〈υ·5ψ
5 r〉, (A2)

∫1
m

F ·5 f
5υψ +

1
m

f
5

5υ·Fψ dΩv =∫5
5υ· 1

m
Ffψ -

1
m

f F ·5ψ
5 υ dΩv

= - ∫1
m

F ·5ψ
5υf dΩv = - n〈 1

m
F ·5ψ

5υ〉, (A3)

in which we have used∫5
5υ· 1

m
Ffψ dΩv = 0 . With (A1) , (A2) and (A3) , we obtain

∫D 3 fψdΩv =
5
5 t
〈 nψ〉+

Δ·〈 nυψ〉- n〈Dψ〉. (A4)

From (13) , (A4) and (5) , (11) can be obtained.

References

1 　Bagnold , R. A. , The Physics of Blow n S and and Desert Dunes , London : Methuen & Co. , 1941.
2 　Owen , P. R. , Saltation of uniform grains in air , J . Fl ui d Mech. , 1964 , 20 : 225.
3 　Nalpanis , P. , Hunt , J . C. R. , Barrett , C. F. , Saltating particles over flat beds , J . Fl ui d Mech. , 1993 , 251 : 661.
4 　White , B. R. , Two2phase measurements of saltating turbulent boundary layer flow , Int . J . M ulti phase Flow , 1982 , 8 :

459.
5 　Anderson , R. S. , Haff , P. K. , Wind modification and bed response during saltation of sand in air , Acta Mech. , 1991 , sup2

pl , 1 : 21.
6 　McEwan , I. K. , Willetts , B. B. , Nunlerical model of the saltation cloud , Acta Mech. , 1991 , suppl. 1 : 53.
7 　Anderson , R. S. , Sorensen , M. , Willetts , B. B. , A review of recent progress in our understanding of aeolian sediment trans2

port , Acta Mech. , 1991 , suppl. 1 : 1.
8 　He , D. L . , Liu , D. Y. , Launch mechanism of saltating sand , Desert of Chi na (in Chinese) , 1984 , 9 : 14.
9 　Rudinger , G. , Fundamentals of Gas2particle Flow , New York : Elsevier , 1980.

10 　Jenkins , J . T. , Richman , M. W. , Grad’s 132moment system for a dense gas of inelastic spheres , A rch. Rat . Mech.

A nal . , 1985 , 87 : 355.
11 　Jenkins , J . T. , Richman , M. W. , Kinetic theory for plane flows of a dense gas of identical , rough , inelastic , circular disks ,

Phys. Fl ui ds , 1985 , 28 : 3485.
12 　Grad , H. , On the kinetic theory of rarified gases , Com m . Pure and A ppl . Math. , 1949 , 2 : 331.
13 　Wu , Z. , Desert Geomorphology (in Chinese) , Beijing : Science Press , 1987.

No. 6 SAL TATION IN BLOWN SAND 637　　


