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Abstract

Dislocation models with considering the mismatch of elastic modulus between matrix and reinforcing particles are used to

determine the effective strain gradient h for particle reinforced metal matrix composites (MMCp) in the present research. Based on

Taylor relation and the kinetics of dislocation multiplication, glide and annihilation, a strain gradient dependent constitutive

equation is developed. By using this strain gradient-dependent constitutive equation, size-dependent deformation strengthening

behavior is characterized. The results demonstrate that the smaller the particle size, the more excellent in the reinforcing effect. Some

comparisons with the available experimental results demonstrate that the present approach is satisfactory.

# 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Due to potential applications of particle-reinforced

metal matrix composites (MMCp), a considerable

attention has been given to investigating the mechanical

behavior of MMCp during the past decades. It is well

known that the mechanical behavior of this class of

materials is significantly influenced by their microstruc-

ture. During the past two decades, several attempts have

been made to explore the relationship between micro-

structure and the deformation behavior in MMCp.

Continuum models including the cell model [1,2], the

modified shear lag theory [3] and homogenization

models [4] provide a dependence of flow stress on

volume fraction of reinforcing particles but not on

particle size. Experimental results and preliminary

theoretical investigations [5�/12], however, have demon-

strated that both particle size and volume fraction exert

an influence. In order to explain the size effect in

materials, several phenomenological strain gradient

plasticity theories were developed by Aifantis [13], Fleck

et al. [14�/16], Chen and Wang [17]. Quite dissimilar to

the phenomenological strain gradient plasticity theories,

Nix and Gao [18] proposed a strain gradient plasticity

theory, the length scale is naturally introduced from the

indentation test results and the Taylor relation. Re-

cently, Gao et al. [19�/21] developed a mechanism-based

strain gradient plasticity theory (MSG) based on a

multiscale framework linking the microscale concept of

dislocations to mesoscale concept of plastic strain and

strain gradient. Furthermore, Fleck and Hutchinson [15]

suggested that an effective strain gradient can be

characterized by h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1hiikhjjk�c2hijkhijk�c3hijkhkji

p
and determined the three effective strain gradient

constants c1, c2 and c3 from experimental results. Due

to scarcity of the related experimental data, Gao et al.

[19] determined the three effective gradient constants c1,

c2 and c3 in their MSG theory from several dislocation

models. However, these dislocation models are mainly

focused on monolithic-phase materials. For particle-

matrix two-phase MMCp, the introduction of reinfor-

cing particles into the metal matrix will obviously

influence the formation and activity of dislocations in

the matrix. In this paper, this effect is considered for
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determining the constants c1, c2 and c3, which char-

acterize the effective strain gradient in MMCp.

In view of the aforementioned observations, disloca-

tion models considering the effects of reinforcing
particles are used to determine c1, c2 and c3, related to

effective strain gradient h , in the present study. Based

on Taylor relation and the kinetics of dislocation

multiplication, glide and annihilation, a strain gradi-

ent-dependent constitutive equation of MMCp is devel-

oped. By using this relationship, a size-dependent

deformation strengthening behavior for MMCp is

characterized. A comparison with the available experi-
mental results demonstrates that the present approach is

satisfactory.

2. Strain gradient dependent constitutive equation

For two-phase MMCp, current experimental investi-

gations have demonstrated that the mechanical behavior

is dependent strongly on the reinforcing particle size [5�/

7]. Obviously, classical constitutive equations containing

no internal length parameters cannot capture size effect.

In order to characterize the size-dependent inelastic

behavior of MMCp, some strain gradient terms or

length parameters should be incorporated into the

classical constitutive equation.

To this end, a strain gradient strengthening law was

developed by Dai et al. [8]. However, in this study, the
kinetics of dislocation multiplication, glide and annihi-

lation are neglected with the assumption that an

incorporation of particles does not change the density

of statistically stored dislocations. Apparently, introdu-

cing reinforcing particles into the metal matrix not only

changes the geometrically necessary dislocation density

but also changes the statistically stored dislocation

density. With addition of reinforcing particles, the
geometrically necessary dislocation will be generated

to accommodate the mismatch of plastic deformation in

the matrix. On the other hand, the incorporation of

reinforcing particles will block the movement of dis-

location and reduce the probability of trapping each

other in a random way, such that the statistically stored

dislocation density in the matrix will be decreased.

Considering these effects, the total dislocation density
of MMCp rT can be written as:

rT�rG�(rS�ra) (1)

where rS is the statistically stored dislocation density in

unreinforced matrix, rG is the geometrically necessary

dislocation density in MMCp, and ra is the diminished

part of the statistically stored dislocation due to the

addition of reinforcing particles.
Assuming that the strengthening of MMCp is attrib-

uted to the deformation resistance induced by the

reinforcing particles. According to Taylor relation, the

flow stress of MMCp can be given by:

sc�
ffiffiffi
3

p
abmm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rG�rS�ra

p
(2)

where mm is the shear modulus of the matrix material, a

a dimensionless parameter, and b is Berges vector. The

flow stress for the unreinforced matrix can be written as:

sm�sYf (o)�
ffiffiffi
3

p
abmm

ffiffiffiffiffi
rS

p
(3)

For convenience, the state of plastic yield can be

defined as:

s�sY; o�oY; f (oY)�1 (4)

Combining Eq. (2) with Eq. (3) results in:�
sc

sm

�2

�1� l̂h�fad (5)

where:

l̂�3a2

�
mm

sm

�2

b (6)

is identified as the material length, fad�/ra/rS is the

percentage of ra in rS, and h is effective strain gradient

and given by Fleck et al. [14] and Gao et al. [19]:

h�rGb (7)

Since b is a material parameter and is positive, it can

be seen, from Eq. (7), that the effective strain gradient h

is in direct proportion to the geometrically necessary

dislocation density rG. In our previous studies [8,9], we
found that the geometrically necessary dislocation

density rG is controlled by the particle diameter dp

and the smaller the particle size the higher the geome-

trically necessary dislocation density. So, it can be

deduced from Eq. (7) that the smaller the particle size

the greater the effective strain gradient. This point will

be demonstrated in details in next section.

According to the principle of the kinetics of disloca-
tion, the value of fad is related to both microstructures

and the extent of plastic deformation. There is not as yet

an appropriate approach to identify it from experimen-

tal results. Because of the difficulty in identifying fad, we

introduce another parameter to characterize it. From

the available experimental data, we find that l̂h is

usually less than one. Therefore, using Taylor expansion

leads to:

1� l̂h�fmd$ (1� l̂h)z (8)

where fmd�/(1�/z )[1�/1/2z/

Þ

lh/�/1/6z (z�/2)(/l̂h)/2] is the

first order and second order terms in Taylor expansion.

Here, the value of z ranges from 0 to 1. The benefit of

Eq. (8) is that z can be determined from the stress�/

strain curves of MMCp with different size of reinforcing

particles. Combining Eq. (5) with Eq. (8) leads to the

following strain gradient-dependent constitutive equa-

tion for MMCp:
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�
sc

sm

�2

�(1� l̂h)z (0Bz51) (9)

It is seen from this strain gradient dependent con-

stitutive equation that strengthening (sc/sm) is con-

trolled by both the effective strain gradient h and the

material length l̂: Furthermore, we find that the higher
in the effective strain gradient the better in strengthening

effect or the greater in the value of (sc/sm). According to

Eq. (7) and the related discussions, we have known that

the smaller the particle size the greater the effective

strain gradient. So, from the strain gradient dependent

constitutive equation, one can reach a conclusion that

the smaller the particle size the better the strengthening

effect for MMCp. Obviously, this qualitative analytical
result is in accordance with the available experimental

observations [5�/7]. It is noted that the incorporation of

strain gradient term into the conventional constitutive

equation in the present approach is based on deforma-

tion mechanism and dislocation models, instead of

adopting a phenomenological assumption [13�/15].

3. Determination of effective strain gradient constants

To characterize size-dependent behavior of MMCp by

making use of the strain gradient-dependent constitutive

equation, the effective strain gradient should be first

determined. According to Ashby’s suggestion [22], the

dislocations stored in metals during straining can be
divided into two kinds: geometrically necessary disloca-

tions and statistically stored dislocations. It has been

demonstrated by Fleck et al. [14] and Gao et al. [19] that

the effective strain gradient is controlled by the geome-

trically necessary dislocations that are required for

compatible deformation of various parts in materials.

Following the suggestion of Gao et al. [19], the effective

strain gradient h is:

h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1hiikhjjk�c2hijkhijk�c3hijkhkji

p
(10)

where the three effective constants (c1, c2, c3) scale the

three quadratic invariants for the incompressible third

order strain gradient tensor hijk . Fleck and Hutchinson

[15] attempted to determine c1, c2 and c3 from experi-

mental data. Due to a scarcity of experiments on strain
gradient effects, Gao et al. [19] determined the three

constants from three typical dislocation models. How-

ever, it is noted that Eq. (10) is initially developed for

monolithic materials. To extend this equation to the case

of discontinuous-reinforced MMCp, the effect of the

reinforcing particles should be included.

In order to characterize the effective strain gradient in

MMCp, the three constants c1, c2 and c3 should be
determined. To this end, three typical dislocation

models: plane strain bending, pure torsion and 2-D

axisymmetric cell, as did by Gao et al. [19] for

monolithic materials, are adopted. However, to deter-

mine c1, c2 and c3, the strain fields and density of

geometrically necessary dislocation should be known.

Since MMCp is a heterogeneous medium, even for
simple cases, the strain fields in MMCp are very difficult

to be obtained. To overcome this difficulty, MMCp is

assumed to be a homogeneous effective medium, which

is equal to the homogeneous matrix medium in a

background of additional geometrically necessary dis-

locations generated by the presence of reinforcing

particles. The total geometrically necessary dislocation

density in MMCp can be written as:

rG�r0
G�r?G (11)

where rG
0 is the geometrically necessary dislocation

density in the unreinforced matrix medium and rG? is

the additional geometrically necessary dislocation den-

sity due to the addition of reinforcing particles. Since

rG
0 and strain fields in the matrix medium are available,

the current task is the determination of rG? . This task

will be completed by using the following three disloca-

tion models, (a) plane strain bending; (b) simple torsion;

and (c) 2-D axisymmetric tension of MMCp cell.

Consider a MMCp under plane bending. Due to a

mismatch of elastic modulus between the matrix and the

particles, a lot of geometrically necessary dislocations

will be generated for accommodating the distortion
deformation. This additional geometrically necessary

dislocation configuration is shown in Fig. 1. The

additional geometrically necessary dislocation density

can be determined by the mismatch deformation volume

in MMCp. According to the deformation-geometry

condition under plane strain bending, the mismatched

volume around a particle in the cell can be determined

as:

DV �
1

2
kfpH3l (12)

Fig. 1. Plane strain bending of composites and a cubical cell of

composites including a particle plane strain bending.
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where H is the length of each cubical cell, fp the volume

fraction of particles, k the curvature, and l is the unit

length of arc. The number of the geometrically necessary

dislocation loops imposed on the surface of a particle to
accommodate the mismatch of plastic deformation n is

given by:

n�
4H3

pd2
pb

kfp (13)

where b is Burgers vector, dp is the diameter of particles.

In this cubical cell, the geometric condition gives:

H3�
1

6fp

pd3
p (14)

The total number of particles Np is:

Np�
6fp

pd3
p

(15)

If the averaged length of each dislocation loop is

taken as w�/pdp/2, then the additional geometrically

necessary dislocation density rG? is:

r?G�Npnw�
2fpkl

bdp

(16)

For the case of unreinforced matrix material under

plane bending, the geometrically necessary dislocation

density rG
0 is written as [19]:

r0
G�

b

k
(17)

According Eq. (11), the total density of geometrically

necessary dislocation in MMCp is given by:

rG�
k

b
�

2fpkl

bdp

(18)

According to Eq. (7), the effective strain gradient in

MMCp is written as:

h�
rG

b
�

�
1�

2fpl

dp

�
k (19)

On the other hand, Gao et al. [19] have shown that the
non-zero components of quadratic invariants of the

third-order strain gradient tensor hijk are:

hiikhjjk�4k2; hijkhijk�4k2; hijkhkji�0 (20)

Combining Eqs. (10), (19) and (20) leads to:

c1�c2�
1

4

�
1�

2fpl

dp

�2

(21)

For simple torsion of a cylinder of radius R shown in

Fig. 2, the mismatched volume around a particle in a

unit cell equal to:

DV �klH3fp (22)

The number of the geometrically necessary disloca-

tion loops imposed on the surface of a particle to

accommodate the mismatch of simple torsion deforma-
tion is given by:

n�
8kH3lfp

pd2
pb

(23)

In the cubical cell, the geometric condition gives:

H3�
1

6fp

pd3
p (24)

If the averaged length of each dislocation loop is

taken to be w�/pdp/2, then the additional geometrically

necessary dislocation density rG? is given by:

r?G�
4fpkl

bdp

(25)

Then the total density of geometrically necessary

dislocation in MMCp is written as:

rG�
k

b
�

2fpkl

bdp

(26)

where k /b is the density of geometrically necessary
dislocations in the unreinforcing matrix material. So,

according to Eq. (7), the effective strain gradient

expressed as:

h�
�

1�
4fpl

dp

�
k (27)

From Eqs. (18), (19), (26) and (27), it is clearly seen

that the smaller the particle size (dp) the higher the

geometrically necessary dislocation density (rG)and the
effective strain gradient (h ). On the other hand, the non-

zero components of quadratic invariants of the third-

order strain gradient tensor hijk on simple torsion are

given by [19]:

Fig. 2. Simple torsion of composites and a cubical cell of composites

including a particle under simple torsion.
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hiikhjjk�0; hijkhijk�4k2; hijkhkji��2k2 (28)

Combining Eqs. (10), (27) and (28) leads to:

c1�
1

2
c2�

1

4

�
1�

4fpl

dp

�2

(29)

Now, consider the case of 2-D representative particle/

matrix cell under axisymmetric loading, the additional

geometrically necessary dislocation configuration is

shown in Fig. 3. If particle is replaced by a void, the

present representative cell is the same as the 2-D

axisymmetric void growth model used by Gao et al.

[19]. So, the displacements, strains and strain gradient
tensor hijk in the present representative cell are the same

as those of the 2-D axisymmetric void growth model,

except that the displacement u0 is now replaced by opa .

Here op is the strain and a is the radius of particles. The

dislocation model for MMCp under 2-D axisymmetric

loading suggests:

c2�c3�
1

4
(30)

Combining Eqs. (21), (29) and (30) leads to:

c1�
1

4

�
1�

2lfp

dp

�2

�
1

6

�
1�

4lfp

dp

�2

�
1

12

c2�
1

6

�
1�

4lfp

dp

�2

�
1

12

c3��
1

6

�
1�

4lfp

dp

�2

�
1

6
(31)

Obviously, the effective strain gradient in MMCp can

be completely determined by making use of Eqs. (10)
and (31). It is noted that the effects of volume fraction

and size of particles on the three constants c1, c2 and c3,

which measure the effective strain gradient are included.

If fp�/0, the result given by Eq. (31) is the same as that

of monolithic materials [19], i.e. c1�/c2�/0, c2�/1/4.

4. Comparisons and discussions

In order to identify the feasibility of the present

approach, comparisons with available experimental data

are made. Lloyd [7] and Ling et al. [5] examined,

respectively, an aluminum alloy matrix reinforced with

silicon carbide particles and observed increases in

strength as the particle size was reduced from 16 to 7.5

mm and from 37 to 3 mm for a fixed particle volume

fraction. Classical plasticity fails to explain the size
dependence because its constitutive model does not

possess an internal material length. In this section, we

use the strain gradient dependent constitutive equation

to model the size-dependent behavior of composite.

To characterize behavior of MMCp, a simple repre-

sentative cell model is adopted. The model consists of a

spherical particle of diameter dp embedded in a con-

centric spherical matrix layer having an outer diameter
dc, as shown in Fig. 4. The radii represents the particle

volume fraction fp in the composite:

d3
p

d3
c

�fp (32)

The particle is elastic, while the matrix is modeled as

an incompressible solid. The system is subjected to

symmetric tension, on the outer surface. In spherical

coordinates, the non-vanishing displacement, strain and

strain gradient are:

uR�
R2

0

R2
u0

oRR��2ouu��2off��2
R2

0

R3
u0

hRRR��2hRuu��2huRu��2hRff��2hfRf��2huuR

��2hffR�6
R2

0

R4
u0 (33)

For this case, the effective strain gradient is calculated

using Eq. (10) and is given by:

h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(72c1�90c2�54c3)

R2
0

R4
u0

R2
0

R4
u0

s
(34)Fig. 3. The representative cell of MMCp under 2-D axisymmetric

force.

Fig. 4. The representative cell model of MMCp.
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By volume integral averaging, the average effective

strain gradient in a representative cell of MMCp can be

written as:

h̄�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(72c1�90c2�54c3)

p oe

ffiffiffiffi
fp

3
p

4dp(1 �
ffiffiffiffi
fp

3
p

)
ln

1ffiffiffiffi
fp

3
p (35)

where oe is the effective strain in the matrix. In order
to minic Lloyd’s (1994) uniaxial tension experiments,

Gao et al. [21] used the surface effective strain as the

effective strain oe in the matrix. Here, we used the

average strain as an effective strain. We find that on

using the strain on the outer surface or on the inner

surface as oe, the errors to the final results can be

neglected. The variation of average effective strain

gradient (/h̄) with dp is shown in Fig. 5. In this figure,
it is demonstrated that the smaller the particle size the

larger the effective strain gradient.

Based on Eqs. (9) and (35), the effect of reinforcing

particle size is shown in Fig. 6. The results demonstrate

that the smaller the size of particles, the higher in the

strain gradient and more in the contribution to strength-

ening effect.

To verify the aforementioned approach, we make
comparisons with the available experimental results

presented in [5�/7]. It is observed, for an incompressible

solid, the spherically symmetric strains are identical to

those in uniaxial compression:

(oRR; ouu; off)��oe

�
1; �

1

2
; �

1

2

�
(36)

It should be pointed out that the spherically sym-

metric stresses could be decomposed into a hydrostatic
part and a uniaxial part:

(sRR; suu; sff)

�(suu; suu; suu)�(sRR�suu; 0; 0) (37)

where the ‘uniaxial stress’ sRR�/suu is the same as the

effective stress se. The hydrostatic part (suu , suu , suu)

does not cause plastic deformation. Under the condition

of neglecting elastic and shear strains, the effective strain

can be written as:

oe�o (38)

Based on Eqs. (9), (35) and (38), the size-dependent

behavior of MMCp can be determined if the constitutive

behavior of the matrix sm is known. In the present

calculations, sm is determined from the experimental

data. The constitutive parameter z of MMCp can be
determined by making use of the experimental data. Fig.

7 presents a comparison of the calculated flow stress-

strain curves with the experimental results for SiCp/

2124Al composites made by Ling et al. [5]. Figs. 8 and 9

provide a comparison of the calculated flow stress strain

curves with the experimental results for SiCp/A356�/T4

and SiCp/A356�/T6 composites [7]. From these compar-

isons, we find that the calculated results based on the
present approach agree well with the corresponding

experimental results.

Actually, for a MMCp, the reinforcing particle de-

form elastically, the plastic deformation occurs only in

the metal matrix. Obviously, the spacing between

particles is an important geometrical parameter for

Fig. 5. The relation between h , and dp.

Fig. 6. The effect of reinforcing particle size in MMCp.

Fig. 7. A comparision of the calculated flow stress�/strain curve with

the related experimental stress�/strain result of SiCp/2124Al compo-

sites.
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controlling an inhomogeneous plastic deformation in

the matrix. Such an inhomogeneous plastic deformation

can be effectively characterized by strain gradient.
According to [23], the average edge�/edge spacing

between particles in MMCp is given by:

lp�
1

2
dp

� ffiffiffiffiffiffi
2p

3fp

s
�

4

p

�
(39)

It is seen from this equation that the smaller the

particle size the smaller the particle spacing if the

volume fraction of the reinforcing particle is kept fixed.
Previous studies have demonstrated that the smaller the

spacing the higher the strain gradient in MMCp [8]. The

high strain gradient will result in a high work hardening

and a high strengthening effect. So, the smaller in the

particle size the better the strengthening effect. Ob-

viously, this simple qualitative analysis and the afore-

mentioned quantitative analysis based on strain gradient

dependent constitutive equation draw an identical con-
clusion. This demonstrates that the present approach is

satisfactory for characterizing the size-dependent beha-

vior of MMCp.

5. Conclusions

In this paper, we have proposed three typical disloca-

tion models for determining three effective strain
gradient parameters. Based on these parameters, the

effective strain gradient in two-phase MMCp is deter-

mined. According to Taylor strengthening relation and

Ashby’s geometrically necessary dislocation concept, a

strain gradient dependent constitutive equation for

MMCp is presented. By using this strain gradient

dependent constitutive equation, the size-dependent

behavior of MMCp is predicted. The results demon-
strate that the smaller the reinforcing particle size, the

higher is strain gradient and the better the strengthening

effect for MMCp. A comparison with the available

experimental results have shown that the present

approach is satisfactory.
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