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Abstract

Potential energy can be approximated by ‘‘pair-functional’’ potentials which is composed of pair potentials and embed-
ding energy. Pair potentials are grouped according to discrete directions of atomic bonds such that each group is repre-
sented by an orientational component. Meanwhile, another kind of component, the volumetric one is derived from
embedding energy. Damage and fracture are the changing and breaking of atomic bonds at the most fundamental level
and have been reflected by the changing of these components’ properties. Therefore, material is treated as a component
assembly, and its constitutive equations are formed by means of assembling these two kinds of components’ response func-
tions. This material model is referred to as the component assembling model. Theoretical analysis and numerical comput-
ing indicate that the proposed model has the capacity of reproducing some results satisfactorily, with the advantages of
physical explicitness and intrinsic induced anisotropy, etc.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Material made up of a large number of atoms is regarded as a many-body system. The binding forces
among atoms determine the material structures and its intrinsic mechanical and electromagnetic properties
[1–3]. The exact treatment of this many-body problem by formulation and solution of Schrodinger wave equa-
tions [1,4] is not tractable because of the large number of atoms involved. By using the adiabatic Born–Oppen-
heimer approximation [1,5], the interatomic potentials that express directly the interactions among atoms have
been proposed. The difficulties in solving many-body system have been reduced greatly. Pair-functional is a
representative model of interatomic potentials. It considers the interaction among the atoms and electrons
[1,3,6–8]. However, the space and time scales in molecular dynamics simulation [9–11] based on interatomic
potentials have been confined for the limited computational power.
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From the viewpoint of continuum mechanics [12,13], material deforms under external actions, and its
mechanical property is directly derived as soon as the rules of energy changing during deformation are known.
However, it is difficult to get these rules in such complex situations. The properties of material are not unal-
terably determined by their average chemical composition but they are to a large extent influenced by their
microstructures. The microstructures of the material change under external actions. With loads continually
increasing, microdefects such as microcracks and microvoids begin to nucleate and grow, and material
mechanical properties degrade accordingly. The process of material degrading has been explored by damage
mechanics [14–18]. The damage constitutive relation is difficult to derive and the corresponding formulation
can be complex, if anisotropic damage and dissipative potentials and internal variables are considered.

Considering the difficulties and merits in continuum mechanics and interatomic potentials, many research-
ers began to set up macroscopic constitutive models directly from interatomic potentials or combine these two
theories, e.g. the quasi-continuum (QC) model [19,20], the virtual internal bond (VIB) model [21] and the rela-
tions between molecular dynamics and micromorphic theories [22,23].

In this paper, the component assembling model has been proposed and extended to damage. Potential
energy due to deformations has been expressed in the form of the sum of pair-functional potentials. In which,
pair potentials has been computed according to discrete directions which are determined by the interactions
among atoms, and the corresponding orientational component has been established, i.e., the sum of pair
potentials parallel to the specified direction is the energy of the corresponding orientational component and
the stiffness contribution of this part of atomic bonds is its stiffness. As a typical 1-D component, the orien-
tational one bears tensile or compressive loadings. Meanwhile, the other kind of component - the volumetric
one has also been proposed from embedding energy. For the density of electronic gas only relating to volume,
the volumetric component is a typical 3-D one and it can bear hydrostatic stress. As macroscopic phenomena
of the changing and breaking of atomic bonds, damage and fracture have been reflected by the changing of
stiffness and state of these components. Particularly, anisotropy has been expressed naturally by the concept
of components. The constitutive equations considering damage have been formulated by assembling these two
kinds of components’ response functions.

The remainder of this paper is organized as follows. In part 2, the proposed model named component assem-
bling one will be derived elaborately. In parts 3, the proposed model of homogeneous and isotropic materials
will be introduced respectively. Quasi-brittle damage is considered in part 4 and the corresponding numerical
simulation will be done in part 5. In the last part, a concise conclusion about the proposed model will be given.

2. Derivation of component assembling model

2.1. Basic kinematic relations

Let eij denote the strain, and the strain along the vector r is expressed in the form
k ¼ eijninj: ð1Þ

Herein, n denotes the directional unit vector of r and ni its ith component. r denotes the length of r, r = jrj, ri

the ith component of r. Thus,
dr ¼ rk ¼ rirj

r
eij: ð2Þ
The density of electronic gas q relates to volume (q decreases as volume expands). For infinitesimal strain,
there is
dq ¼ �eijdijq; ð3Þ

where dij denotes the second order identity tensor. Differentiating Eq. (2), it follows that:
d2r ¼ dðdrÞ ¼ ðninjnknleijeklÞr: ð4Þ

Similarly, there is
d2q ¼ eijekldijdklq: ð5Þ
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2.2. Derivation of component assembling model

The principal view of pair-functional is that the cohesive energy of an atom is determined by the local elec-
tron density at the site into which that atom is placed [1–3,6–8],
Eembedding ¼ F ðqÞ; ð6Þ
where F(q) is referred to as the embedding energy (function), modeling the attractive interaction as a function
of the local electron density q into which the considered atom is placed. Here, the electron density is given by
qi ¼
Xj 6¼i

j

f ðRijÞ: ð7Þ
This function can be interpreted as the charge at the ith nucleus due to the spherical symmetric electronic
charge densities f(R) of the neighboring atoms. Hence, the function f(R) evaluated at the distance
Rij = jRi � Rj j = R(i,j), (i 5 j) tells us exactly how much electronic density bleeds off from site j onto its neigh-
bors. Where Ri denotes the position of the ith nuclear. The embedded atom method [6–8] posits a total energy
of the form,
EexactðfRi; rngÞ ! Eapprox½qðrÞ; fRig� ¼
1

2

Xi6¼j

ij

/ðRijÞ þ
X

i

F ðqiÞ; ð8Þ
herein, the term /(Rij) describes a pairwise isotropic interatomic potential function which is essentially repul-
sive and depends only on the atomic spacing Rij, rn denotes the position of the nth electron. The above equa-
tion may include various parameters and these parameters can be obtained by fitting equation to intrinsic
material parameters such as the elastic constants, crystal structure and cohesive energy, etc.

It is convenient to define zero of energy at initial equilibrium positions. Expanded Eq. (8) by Taylor series,
further progress can be made in trimming down the first term oEtot

oR
� dR by recognizing that the expansion is

built around the equilibrium configuration, and the first term can be eliminated since at equilibrium
oEtot

oR
� dR � 0. Thus, potential energy due to deformation (strain energy) is expressed in the form (the third

and higher derivatives excluded)
U ¼ 1

4

Xa6¼b

ða;bÞ
/00ðRða;bÞÞ½dRða;bÞ�2 þ 1

4

Xa 6¼b

ða;bÞ
/0ðRða;bÞÞd2Rða;bÞ þ 1

2

X
a

F 00ðqðaÞÞ½dqðaÞ�2 þ 1

2

X
a

F 0ðqðaÞÞd2qðaÞ: ð9Þ
When computing for strain energy it should be keep in mind that one is that it needs to run over all pairs of
interactive atoms for pair potentials and the other is that it should run over all atoms for embedding poten-
tials. While computing the total of pair potentials, the number of pair potentials is larger than the number of
atoms in the selected material element, yet the number of directions of interatomic bonds is smaller than the
number of atoms due to periodic crystal configurations. Therefore, pair potentials are grouped according to
directions, microstructures and their evolutions are embodied on energy changing in different directions. This
is the idea of component assembling model. To an appointed unit direction n, an orientational component is
set up accordingly. n denotes the direction of this component and the sum of pair potentials parallel to n in
material is the energy of this orientational one,
EðnÞ ¼ 1

4

XRða;bÞkn
ða;bÞ

/00ðRða;bÞÞ½dRða;bÞ�2 þ /0ðRða;bÞÞd2Rða;bÞ
n o

: ð10Þ
Run over all directions of interactive atoms and set up orientational components accordingly. Then, the
change of pair potentials Up due to deformation is denoted by these orientational components,
U p ¼
1

4

Xa6¼b

ða;bÞ
/00ðRða;bÞÞ½dRða;bÞ�2 þ /0ðRða;bÞÞd2Rða;bÞ
n o

¼
X

n

EðnÞ: ð11Þ
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Therefore, strain energy (density) is written as follows:
U ¼ Up þ
1

2

X
a

F 00ðqðaÞÞ½dqðaÞ�2 þ 1

2

X
a

F 0ðqðaÞÞd2qðaÞ

¼
X

n

EðnÞ þ 1

2

X
a

F 00ðqðaÞÞ½dqðaÞ�2 þ 1

2

X
a

F 0ðqðaÞÞd2qðaÞ: ð12Þ
Considering material element that contains large numbers of grains whose lattice orientations are uniformly
distributed, the properties of the aggregate would exhibit little if any anisotropy. In other words, in large
enough material element, the directions of pair potentials spread all over the whole space, the number of
orientational components tends to infinity, and these components have same characteristic. Eq. (12) has to
be re-expressed in integral form, which will be discussed later. The energy density of the orientational compo-
nent due to deformation is ‘‘the strain energy density of the orientational one’’, and its modulus is deduced
conveniently from this kind of strain energy.

Cauchy–Born hypothesis [1,3] builds a bridge between microscopic movements and macroscopic deforma-
tions. It asserts that the lattice has been subjected to homogeneous deformation locally. Notes
H ðnÞ ¼ 1

2

XRða;bÞkn
ða;bÞ

/00ðRða;bÞÞ½Rða;bÞ�2 þ /0ðRða;bÞÞRða;bÞ
n o

: ð13Þ
Substitution of Eq. (13) into Eq. (12), and thinking Cauchy–Born hypothesis, yields the expression
U ¼ 1

2

X
n

H ðnÞninjnknl þ
1

2

X
a

F 00ðqðaÞÞðqðaÞÞ2 þ 1

2

X
a

F 0ðqðaÞÞqðaÞ
" #

dijdkl

( )
eijekl: ð14Þ
By energy-equivalence and comparing with continuum mechanics [12,13], it is found that
Cijkl ¼
X

n

H ðnÞninjnknl þ
X

a

F 00ðqðaÞÞðqðaÞÞ2 þ
X

a

F 0ðqðaÞÞqðaÞ
" #

dijdkl: ð15Þ
The first item on the right of Eq. (15) is derived from pair potentials, and the last two are from embedding
energy. In fact, H(n) is the elastic modulus of the orientational component parallel to n. Similarly, the next kind
of component – the volumetric one is introduced to represent the contribution of embedding energy, and its
bulk modulus is given by
G ¼
X

a

F 00ðqðaÞÞðqðaÞÞ2 þ
X

a

F 0ðqðaÞÞqðaÞ: ð16Þ
Therefore, the elasticity tensor is rewritten by pair-functional potentials. Eq. (15) is the constitutive equation
of component assembling model, and it can be rewritten as
Cijkl ¼
X

n

H ðnÞninjnknl þ Gdijdkl: ð150Þ
The elasticity tensor satisfies the Voigt symmetry: Cijkl = Cjikl = Cijlk = Cklij. In addition, due to introducing
the volumetric component, it overcomes the constraint of the Cauchy relation, Cijkl = Cikjl.
3. Component assembling model of homogeneous and isotropic materials

Once the formula of pair-functional potentials is specified and the lattice configuration is known, the crystal
properties can be derived directly. Actually, all materials are inhomogeneous and anisotropic, but lots of
materials demonstrate macroscopic isotropy, such as most metals. In particular, for homogeneous material
(the observing length is much larger than the characteristic length), the directions between nucleus spread all-
over the space, and the electron density can be treated as a constant, that is, it admits the representation
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Hðh;uÞDX ¼ Hðh;uÞ sin uDhDu ¼ 1

2

XRða;bÞ2DX

ða;bÞ
/00ðRða;bÞÞðRða;bÞÞ2 þ /0ðRða;bÞÞRða;bÞ
n o

; ð17Þ
herein DX is a little solid angle around the direction(h,u), and
Gðh;uÞ ¼
X

a

F 00ðqðaÞÞðqðaÞÞ2 þ
X

a

F 0ðqðaÞÞqðaÞ
" #

: ð160Þ
It is the bulk modulus of the volumetric component. Because the changes of electronic density do only relate to
volumetric strain, and infinitesimal deformation is considered, Eq. (16 0) becomes
Gðh;uÞ � G: ð1600Þ

The summation form in Eq. (15) is rewritten in integral form
Cijkl ¼
Z p

2

0

Z 2p

0

Hðh;uÞniðh;uÞnjðh;uÞnkðh;uÞnlðh;uÞ sin hdhduþ Gdijdkl: ð18Þ
The above equation is the constitutive equation for homogeneous materials.
The integral of Eq. (18) can be transformed to discrete summation for numerical computing, and the

selected directions turned into the orientational components’ directions. Concretely, the selected representa-
tive directions on the space as the directions of orientational components, the potential energy parallel to
the directions in a certain angle range is computed as the potential energy of the orientational component,
and this part of energy contribution to the stiffness modulus is transformed to the stiffness modulus of this
component,
kðh;/Þ ¼ Hðh;/ÞDXðh;/Þ ¼ Hðh;/Þ sin /DhD/: ð170Þ

Material elasticity tensor is expressed by these two kinds of components
Cijkl ¼
X
ðh;/Þ

kðh;/Þnðh;/Þi nðh;/Þj nðh;/Þk nðh;/Þl þ Gdijdkl ¼
X

s

ksns
i n

s
jn

s
kns

l þ Gdijdkl ð19Þ
or
C ¼
X

s

ksns � ns � ns � ns þ GI2 � I2; ð190Þ
herein C denotes the elasticity tensor, ks and ns the initial intact modulus and unit direction of the sth orien-
tational component respectively. I2 denotes the second-order identity. Anisotropy is embodied intrinsically on
Fig. 1. Configuration of planar discrete orientational components.



Fig. 2. Configuration of spatial discrete orientational components.
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the different moduli of different orientational components. Eq. (19) or Eq. (19) is the constitutive equation of
the proposed model. Figs. 1 and 2 are the configurations of planar and spatial discrete orientational compo-
nents respectively (12 components in Fig. 1 and 46 ones in Fig. 2).

In particular, for homogeneous and isotropic materials, there stands
Hðh;uÞ � H :
Integrating Eq. (18) on the up half a unit sphere, and yields,
Cijkl ¼
2p
15

H þ G
� �

dijdkl þ
2p
15

Hðdikdjl þ dildjkÞ: ð20Þ
Comparing with traditional continuum mechanics, yields the result
H ¼ 15
2p l;

G ¼ k� l;

�
ð200Þ
where k and l denote Lame’s coefficients.

4. Quasi-brittle damage

Fracture of engineering structures is often preceded by considerable changes in the microstructures of the
material they are made of. Examples are microcracking in concrete, fibre pull-out or delamination in compos-
ites and the formation of voids in ductile metals. Accurate failure predictions can only be obtained if this
microstructural damage is taken into account in the fracture modeling. This requirement has led to the devel-
opment of so-called local or continuum approaches to fracture, in which fracture is regarded as the ultimate
consequence of the material degradation process [24,25]. In these methods, the degradation is often modeled
using continuum damage mechanics [14,15,17,18,25–27]. Continuum damage theories introduce a set of field
variables (damage variables) which explicitly describe the local loss of material integrity. A crack is repre-
sented by that part of the material domain in which the damage has become critical, i.e. where the material
cannot sustain stress anymore. Redistribution of stresses results in the concentration of deformation and dam-
age growth in a relatively small region in front of crack tip. It is the growth of damage in this process zone
which determines in which direction and at which rate the crack will propagate. Crack initiation and growth
thus follow naturally from the standard continuum theory, instead of from separate fracture criteria.

Microstructure change and damage by fracture are related to the breaking of atomic bonds. The orienta-
tional component is an abstract of atomic bonds. When atomic debonding emerges, the corresponding orien-
tational component changes their mechanical properties e.g. stiffness. The more atomic debonding occurs and
the more stiffness changes,
D ¼ 1:0� k0

k
; ð21Þ
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where kand k
0
denote the initial and instantaneous(damaged) secant stiffness of the component respectively, D

its damage factor. A scalar value is enough for a 1-D component, it is a microscopic value (however, for mate-
rial element, its constitutive is a typical fourth order tensor, as the following Eq. (27)). Meantime, as a typical
1-D component, the orientational one has simple constitutive relation, it is expressed as follows:
f ¼ ð1� DÞkk; ð22Þ
herein f denotes the stress of the component and k its strain. Take n as the direction of the component. There is
k = eijninj, and Eq. (22) becomes
f ¼ ð1� DÞkeijninj ð220Þ
and its rate form is
_f ¼ ð1� DÞkninj _eij � kninjeij
_D: ð2200Þ
The stress contribution of single orientational component is rewritten as
rij ¼ fninj: ð23Þ
For simplicity, the stiffness G can be regarded as a constant during deformation. Meanwhile, the hypothesis
that damage is never healed up has been adopted,
0 6 D 6 1; _D P 0: ð24Þ
The damage of the orientational component has been treated as a function of deformation history kh (the maxi-
mum/minimum strain in whole deformation process):
D ¼ DðkhÞ: ð25Þ
Consider the notation
dD
dkh
¼

dD
dkh
; when k ¼ kh and k _k > 0;

0; other conditions:

(
ð250Þ
It follows that:
_D ¼ dD
dkh

_k: ð26Þ
Substitution of Eqs. (26) and (22) into Eq. (23) and considering the volumetric component, yields the material
damage constitutive equations
_rij ¼
XN

s¼1

ð1� DsÞks � ksks dD
dkh

� �s� �
ns

i n
s
jn

s
kns

l

� �
þ Gdijdkl

( )
_ekl ¼ Cijkl _ekl: ð27Þ
Compared with other anisotropic damage models [15–18,25–27], the proposed one is also anisotropic. In addi-
tion, its elasto-damage stiffness is intrinsic symmetry and the artificially symmetrical treatments in traditional
anisotropic damage models are no longer needed. The evolutions of these components are very important in
practice. In general, these evolutions can be obtained by fitting experiment data, the methods about it will be
discussed extensively in the future.

5. Numerical example

In this part, the capacities of the present model will be analyzed preliminarily by an example.
In this example, the field will be integrated numerically by 2 · 2 points Gauss integration, and quadrilateral

element with 4 nodes is adopted. A thin plate of the length L = 100 mm and the width d = 10 mm will be ana-
lyzed under tensional loading, the thickness of the plate t = 1 mm.For simplicity, a plane stress situation is
assumed. The planar discretization of orientational components illustrates as Fig. 1. Young’s modulus
E = 20,000 N/mm2 and Poisson’s ratio m = 1/3, see Fig. 3. In order to trigger localization, the Young’s mod-



Fig. 3. Two-dimensional plate with imperfection-geometry.
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ulus has been reduced by 5% in a l = 10 mm wide zone in the middle of the plate, see also Fig. 3. The system is
modeled by 20 · 2, 20 · 4 and 40 · 4 elements, respectively. For simplicity, the stress-strain curve of orienta-
tional components is illustrated by Fig. 4, and Fig. 5 is the corresponding damage–strain curve. The volumet-
ric component is treated as a constant. The load–deflecting curve is shown in Fig. 6, and the evolution of
longitudinal strain distribution in plate with imperfection is illustrated in Fig. 7 (a, 20 · 2; b, 20 · 4; c,
40 · 4). From which, the phenomenon that the strain begins to localize along with load increasing has been
found, and the strain distributions are different considering different meshes even under the same loads.

It is well-known, the incorporation of damage into a finite element analysis without special tech-
nique [28–38] results in pathologically mesh sensitivity. This occurs because, as the mesh is refined, there is
a tendency for the damage zone to localize to a zero volume. On the other hand, from the viewpoint of
Fig. 4. Stress vs. strain (r–e) curve of the orientational component.

Fig. 5. Damage vs. strain (D–e) curve of the orientational component.



Fig. 6. Two-dimensional plate with imperfection – load–deflection curves.

Fig. 7. Evolution of longitudinal strain distribution in plate with imperfection (a, 20 · 2; b, 20 · 4; c, 40 · 4).
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mathematics, damage changes the type of governing equations, e.g. elliptic equations to hyperbolic ones in
statics and reverse in dynamics [29–33]. Mesh sensitivity leads to the prediction of structural failure with zero
energy dissipation, which is physically impossible. For overcoming these difficulties, a simple but powerful
method is by incorporating implicit strain gradient [29–33]. Eq. (25) is modified as
D ¼ Dð�khÞ; ð28Þ

where �kh denotes the non-local component’s strain history, and it correlates with the local strain history kh by
�kh � cD�kh ¼ kh; ð29Þ

the internal length scale is preserved in the gradient coefficient c, which is of the dimension length squared. D
denotes the Laplacian operator.

As shown in Figs. 6 and 7, for given imperfection, as this example, its load–deflecting curve changes little
and the width of strain localization is same for different mesh sizes. The proposed model works like non-local
[32,33] or strain gradient ones [29,31–35], it can be interpreted as follows. In component assembling model,
damage is defined on component but not representative material element (RVE), that is to say, even one or
more components damage but the others do not, according to Eq. (27), its governing equation keeps its type
unchanged. On the contrary, due to damage and its evolution defined on RVE, the governing equations of
classical continuum damage models are prone to change their types and lead to mesh sensitivity. The compo-
nent assembling model helps to numerical robustness.
6. Conclusions

A new material model named component assembling one has been proposed based on pair-functional the-
ory. In which, two kinds of components – the orientational and volumetric ones have been derived from pair
potentials and embedding energy respectively. As a typical 1-D component, the orientational one can bear ten-
sile or compressive load. But, the volumetric component is a typical 3-D component and it can bear hydro-
static-pressure. Differing with continuum mechanics, the basic researched element in the proposed model is
not RVE but two kinds of components. Moreover, these components are re-division of RVE according to dif-
ferent physical mechanisms. Material has been treated as a component assembly, and its constitutive equa-
tions have been formed by assembling these all components’ response functions.

The proposed model has been developed for quasi-brittle damage. In which, anisotropy and its evolution
have been incorporated appropriately via the component concept. Theoretical analysis and numerical comput-
ing indicate that the proposed model has the capacity of re-expressing the generalized Hooke’s law and repro-
ducing some results satisfactorily, with the advantages of great conceptual simplicity, physical explicitness,
and intrinsic induced anisotropy etc. In addition, the proposed model has the capacity of eliminating mesh
sensitivity just like non-local and implicit strain gradient models do.
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