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An algorithm based on flux-corrected transport and the Lagrangian finite element
method is presented for solving the problem of shock dynamics. It is verified through
the model problem of one-dimensional strain elastoplastic shock wave propagation
that the algorithm leads to stable, non-oscillatory results. Shock initiation and det-
onation wave propagation is simulated using the algorithm, and some interesting
results are obtained.g 1999 Academic Press

1. INTRODUCTION

This paper presents a numerical simulation for the shock to detonation transition
detonation wave propagation in high-energy solids. Shock dynamics of energetic mate
has been studied a great deal in recent years (see [1-15]). There are two features tt
different from the conventional dynamics of inert materials. First, the shock wave sp
changes from the elastic shock wave speed to the detonation wave speed, typically
3000 to 9000 m/s, and the shock pressure increases, typically from 1 to 40 GPa. Se
the source term governing the release of chemical energy must be present in the con:
tion equation. The presence of the source term in the governing balance equations pre
new numerical problems which the theory has yet to address [16]. The Lagrangian f
element method (see [3, 17, 18]) has been successfully used for many years for hyd
namics. A shock wave, as a mathematical discontinuity, cannot be directly accommoc
in the continuum formulation that is the basis of many present-day wave codes. The stra
forward application of this finite element method to the problems of shock dynamics \
give rise to non-physical oscillations. To demonstrate this, consider, for example,
dimensional shock wave propagation in a 0.1-m-thick elastic plate. The theoretical st
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FIG. 1. Pressure profiles of 1-D strain elastic shock wave at time (a)2dhd (b) 30.Qcs without diffusion
and anti-diffusion.

wave speed is 5927 m/s. A pressure of £.80" N/m? is loaded on the front surface of
the plate at 0 time for &s. The wave profiles at 120s (2000 times steps) and 303
(5000 time steps) are shown, respectively, in Figs. 1a and 1b. The compressive wav
been changed into the tensile wave as shown in Fig. 1b because of free surface refle
Figures 1a and 1b reveal that there are two important features characteristic of the the
element simulation. First, large amplitude oscillations appear everywhere in the domn
Second, the finite element solution has been identified with the correct wave speed
after the shock wave reflected from the free surface. To get around non-physical os
tions, an artificial bulk viscosity (see [3]) is usually introduced to smear the shock fr
over several mesh widths in calculations. The linear and quadratic terms of the artif
bulk viscosity are available. The former serves principally to spread the wave front c
several elements in the direction of propagation and to lower the peak amplitude. The |
is used principally to suppress spurious oscillations behind the wave front. However
artificial viscosity leads to excessive spreading of the shock profile, which will conseque
introduce fictitious shock wave and detonation wave structures.

The flux-corrected transport (FCT) idea originates from Boris and Book [19, 20] &
consists mainly of two stages, a transport-diffusive stage and an anti-diffusive stage
equivalent but more descriptive interpretation of the FCT algorithm was given later
Zalesak [21]. Since then the algorithm has been enriched by many researchers; se
example, McDonald [22], Giannakouros and Karniadakis [23], Salari and Steinberg [.
Odstral [24], and Lohneret al.[26, 27].

The finite element flux-corrected transport (FEM-FCT) algorithm with the Eulerian
proach on unstructured grids [27] was well established blrieret al. [26] more than
10 years ago and has been extensively used since then. This method first expands t
known attime leveh + 1 about the value at time levein a Taylor series, and then performs
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the spatial discretization via the Galerkin weighted residual method. The consistent-r
Taylor—Galerkin and lumped-mass Taylor—Galerkin are employed and combined in su
way that the high-order solution is used in smooth regions of the flow, whereas the low-0
solution is favored near discontinuities. The two schemes are matched via the diffusion/
diffusion steps. Since the lumped-mass Taylor-Galerkin cannot produce monotonic re
for problems to be solved, the mass diffusion must be added to the lumped mass.

The Eulerian approach used in this method will result in the mass, momentum, and er
flow between elements.

The Lagrangian finite element method differs from the Eulerian method in the way
which elements are bound with deformation bodies, so there is no mass flow betweer
ments. The Lagrangian element method has been extensively applied to impact prok
(see [3, 8]), since it does not need to redefine the geometry boundaries of bodies im
ing together at a new time level. In this paper, we attempt to combine the FCT with
Lagrangian finite element discretization. Since the mass density flux and energy fluw
sulting from the mass flow between elements vanish in the Lagrangian approach, the
algorithm will be used to correct nodal momentums. Actually, only nodal velocities ne
to be corrected, because the nodal mass does not change with time.

This paper is organized as follows. The mathematical and numerical aspects of the |
element method are briefly treated in Section 2. The main steps incorporating FCT intc
finite discretization are presented in Section 3, which ends with several elastoplastic s
wave results to verify the feasibility of the proposed algorithm. In Section 4, we desct
the extra processes that are needed for simulating the shock to detonation transition. Fi
results and a brief discussion are presented in Section 5, followed by concluding rem
in Section 6.

2. LAGRANGIAN FINITE ELEMENT DISCRETIZATION

A material bodyQ2 which occupies a finite region of Euclidean space is subjected tc
prescribed body forcé and a surface loadirgf which acts onp;, where indexk ranging
from 1 to 3 is the degree of freedom label. The problem is stated in terms of the princ
of virtual work. The variational form of the momentum equation and the force bound:
condition is

87r=/p5(k8xkdv+/rkm(SXk,mdv—/,oszSXkdv—/ sksx. da, Q)
Q Q Q 1

which vanishes at all points along the path of motion for all variatibgssatisfying the
displacement boundary conditions on surfgge The integration is performed over the
current configuration of the bod® wherep is the mass density is accelerationz*™

is Cauchy stress, anti is the body force density in the current configuration. The su
convention is satisfied in the context.

2.1. Spatial Discretization

The Lagrangian dynamics finite element method is used to obtain an approximate ¢
tion. Examples of the application of the method are described in Refs. [3, 17]. Theboo
is divided into material subregions or elements with nodes at the vertices. Using interf
tion or shape function within each element, a variable is defined over the element f
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the values it has at the nodes. Thus, the virtual displacement, velocity, and acceleratic
given by

8Xk(t) = 5Xko¢¢as (2)
XK(t) = g7, (3
£ = g, @
whereg® is the Galerkin shape functioa,= 1, 2, ..., p, in which p accounts for the total

number of the nodes. The valuesgsfare the same for the different degrees of freedom «
any nodex.

Substituting Egs. (2), (3), (4) into Eq. (1) yields, for all virtual displacement satisfyil
the displacement boundary conditions on suriagehe approximate form of Eq. (1),

S :/pxkﬂw(pﬂaxka dv+/ KM §Xiep dv
Q Q '

- /Q o FKp 8%, dv — /¢ 1 4% 8%y dam = 0. (5)
This will result in
MQ =F, (6)
where
QY =%, (7
My 5 = /Q ™ $” Xy dv, 8)

Fk"‘:—/rkm¢f’mdv+/pfk¢°‘dv+/ 9% dan. k=123, B=12...,p.
Q Q ¢1
9)

In Eq. (6),M is the nodal mass matri¥; is the nodal force vector, an@Q is the nodal
acceleration vector. If a diagonal-mass matrix is employed rather than the consistent-
matrix implied in Eq. (6), we will obtain X p uncoupled Newtonian equations of motior
for every degree of freedom of the nodes.

We are only concerned with the one-dimensional (1-D) case, including one-dimensi
planar, cylindrical, and spherical symmetry in the following description.

2.2. Mass Matrix

The diagonal mass matrix is used in this work. The b@dg divided intoN elements.
Every node links two elements except the two end nodes that have only one element
nodal mass is the summation of the the mass contributed by the element possessing the
The two end nodes for one-dimensional plane symmetrical problems share the element
equally. The element mass is weighted to its two end nodes in accordance with the dis
between the node and the axis for one-dimensional cylindrical and spherical symn
problem. If the two end node coordinates ey@ndr,, respectively, and the element mas:
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is g, then the two end nodal masses supplied by the element possessing the node
respectively,

riq
2(r1+r2)’

rq

2(r1+r2)° (10)

_9 _4d
m1_4+ m2_4+

2.3. Nodal Force

It is convenient that the nodal physical coordinateandr, are transfered to the local
coordinates—-1 and 1. The Lagrangian shape functions corresponding to two nodes
taken to have the linear form

_ 14 1 (11)
¢>1—§( =Y, ¢2—§( +y).

The physical coordinate for a given point within the element is given by
1 1
I= @il + ¢l = E(rl +r2) + §(r2 —Tr1y. 12)

If fk=0, then the nodal forces contributed by the element possessing the nodes are

do1 2
F 15
( r1>=/ dy r <O'r>r)\dy’ (13)
F, J-1 % %¢2 09
wherex =0, 1, 2 corresponds, respectively, to one-dimensional planar, cylindrical, &
spherical symmetry, ang} ando, are the stress components. For one-dimensional plat

symmetryo, = 0, we have
F —
(r)= () as
F, oy

The nodal force is the summation of the force contributed by the element possessin
nodal and external loading on the two end nodes. The nodal acceleration is

F

= (i=12....p). (15)

2.4. Time Integration

The central difference scheme is employed to get the nodal velocity and nodal displ
ment.
The nodal velocity is

vj (t—l—%) = v (t—%)‘f‘aiAt' (16)

The nodal displacement is

At
Uit + At) = ui(t) + v (t—i— —)At. (17)
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The time stepAt must be taken to satisfy the Courant condition

min AX

whereAx is the element lengtlt is the characteristic wave speed of the matevids, the
nodal velocity, and is taken to be 0.65 in this work.

2.5. Strain Rate and Strain

For one-dimensional planar symmetry, the strain rate of the element will be

¢ dv _ d(vig1 + v2¢2) _v2—un (19)
dr dr ro—rq
The strain increment within one time step takes
Ae = EAL. (20)

3. DIFFUSIVE AND ANTI-DIFFUSIVE ALGORITHM

We consider here shock dynamics problems in inert and energetic materials. Ther
two approaches, the Boris and Book scheme [19, 20] and the Zalesak scheme [21], v
can be adopted. Here we employ the approach of Boris and Book in formulating the diffu
and anti-diffusive algorithm.

3.1. Main Steps

In particular, the main steps of the diffusive and anti-diffusive Lagrangian finite elem
method are as follows:

(1) Input the characteristic constants of the material, initial condition, and bound
condition.

(2) Generate the finite element geometry including node label, element label,
node coordinate.

(3) Calculate the lumped mass at each of the nodes. The nodal masses are corr
once at the start of the computations and remain fixed for all time.

(4) Compute the concentrated nodal force from the stresses in the element an
boundary loading.

(5) Compute the nodal acceleration through the nodal mass and force.

(6) Calculate the diffusive fluxes in accordance with the nodal velocity of the I:
time step,f?=m;1v?,, — m;v?, wherev; is the nodal velocity of nodg, andm; is the
nodal mass of nodg, which does not change with time.

(7) Integrate Eq. (15) to calculate the trial nodal veloeity

(8) Throughv*, we get the anti-diffusive quxe"sj1 = Mj110] 4 — Mjvj.

(9) Applydiffusion,vj = vi+(n/m;)(f - ;), wherey is the diffusive coefficient.

(10) Limit the anti-diffusive fluxes,

fj1 — s-max{0, min[s- Aj_,

1
fi

S+ Al ),

wheres=sign(Aj), Aj =mMj10j41 — M;vj.
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(11) Apply anti-diffusion to obtain the updated nodal velocity:

vj = v,— — mlj(fjl_ fjlfl).

(12) Compute the nodal displacement from Eq. (17).

(13) Calculate the element strain rate and the element strain increment from Eqs.
and (20).

(14) The next time step length is generated from Eq. (18).

(15) Calculate the stresses or pressure within the element through the constit
relation or the equation of state.

(16) If the calculation does not arrive at the final time, return to step (4) and then s
a new time circle.

To conserve the linear momentum of the system, the suggestions proposed by one c
artical manuscript reviewers have included in the formulas using to calculate the diffu:
and anti-diffusive fluxes.

3.2. Model Problems

To demonstrate the algorithm, we consider a problem of 1-D strain shock wave pre
gation within a half-infinite ideal elastoplastic medium. The initial conditions for the stre
o and velocityv are

c(t=0=0, v(t=0)=0. (21)

The loading acting on the surface of the model body is given by

1.6 GPa as0<t <6.0us
p(x=0) = . (22)
0, ast > 6.0 us
The constitutive model is given by
4
o= <K~|—3G>e, aso < Yy, (23)

whereK is the volume modulusG is the shear modulu¥j is the yield strengthK, G,
andYp are taken to be 166 GPa, 81 GPa, and 800 MPa, respectively.
The Hugoniot elastic limit is
_ (KT 500 _
Yy = —a = 1.35GPa (24)
When the material density is taken to be 7800 kg/fnthe elastic shock wave velocity
De =5927 m/s, and the plastic shock velocily, =4613 m/s. The diffusive coefficient is
taken to be 0.065. The typical profiles of the pressure and velocity are shown in Fig
and 3. Figures 2a and 3a display the twin-wave structure. The precursor elastic shock
is followed by the plastic shock wave. The elastic unloading shock wave unloads the el
wave and is shown in Figs. 2b and 3b. Figures 2c and 3c exhibit that the internal impa
the elastic unloading wave against the elastic loading wave produces the weak elastic
which propagates in the left direction, reducing the residual velocity of the medium. T
calculation results are in good agreement with the theory’s prediction.
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FIG. 2. Pressure profiles of 1-D strain elastoplastic shock wave at time (a)s6(®) 24.0us, and (c) 36.cs
via using diffusive and anti-diffusive algorithm.

4. FORMULATION

The Jones—Wilkins—Lee (JWL) form (see [14, 15]) of equation of state is used to simu

the pressure—volume—energy relationship for the material in both the unreacted and re
states. The equations of state for unreacted solid and reacted gas are given by Egs. (2

(26), respectively,
Ws

Ps = A3<1_

sz

W,
— Rlsvs S - RZSVS
€ + B (1 — >e +
R15V5> S RosVs

W, W,
Ay 1-— g)e—ngVQ +B (1— g )e-RZQVg + ,
g( RigVg 9 RogVg V,

WS ES
— 25
Vo (25)
WeBg — 26)
g

whereAs, Bs, Ris, Ros, Ag, By, Rig, Rog, Ws, Wy are the material coefficient&s, Eg are
the internal energy per unit volume; aWglandVy are the specific volume,

_ro
Ps

Vs

Py

2 _ vy =v,

(27)
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FIG. 3. Velocity profiles of 1-D strain elastoplastic shock wave at time (a)#.,Qb) 24.0us, and (c) 36.Q«s
via using diffusive and anti-diffusive algorithm.

where pg is the initial density of the material, ang, and py are the current density of
the material in unreacted solid and reacted gas, respectively. It is reasonable to reco
ps = pg in the elements locating in the chemical reaction zone.

The chemical reaction is modeled by a reaction progress varlapighich denotes
the mass fraction of the reacted material and takes a value between 0 (unreacted)
(reacted completely). The ignition and growth model [14] controlling the transition frc
the unreacted phase to the reacted phase is used,

4
aF - F)Z/g(ﬁ - 1) +G(1— F)Y°F2/3pz, (28)
dt Po

wherel, G, Z are the reaction rate parameters. The reaction zone is treated as a mi
based on the two equations of state, so the state of the reaction zone is described by

P=(1-F)Ps+FP,. (29)



SIMULATING SHOCK TO DETONATION TRANSITION 137

The third-order Adams—Bashforth scheme is used to ugdatedV on the new time level

dF dF\" /dF\"*!
Fn+1 En —_ |5 8 — - — 30
+ <dt) (dt> (dt> ] (30)
Vn+1 —V" = E(Sémrl + 8" — énfl) (31)
12 ’

whereé is given by Eq. (19). If the heat conduction is neglected, the solid phase ene
change in elements is given by

dEs = Psd Vs, (32)
which has the difference form
1
En+l En 2 (Psn+l + Psn) (Vn+1 _ Vn) (33)

Denoting the sum of the first and second term of Eq. (29:asve obtain

W. En+1
Pn+l Pn+1 \S/rHs—l ) (34)
Substituting Eq. (34) into (33) yields
1
ot _ B2 OS(PI 4 P)(V* - v @)

1— 0.5Ws(VHT — vy /ynil

Substituting Eq. (35) into Eq. (34), we obtain the unreacted solid pre§swe the new
time level immediately. The reacted gas pres$yis also obtained by the same steps. Th
acoustic speed is given by

P P, 9P,

czzap 1- F)—+F¥ (36)

5. RESULTS AND DISCUSSION

The shock to detonation transition in an one-dimensional planar symmetry explo
charge is investigated. The initial conditions for the pres$uesnd velocityv are

Pt=0 =0 vt =0 =0.

Corresponding to a 1-mm-thick copper flyer impacting the charge with the velocit
1.0x 10°%, 2.1 x 10%, 2.7 x 10°, and 29 x 10° m/s, respectively, the loads acting on the
surface of the model body are given by

6.29GPa as0<t <057us

1) px=0) = {0, ast > 0.57us

15.7GPa as0<t <057us

@ px=0) = {0’ ast > 0.57us
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TABLE 1

The Parameters Used in the Equation of State and the Reaction Model [15]

A (100 GPa) B (100 GPa) Ris Ros W, A, (100 GPa)
778.1 —0.0503 11.3 1.13 0.8938 5.242
Rag W, Eo (100 GPal)  Eg (100 GPa/)  po (kg/m?) I (sh
1.1 0.34 6.118 103 0.085 171 16 44.6x 10°
By (100 GPa) Rig G (Mbar?s™) z
0.07678 4.2 414.8 1P 2.0
20.0GPa as0<t <057us
A px=0 = -
S ) {O, ast > 0.57us
26.0 GPa as0<t <057us
4 px=0) = -
@ p( ) {O, ast > 0.57us

The material parameters are given in Table 1 [15]. The diffusive coefficient is taken tc
0.125. The profiles of pressure corresponding to the different initial impact pressure
shown in Figs. 4a to 4d. There are eight curves in each figure. The time correspon
to the first curves in Figs. 4a to 4d is80us. The time interval between two neighboring
curves is 12 us. The validity of the calculation is demonstrated by the fact that the fc
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FIG. 4. Shock to detonation transition: pressure profiles. The sustained time of the loading issOBTe
loading pressure is (a) 6.29 GPa, (b) 15.7 GPa, (c) 20.0 GPa, and (d) 26.0 GPa.



SIMULATING SHOCK TO DETONATION TRANSITION 139

0.08 F
0.07 *
0.05 -

0.04 [

d(mm)

0.03 |
002

0.01 |

0: Pl EIVENETE I AT A
0 1 2 3 4 5 6 7 8 9 10

Time( us )

FIG. 5. Position of the plateau versus time. The loading pressure is 26.0&Ra.andy correspond to
the forward position of the pressure, velocity, and acoustic speed plateaus, respectivelyyanahdA to the
backward position of each.

regimes have the same Chapman—Jouguet (C-J) pressure, approximately 33 GPa, &
same detonation velocity, nearly 8220 m/s, after the shock transfers to detonation. T
are two phenomena of interest in Fig. 4. First, as shown in Fig. 4a, the pressure peak mg
rise continuously with increasing time in the transition to detonation. Second, there
pressure plateaus as exhibited in Fig. 4d. Figure 5 shows that the variations in botl
forward and backward positions of the plateau as a function of time are nearly linear thc
there are weak differences between the propagation velocities. It is not difficult to desc
the governing mechanism for the first phenomenon. When the initial shock is not stt
enough, the speed of rarefaction propagating in the explosive charge compacted b
shock wave may be greater than the velocity of the shock front. This results in the rarefa
pursuing and unloading the shock wave. If the rate of heat release is slow, the rarefactior
lead to extinction. How does the plateau set up? Why is it able to be sustained? Figut
shows that the rarefaction is not strong enough to completely attenuate the initial sh
which is the essential condition that causes the plateau to form. Figure 6, correspondi
Fig. 4d, shows the profile of acoustic speed, in whidh the relative acoustic speed anc
u is the velocity of the mass flow. The dashed line is the the detonation velocity vel
time in Fig. 6, which has two intersections A and B with each profile of the acoustic spe
as shown in Fig. 7. The point B is the C-J point, and the space between A and B is
width of the reactive zone. Figure 6 shows that the plateau is located behind the rea
region. Its propagation speed is less than the detonation velocity. It is interesting to
that the profiles of the acoustic speed and mass velocity also have the plateau, as she
Fig. 8. Figure 5 shows that the pressure, mass velocity, and acoustic plateaus are coin
with each other, which means that the propagation speed of the plateaus is identic
the absolute acoustic speed. This is why the plateau is self-sustaining. Do these pla
result from the effect of the FCT clip or come from a physical mechanism? We are not
sure.
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FIG. 8. Shock to detonation transition: mass velocity profiles. The loading pressure is 26.0 GPa.



SIMULATING SHOCK TO DETONATION TRANSITION 141

6. CONCLUDING REMARKS

In this work we have formulated an algorithm based on the combination of 1
Lagrangian finite element discretization with the flux-corrected transport concept. Its
curacy as demonstrated by our numerical experiments makes it a valuable tool for so
the problems of shock dynamics. The forms of the diffusive flux and anti-diffusive fl
are very simple because only the nodal velocity is corrected in this algorithm. We fo
that the simple limiter of Boris and Book [19, 20] is effective in correcting overshoots
undershoots that may develop during the time evolution of the solution. In the numer
experiments simulating the shock to detonation transition and detonation propagatior
found that a self-sustaining plateau region may exist in the pressure, velocity, and acc
profiles. Finally it should be noted that the success of the algorithm is only for the c
of one-dimensional shock dynamics. The generalization from 1-D to 2-D and 3-D is
subject of future work.
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