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Comparison of various adhesion contact theories
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Abstract—Three models, JKR (Johnson, Kendall and Roberts), DMT (Derjaguin, Muller, and
Toporov) and MD (Maugis-Dugdale),are compared with the Hertz model in dealingwith nano-contact
problems. It has been shown that both the dimensionless load parameter, P D P =.¼1° R/, and the
transition parameter have signi� cant in� uences on the contact area at micro/nano-scale and should
not be ignored in nano-indentation tests.
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1. INTRODUCTION

In recent years there has been considerable interest in the mechanical characteriza-
tion of thin-� lm systems and small volumes of materials using depth-sensing inden-
tation tests which utilize either spherical or pyramidal indenters [1, 2]. Usually, to
obtain values for hardness and elastic modulus of the specimen material from the
experimental values of indenter load and depth of penetration is the principal goal
of such testing. The forces involved are usually in the millinewton (10¡3 N) range
and are measured with a resolution of a few nanonewtons (10¡9 N), and the depths
of penetration are in the order of nanometers, hence the term “nano-indentation”
(10¡9 m). As the experimental values of indenter load and depth of penetration give
an indirect measure of the area of contact, from which the mean contact pressure,
and thus hardness, can be estimated, the relationship between the contact area and
the load is considerably important. Thus the appropriate use of the corresponding
theoretical model will play a key role in the experimental investigation.
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Nano-contact mechanics refers to contact mechanics at nano-scales, which is
fundamentally important for understanding of the force–distance curves from
various scanning microscopies (atomic force microscopy (AFM), magnetic force
microscopy (MFM), etc.) and of nano-indentation, the adhesion (or stiction)
of microelectromechanical systems (MEMS) and nano-electromechanical systems
(NEMS), nano-tribology and nano-wear. The emphasis of the present paper is to
compare different adhesion contact mechanics models in their dimensionless form,
and to discuss the in� uences of the governing dimensionless parameters.

2. MODELS OF CONTINUUM ADHESION CONTACT MECHANICS

Continuum models that predict the contact area for various geometries have a long
history, dating back to the pioneering work of Hertz in 1881 [3]. Many of the most
important contact problems are summarized in the book by Johnson in 1987 [4].
Hertz found that the radius of the circle of contact aH was related to the indenter
load P , the spherical indenter radius R, and the elastic properties of the contacting
materials by:

a3
H D

P R

K
; (1)

where K is the equivalent elastic modulus of the indenter tip and the sample, given
by

K D 4
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;

where E and º are the Young’s modulus and the Poisson’s ratio, respectively, and
subscripts 1 and 2 denote the indenter and the sample, respectively. If the contact-
ing bodies are spheres with radii R1 and R2, then R in the above equation is the
equivalent radius given by: R D R1R2=.R1 C R2/. In the absence of adhesion, the
Hertz model has been shown to accurately describe the contact area between elastic
bodies [4]. However, a great many experimental and theoretical results show that
the surface-to-bulk ratio becomes signi� cant at small scales [5]. Therefore, adhe-
sion arising from attractive surface forces is generally not negligible and must be
included in any description of contact area. Actually, with the increasing popularity
of nanoscale technology and the increasing sensitivity of nano-indentation instru-
ments, experimental results increasingly show that the contact area of the bodies
is much larger than estimated with the Hertz model; especially, when the load di-
minishes to zero, the contact area reaches a constant value [4–8]. It proves that
the surface forces, especially the adhesion force, do play an important role in the
contact of the indenter and the sample at sub-micro/ nano-scale.

Considering the contact between two rigid spheres with radii R1 and R2 , the
adhesion force, PA, between them is given by the Bradley theory [9] as

PA D 2¼1° R; (2)
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where 1° D °1 C °2 ¡ °12 is the work of adhesion, °1 and °2 are the surface
energies of materials of spheres 1 and 2, respectively, and °12, is the interfacial
energy. Equation (2) applies to the case of rigid spheres in contact, i.e., the contact
radius is zero. In practice, the spheres deform when placed in contact due to their
� nite value of elastic modulus. Derjaguin, Muller and Toporov [10] considered the
case of deformable bodies by adding the force given by equation (2) to the Hertz
contact equation and the resulting contact theory is referred to as the DMT theory.
The DMT model gives the contact radius aDMT related to the work of adhesion, 1° ,
by:

a3
DMT D

R

K
.P C 2¼1° R/: (3)

It is obvious that upon application of a negative load, Pc.DMT/ is given by:

Pc.DMT/ D ¡2¼1° R; (4)

and the contact radius is zero, which means the two surfaces separate at that point.
Therefore, Pc.DMT/ is the critical force required to separate the two spheres, i.e. the
pull-off force. The model also gives a particular value for the contact radius at a
zero load as:

a0.DMT/ D
¡
2¼1° R2=K

¢1=3
: (5)

The adhesion contact between a solid rigid sphere and an elastic half space has
been described by Johnson, Kendall and Roberts (JKR), which leads to the famous
JKR theory [11]. They found that the contact radius, aJKR, for a rigid sphere in
contact with a compliant elastic half space, was related to the work of adhesion,
1° , as:
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According to the JKR theory, upon application of the negative load, separation of
the surfaces would occur when the external force, Pc.JKR/, was applied such that

Pc.JKR/ D ¡
3

2
¼1° R: (7)

The model also predicts a particular value for the contact radius at a zero load as:

a0.JKR/ D
³

6¼1° R2

K

´1=3

: (8)

It should be noted that the pull-off force Pc.JKR/ is independent of the elastic
modulus and depends only on the equivalent radius of curvature and work of
adhesion. So equation (7) should apply equally well to a rigid sphere, but this would
be contradictory to equation (4). The apparent discrepancy led to a heated debate
and later, following the analysis of Tabor [12], Muller et al. [13] pointed out that
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the two theories represented the opposite extremes of a dimensionless parameter ¹

given by

¹ D
³
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´1=3

; (9)

where " is the equilibrium spacing in the Lennard– Jones potential and
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is the combined elastic modulus. The signi� cance of the Tabor number ¹ in the
contact theory, especially at the nanoscale, has attracted attention from many re-
searchers (see Ref. [4]). ¹ can be interpreted as the ratio of elastic deformation
resulting from adhesion to the effective range of surface forces. Another dimen-
sionless number, called transition parameter ¸, was introduced by Maugis [14] and
the transition parameter is related to ¹ by ¸ D 1:157 ¹. For an appropriate use of
the adhesion models, an adhesion map has been constructed by Johnson and Green-
wood [15] using the Dugdale force-separation law with two parameters: ¹ (or ¸)
and P , where the dimensionless load parameter P is the ratio of the applied load to
the adhesion force. The JKR theory is applicable to large radius, compliant solids
(¹ > 5) and the DMT theory applies to small radius, rigid solids (¹ < 0:1). Phys-
ically, the JKR theory accounts for adhesion forces within the expanded area of
contact only, whereas the DMT theory accounts for adhesion forces just outside the
contact circle only, which are depicted in Fig. 1b and Fig. 1c, respectively. Table 1
presents the major assumptions and limitations inherent to each theory.

Figure 1. Interactive forces for the Hertz, JKR, DMT, MD and MYD models. The Hertz model does
not consider the adhesion in contact. The JKR model includes only a short-range adhesion in the
contact area, actually it is a ± function with the work of adhesion 1° . The DMT model shows a long-
range surface force which acts outside the radius of the circle of contact. The MD model considers
the Dugdale (square well) potential to describe attractive forces. The MYD model, however, includes
both the short-range and long-range forces acting both inside and outside the circle of contact, just
like the Lennard–Jones potential.
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Table 1.
Comparison of the various contact theories

Theory Assumptions Limitations

Hertz
(Fig. 1a)

No surface forces Not valid for low loads if surface forces
are present

JKR
(Fig. 1b)

Short-ranged surface forces act only in-
side contact area

May underestimate loading due to surface
forces

Contact geometry allowed to deform Applies to high ¸ systems only
DMT
(Fig. 1c)

Long-ranged surface forces act only out-
side contact area

May underestimate contact area due to
restricted geometry
Applies to low ¸ systems only

Maugis–
Dugdale

Periphery of tip–sample interface mod-
eled as a crack that fails at its theoretical
strength

Analytical solution, but parametric equa-
tions
Applies to all values of ¸

3. COMPARISON OF THE DMT AND JKR MODELS WITH THE HERTZ
MODEL

To compare the JKR model with the Hertz model, especially the in� uence of
the adhesion force on the contact radius, it is convenient to make equation (6)
dimensionless as
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where the term on left-hand side is always larger than (or equal to) unity as expected,
and can be expressed in the dimensionless load parameter P D P =.¼1° R/ as
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:

It seems that the dimensionless load parameter P dominates the change in the
contact radius in the JKR model. The radius aJKR increases with the work of
adhesion 1° and with decreasing applied load. This has been pointed out in
Yang’s work [16]. However, there has been no such analysis for the DMT model.
Equations (3) and (1) give

aDMT
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D

³
1 C 2

P

´1=3

: (11)

From equation (11), it seems that the radius also increases with the work of adhesion
and with decreasing applied load, as in the JKR model.

Figure 2 shows that the indentation radius is controlled by the work of adhesion
when the load is less than 10¡3 mN. For a nano-indentation tip radius 1 ¹m, and the
work of adhesion between the tip and the thin � lm, 100 mJ/m2, the ratio aJKR=aH

in the JKR model decreases from 12.4 at the applied load of 1 nN to 1.5 at a load
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Figure 2. In� uence of work of adhesion 1° and applied load P on nano-indentation tip radius ratio
in both JKR and DMT models.

of 1 ¹N, and in the DMT model, the ratio aDMT=aH decreases also from 8.6 at a
load of 1 nN to 1.2 at a load of 1 ¹N. Gradually, the ratios for both models reach
the value of 1 as the load approaches 1 mN. At small loads, the radius increases
sharply with the work of adhesion. It proves that under small loads, the contact
radius is dominated by the work of adhesion and the indenter tip radius R. Under
large loads, the work of adhesion is negligible compared to the strain energy, which
controls the deformation of the specimen surface. In conclusion, in both JKR and
DMT models, for a small load and a large indenter size, the change in the work
of adhesion controls the contact radius between the indenter and the substrate. In
contrast, for a large load and small size of the indenter, the elastic deformation
dominates.

Also, from equations (10) and (11), it can be seen that the dimensionless load
parameter, P D P =.¼1° R/, independently controls the in� uence of the work of
adhesion. In Fig. 3, when the value of 1° R=P is less than 0.1, the in� uence of the
work of adhesion is still insigni� cant. With the value of 1° R=P increasing to 102,
the corresponding value of a=aH is so large that the work of adhesion must not be
ignored and would play the main role in the process of contact.

It should be noted that, in Figs 2 and 3, with the same parameter 1° R, the values
denoted by the dashed curve are always larger than that of the solid curve at most
sites, which means that the in� uence of the work of adhesion in the JKR model
is more prominent than in the DMT model. Actually, dividing equation (6) by



The dimensionless load parameter in nano-contact problems 61

Figure 3. In� uence of dimensionless number 1° R=P on nano-indentation tip radius ratio in both
JKR and DMT models.

equation (3), the ratio between aJKR and aDMT is given as:

aJKR

aDMT
D

»
1 C 3=P C [6=P C .3=P /2]1=2

1 C 2=P

¼ 1=3

: (12)

From equation (12) and Figs 4 and 5, it seems that with increasing work of adhesion,
the JKR model has more in� uence on the contact radius. Also, an ultimate value of
aJKR=aDMT, 3

p
3, can be deduced with the decrease of applied load.

In the above discussion about the difference in the JKR and DMT models,
the effect of material properties such as the elastic modulus was not considered.
Actually, equations (1), (3) and (6), respectively, can be recast into:

PH D
Ka3

R
; (13)

PDMT D
Ka3

R
¡ 2¼1° R; (14)

PJKR D
Ka3

R
¡ .6¼1° Ka3/1=2: (15)

Then the additional terms PA.DMT/ and PA.JKR/ compared with the Hertz model in
equation (13) are given by:

PA.DMT/ D 2¼1° R; (16)

PA.JKR/ D .6¼1° Ka3/1=2: (17)
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Figure 4. The ratio of aJKR to aDMT vs. the load P . Under the same load P and within the region
10¡4 ¡ 10¡1 mN, the ratio aJKR=aDMT increases appreciably when 1° R changes from 10 nJ/m to
100 nJ/m, which shows that the work of adhesion has more in� uence on the JKR model.

Then the ratios between PA.DMT/ and PH, as well as between PA.JKR/ and PH are
given by:

PA.DMT/

PH
D

³
R

a

´2 2¼1°

aK
; (18)

PA.JKR/

PH
D

R

a

³
6¼1°

aK

´1=2

: (19)

Here, the quantity a=R is proportional to the indentation strain [1]. The value
of aK determinates whether or not the adhesion force is signi� cant for a particular
contact. As aK becomes large, the additional term PA becomes small. In the case of
small K , the additional term is signi� cant for very compliant surfaces even when the
contact radius is large. Also, as the DMT model describes the contact by the Bradley
theory [9], which considers that all contacting bodies were rigid, it is appropriate
to use the DMT model if the modulus K is relatively large. In the case that the
material is compliant, the JKR theory is suitable because the JKR model deals with
the contact between a rigid sphere and an elastic compliant half space [11]. Actually,
the JKR model is valid for low modulus, high surface energy materials and large
indenters, whereas the DMT model is valid for more rigid materials with lower
surface energies and for smaller indenters. It should be noted that in equations (18)
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Figure 5. The ratio of aJKR to aDMT vs. the dimensionless number 1° R=P . When the value of
1° R=P increases, the ratio aJKR=aDMT increases from the lower critical value to the upper one. The
lower critical value, 1.0, shows that when surface energy can be ignored, the contact radii in both JKR
and DMT models are similar. Actually they are similar to what the Hertz model predicted. The upper
critical value, 31=3 , however, shows the difference in contact radii between the JKR and the DMT
models.

and (19), the ratios, in fact, express the ratios between the surface energy and the
elastic energy, which has the similar scale as the Tabor parameter in equation (9).

4. COMPARISON OF THE MD MODEL WITH THE HERTZ MODEL

The differences in the contact radii and separation forces between the JKR model
and the DMT model which were denoted in equations (4), (5), (7) and (8) have
caused some debate [17, 18]. As a result, Muller et al. proposed the Muller,
Yushchenko and Derjaguin (MYD) model [13, 19] and described the adhesion force
between the indenter tip and the sample by a pair-wise summation of the molecules
via a Lennard– Jones potential. By using the Dugdale potential, Maugis [14]
proposed the Maugis–Dugdale (MD) model in 1992. It was found that the MD
model was the general case in describing the contact and both the JKR and DMT
models were special cases. The transition between the JKR and DMT models
was investigated by Maugis and Gauthier– Manuel [20], who used the ‘Dugdale’
(square well) potential to describe the attractive forces between contacting spheres
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Figure 6. Effect of applied load P on nano-indentation tip radius ratio in JKR, DMT and MD models
when ¸ D 0:1 and 1° R D 100 nJ/m.

and obtained the following equations:

1

2
¸ Na2

£p
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P D Na3 ¡ ¸ Na2
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where Na=a D .K=¼1° R2/1=3, Nc=c D .K=¼1° R2/1=3, m D c=a, P D P=.¼1° R/

and c is the outer radius given as c D aC0:971", where a is the radius of the contact
circle, and " is the equilibrium spacing in the Lennard–Jones potential.

It is dif� cult in the MD model to obtain the expression relating only a and P as
was the case in JKR and DMT models, because there is another parameter c that
varies with ¸. Therefore, it is necessary to use numerical calculations to obtain
the solution. From Figs 6–8, the conclusion about the transition between the JKR
model and the DMT model is veri� ed. When ¸ D 0:1, the curve for the MD model
approaches the curve due to the DMT model and in the case ¸ D 5, the curve for the
MD model approximately coincides with that for the JKR model. With a value of ¸

between 0.1 and 5, ¸ D 1:5, the curve is in-between those for the other two. So, it
can be clearly seen that the JKR and DMT models are two special cases of the MD
model.
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Figure 7. Effect of applied load P on nano-indentation tip radius ratio in JKR, DMT and MD models
when ¸ D 5 and 1° R D 100 nJ/m.

Figure 8. Effect of applied load P on nano-indentation tip radius ratio in JKR, DMT and MD models
when ¸ D 1:5 and 1° R D 100 nJ/m.
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5. CONCLUSION

We analyzed the in� uences of the dimensionless load parameter, P D P=.¼1° R/,
and the transition parameter, ¸, on the nano-contact area, and we also validated the
importance of the work of adhesion through comparison of the JKR, DMT and MD
models with the Hertz model. The major conclusions drawn are given below:

.1/ With a small applied load, the work of adhesion does play a key role in the
micro and/or nano-scale contact and must be taken into account. The difference
between the JKR and DMT models is also discussed and the origin of the
difference is analyzed in-depth.

.2/ The numerical examples show that both the JKR and DMT models are the
upper and lower limits of the MD model, respectively. So, the MD model is
the general case and can deal with most materials in contact. A large body of
experiment results [21] showed that, in general, the AFM measurements were
mostly located in the regime of the MD model. So considering the accuracy
of the experiments, it is more suitable to use the MD model to deal with the
problem. As the MD model is not so concise and the solutions of the equations
are cumbersome, it would be much helpful to � nd some rapid and simple
method to determine the parameters which describe the contact. Fortunately,
some progress has been made [22, 23].

The in� uence of the work of adhesion on nano-scale plastic deformation has to be
considered for a nano-indentation characterization and modeling. Considering the
in� uence of the work of adhesion, the nano-indentation hardness for a fully plastic
contact can be expressed as [24]:

Hadhesion D H

³
1 C 2

P

´
; (22)

where H D P =¼a2 is the hardness, and P again is the applied load and a is the
plastic contact area. Equation (22) shows the in� uence of the dimensionless load
parameter on the hardness. In other words, the in� uence of the work of adhesion is
strong when the applied load is light. Surface roughness has also to be considered
at the nano-scale in the future work.
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APPENDIX

List of symbols
a contact radius
Na a.K=¼1° R2/1=3

c outer contact radius
Nc c.K=¼1° R2/1=3

E Elastic modulus

E¤
³

1 ¡ º2
1

E1
C 1 ¡ º2

2

E2

´¡1

; combined elastic modulus

K
4

3

³
1 ¡ º2

1

E1
C 1 ¡ º2

2

E2

´¡1

; equivalent elastic modulus

m c=a

P applied load
PA adhesion force
Pc pull-off force
P P =.¼1° R/, dimensionless load parameter
R radius of sphere
1° work of adhesion
" intermolecular spacing
¸ 1.157 ¹, transition parameter
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¹

³
R1° 2

E¤2"3

´1=3

, Tabor number

º Poisson’s ratio


