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The effects of the unresolved subgrid-scale~SGS! motions on the energy balance of the resolved
scales in large eddy simulation~LES! have been investigated actively because modeling the energy
transfer between the resolved and unresolved scales is crucial to constructing accurate SGS models.
But the subgrid scales not only modify the energy balance, they also contribute to temporal
decorrelation of the resolved scales. The importance of this effect in applications including the
predictability problem and the evaluation of sound radiation by turbulent flows motivates the present
study of the effect of SGS modeling on turbulent time correlations. This paper compares the
two-point, two-time Eulerian velocity correlation in isotropic homogeneous turbulence evaluated by
direct numerical simulation~DNS! with the correlations evaluated by LES using a standard spectral
eddy viscosity. It proves convenient to express the two-point correlations in terms of spatial Fourier
decomposition of the velocity field. The LES fields are more coherent than the DNS fields: their
time correlations decay more slowly at all resolved scales of motion and both their integral scales
and microscales are larger than those of the DNS field. Filtering alone is not responsible for this
effect: in the Fourier representation, the time correlations of the filtered DNS field are identical to
those of the DNS field itself. The possibility of modeling the decorrelating effects of the unresolved
scales of motion by including a random force in the model is briefly discussed. The results could
have applications to the problem of computing sound sources in isotropic homogeneous turbulence
by LES. © 2002 American Institute of Physics.@DOI: 10.1063/1.1483877#
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I. INTRODUCTION

Constructing subgrid scale~SGS! models for large eddy
simulation ~LES! depends on theoretical understanding
how the unresolved scales of motion influence the resol
scales. The most extensively applied class of SGS mode
based on the eddy viscosity assumption: like the molecu
scale thermal fluctuations, the effects of the subgrid sc
motion on the resolved scales can be modeled by a visco
however, unlike the molecular viscosity, this eddy viscos
depends on the filter size and on certain properties of
resolved scales. The Smagorinsky model1 is the classic eddy
viscosity model. Although it is no longer often applied in i
original form, it is the basis of much more commonly us
models like the dynamic model,2 various ‘‘mixed’’ models,3,4

and more specialized spectral SGS models for homogen
turbulence.5,6

Eddy viscosity models attempt to describe the transfe
energy between the resolved and unresolved scales. Bu
subgrid scales not only act as a sink and source of ene

a!Author to whom all correspondence should be addressed; electronic
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they also contribute, through nonlinear interactions, to
temporal decorrelation of the resolved scales. Tempo
decorrelation is important in the sound radiation problem
which the turbulent time scales are directly related to
frequency of radiated sound.7 The increasing application o
LES to compute sound sources8,9 and unsteady aerodynam
flows more generally, suggests that the ability of LES
predict the temporal properties of turbulence will becom
increasingly important. Other problems in which time corr
lation properties have an important role are particle disp
sion and the predictability problem.10,11

This paper compares the Eulerian time correlations
spatial Fourier amplitudes computed by direct numeri
simulation ~DNS! with the time correlations computed b
LES in the basic problem of homogeneous isotropic tur
lence. This problem permits the application of a spec
eddy viscosity. The Chollet–Lesieur model5 is used because
it reproduces the energetics of the resolved scales well.
conclude that the LES fields are more correlated than
DNS fields: their time correlations decay more slowly at
resolved scales of motion and their integral scales and
croscales are larger than those of the DNS field.

Filtering alone can have significant effects on many t
il:
6 © 2002 American Institute of Physics
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bulence quantities; however, it is evident that filtering can
alter the time correlations of Fourier amplitudes: ifu(k,t)
denotes a Fourier mode of the DNS field, then the co
sponding filtered mode is

ū~k,t !5F~kukc!u~k,t !, ~1!

whereF(kukc) is the Fourier transform of the filter functio
and the cutoff wave numberkc is proportional to the inverse
filter width. Regardless of the analytical form of the trans
function F(kukc), the normalized time correlations of th
exact and filtered fields trivially satisfy

^u~k,t !"u~2k,t8!&

^u~k,t !"u~2k,t !&
5

^ū~k,t !"ū~2k,t8!&

^ū~k,t !"ū~2k,t !&
~2!

provided F(kukc)Þ0. It will be shown through numerica
simulations that the time correlations of DNS and LES fie
can differ significantly; in view of Eq.~2!, the difference
cannot be the result of filtering. It is natural to attribute t
difference to the decorrelating effect of nonlinear interactio
between the resolved and unresolved scales. A SGS m
which correctly models the energy transfer between the
solved and unresolved scales of motion may not model
decorrelating effect and may consequently overpredict
coherence of the resolved scales.

The question therefore arises of how to adapt SGS m
els to the requirement of predicting time correlations. Pre
ous studies of the predictability problem12–14have suggested
including a random force in the SGS model. The possibi
that a random force could be chosen so that the time co
lation predictions are improved is discussed briefly.

While intuitively plausible, it should be stressed that t
increased correlation of LES fields is a property of Navie
Stokes dynamics. In Burgers turbulence, the modes bec
phase-locked as shocks develop; therefore, reducing
number of modes could make the resolved velocity field l
correlated than the true velocity field. This comparison ca
attention to a connection between phase correlations
temporal correlation properties of nonlinear fields. Phase
lations in the LES field will not be the same as those in
DNS field unless the SGS model somehow restores th
The altered phase relations may either promote tempora
herence, as we find in Navier–Stokes dynamics, or reduc
as we suggest for Burgers turbulence.

II. SUBGRID SCALE MODELS OF ENERGY
TRANSFER

We consider time-stationary homogeneous isotropic
bulence, for which the Fourier representation is a natu
setting to study SGS models. Following Kraichnan’s origin
analysis,15 the problem of SGS modeling is best formulat
in terms of the steady-state evolution equation:

2nk2Q~k!5F~k!1T~k!, ~3!

wherek5uku and

Q~k!5^ui~k,t !ui~2k,t !& ~4!
Downloaded 29 Apr 2009 to 159.226.231.80. Redistribution subject to AIP
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is the single-time correlation function,n is the kinematic
viscosity, F(k) is the correlation of a large-scale forcin
which maintains the turbulence in a steady state, andT(k) is
the nonlinear transfer defined by

T~k!5ImFPimn~k!E dp dq d~k2p2q!

3^um~p,t !un~q,t !ui~2k,t !&G . ~5!

In Eq. ~5!,

Pimn~k!5kmPin~k!1knPim~k!,

where

Pim~k!5d im2kikmk22.

For simplicity, we follow Kraichnan15 and only consider
the sharp Fourier cutoff filter,

F~kukc!5H 1 for k<kc

0 for k>kc
. ~6!

Because of this trivial analytical form, we need not disti
guish the original and filtered velocity fields by special n
tation.

Filtering decomposes the energy transfer into the t
parts

T~k!5T,~kukc!1T.~kukc!, ~7!

where

T,~kukc!5ImFPimn~k!E
p,q<kc

dp dq d~k2p2q!

3^um~p,t !un~q,t !ui~2k,t !&G ~8!

is the part of the total energy transfer due to interactio
among resolved modes alone and

T.~kukc!5T~k!2T,~kukc! ~9!

represents the effect of unresolved interactions, in which
ther p>kc or q>kc . In this setting, Kraichnan15 introduced
the spectral eddy viscosity

n t~kukc!52
T.~kukc!

2k2Q~k!
, ~10!

so that the balance equation, Eq.~3!, becomes

2@n1n t~kukc!#k
2Q~k!5F~k!1T,~kukc!. ~11!

This equation can be understood as a formal statement o
eddy viscosity assumption. It shows that an eddy visco
must be scale- and cutoff-dependent.

To make the model determinate, a formula expressingn t

in terms of the resolved field is required; in view of Eq.~10!,
this is equivalent to modeling the unresolved energy tran
T. in terms of the resolved field. One standard model5,6 is

n t~kukc!5n t
1~kukc!AE~kc!

kc
, ~12!

where
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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2188 Phys. Fluids, Vol. 14, No. 7, July 2002 He, Rubinstein, and Wang
n t
1~kukc!50.26719.21 exp~23.03kc /k!. ~13!

In applying Eq.~12!, the quantityE(kc) is evaluated from
the LES, not from the DNS. This model usually gives
satisfactory account of energy transfer in homogene
turbulence.5 The question which we propose is whether th
model also predicts turbulent time correlations well. Th
question will be discussed using comparisons with DNS
closure arguments.

III. NUMERICAL CALCULATION OF TIME
CORRELATIONS

DNS and LES of isotropic homogeneous turbulen
were performed using a standard pseudospectral Gale
method.16 In DNS, the three-dimensional Navier–Stok
equations were solved on a cube of sideLB52p, with peri-
odic boundary conditions in the three coordinate directio
The flow domain is discretized uniformly intoN3 grid points
(N5128), which defines the wave number components
Fourier space askj56nj (2p/LB)[6nj , wherenj50, 1,...,
N/221 for j 51, 2, 3. Aliasing errors were removed by tru
cating the velocity field at higher wave numbers,uku.kmax

with kmax5N/3 ~the two-thirds truncation method!. Although
relatively low resolution for computing spatial statistics,
1283 simulation should give adequate representation of t
correlations.17 The initial condition was an isotropic Gaus
ian field with energy spectrum

E~k,0!}~k/k0!4e22~k/k0!2
, ~14!

wherek054.68 is the wave number at which the maximu
of the energy spectrum occurs. A stationary turbulence
generated by maintaining constant total energy18 in each of
the first two wave number shells~0.5,k<1.5 and 1.5,k
<2.5!, with the energy ratio between the two shells cons
tent with k25/3. The energy levels were 0.555 440 a
0.159 843, respectively, for these first two wave num
shells.

The spatial resolution of a spectral simulation is oft
monitored by the value ofkmaxh, whereh[(n3/e)1/4 is the
Kolmogorov microscale. This quantity should be greater th
one for the smallest scales of the flow to be resolved.18 The
value ofkmaxh was typically larger than 1.05 in our simula
tion.

The Fourier coefficients of the flow velocity were a
vanced in time using a second-order Adams–Bashfo
method for the nonlinear term and an exact integration
the viscous term.16 The time step was chosen to ensure t
the CFL number was 0.5 or less for numerical stability a
accuracy.18

The resulting parameters of the DNS simulation a
listed in Table I.

A mesh resolution of 643 was used in the LES compu
tations. Scales smaller than the grid spacing were mod
using the Chollet–Lesieur model~12!, ~13!. The same forc-
ing method used for DNS was applied to the first two wa
number shells to maintain the energy in the resolved field
the LES. All other parameters in the LES are the same a
the DNS. The spectral codes for the DNS and LES w
Downloaded 29 Apr 2009 to 159.226.231.80. Redistribution subject to AIP
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developed and implemented on a Beowulf 96 CPU clus
computer at ICASE, NASA Langley Research Center, us
the parallel fast-Fourier transformation algorithm.19 Figure 1
shows the energy spectra for the DNS and LES.

The correlation of Fourier amplitudes in the DNS field

C~k,t!5^u~k,t1t!"u~2k,t !& ~15!

is evaluated at a reference timet after which the simulated
flow becomes statistically stationary. The analogous quan
for the LES field is

C~kukc ,t!5^uLES~k,t1t!"uLES~2k,t !&. ~16!

Subsequently, the time correlation for each wave num
shell uku5k is computed as a function of time lagt. The
ensemble averaging is performed by averaging over the w
number shelluku5k. This procedure allows us to obtai
smooth correlation functions.

IV. SIMULATION RESULTS

The figures present the normalized time correlations

c~k,t!5
^u~k,t1t!"u~k,t !&

^u~k,t !u~2k,t !&
,

~17!

c~kukc ,t!5
^uLES~k,t1t!"uLES~k,t !&

^uLES~k,t !uLES~2k,t !&
.

Figure 2 shows the time correlations of the DNS and L
fields for wave numbersk57, 12, 15, 18, spanning a rang

FIG. 1. Energy spectra for the DNS~solid line! and LES~dash-dotted line!,
whereL is the integral scale andE0 total energy.

TABLE I. DNS parameters and statistical quantities of the runs.

Viscosity n50.002
Average dissipation rate e50.169
rms fluctuating velocity u850.851
Integral length scale L f51.55
Taylor-scale Reynolds number Rl5108.5
CFL number 0.38
Spatial resolution parameter kmaxh51.05
Velocity derivative skewness 20.47
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Time correlationc(k,t) vs time lagt/ts . The solid line corresponding to the LES field and the dashed line to the DNS field:~a! k57, ~b! k512, ~c!
k515, ~d! k518.
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of scales from the integral scale to the upper end of
resolved scale range. The time separation is normalized
ts5(urmskmin)

21 where urms is the rms fluctuating velocity
and kmin51 is the largest scale in the system. This norm
ization is not essential to the numerical comparisons. T
conclusions are evident: first, both fields decorrelate m
quickly at small scales than at large scales and second
time correlations of the LES fields decay more slowly th
those of the DNS fields.

In Fig. 3, these results are all plotted together, with
time axis defined by the scale-dependent similarity varia
t* (k)5turmsk. This normalization causes excellent collap
of the correlation functions. The dynamic explanation h
been discussed thoroughly by Kaneda.20 We note only that
collapse onturmsk is due to the fact that the Eulerian tim
correlations are dominated by the sweeping effect which
characterized by the value ofurms. This graph again make
evident the slower decorrelation of the LES field compa
to the DNS field.
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FIG. 3. Time correlationc(k,t) vs time lagt normalized by the sweeping
time urmsk. The upper curves are from the LES and lower curves from
DNS. Other details are as in Fig. 1.
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The time correlation function is often described by tw
scalar properties, theintegral scaledefined by

tM~k!5E
0

`

dt c~k,t! ~18!

and themicroscaledefined by

tm~k!2252
d2

dt2 c~k,t!ut50 . ~19!

The integral scaletM(k) estimates the time required for th
amplitude of a mode with wave numberk to become decor-
related with itself; the microscale is related to the ze
crossing rate of the time signal. The corresponding quant
for the LES field will be denoted bytM(kukc) andtm(kukc).

In Fig. 4, the microscales of the DNS and LES fields a
compared over the range of wave numbers computed in
simulations. The plot shows that both microscales vary w
wave numberk ask21, consistent with thesweeping hypoth-
esisfor Eulerian time correlations20,21 and with the collapse
of the correlation functions shown in Fig. 2. The DNS a
LES microscales are seen to be approximately proportio
with

tm~kukc!

tm~k!
'1.8 ~20!

over the entire range of wave numbers considered. The
microscale always exceeds the DNS microscale.

The same comparison for the integral scales is mad
Fig. 5, which shows the ratiotM(kukc)/tM(k) as a function
of wave numberk. Least-squares fitting of the data gives

tM~kukc!

tM~k!
'1.6. ~21!

The LES integral scale also exceeds the DNS integral sc
Comparison between Eqs.~21! and ~20! shows that the mi-
croscale is more sensitive to filtering than the integral sc

FIG. 4. Time microscales for the DNS and LES: solid linetm(kukc) ~LES!,
dashed linetm(k) ~DNS!, and dotted linek21.
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V. THE EFFECTS OF SUBGRID-SCALE MODELING
ON TIME CORRELATION

The Taylor expansion technique17,20 makes possible a
simple analysis of the effects of eddy viscosity on the tim
microscale. To facilitate the analysis, we are assuming
initial DNS and LES velocity fields are identical and th
question under investigation concerns the subsequent ev
tion under DNS and LES. The governing equations for
Navier–Stokes fields are

S ]

]t
1nk2Dui~k,t !52

i

2
Mimn~k,p,q!um~p,t !un~q,t !

1 f i~k,t !, ~22!

where

Mimn~k,p,q!5Pimn~k!E dp dq d~p1q2k! ~23!

and f i(k,t) is the large-scale random forcing which vanish
except at the forcing scales.

The governing equations for the LES fields are

S ]

]t
1@n1n t~kukc!#k

2Dui~k,t !

52
i

2
Mimn

, ~k,p,q!um~p,t !un~q,t !1 f i , ~24!

where

Mimn
, ~k,p,q!5Pimn~k!E

p,q<kc

d~k2p2q!dp dq ~25!

restricts the nonlinear interaction to resolved modes alon
The Taylor expansion of the time correlation~15! has the

general form

C~k,t!5C0~k!1 iC1~k!t2C2~k!t2/21¯ ,
~26!

Cn~k!5~2 i !nK ]nu~k,t !

]tn u~2k,t !L .

FIG. 5. The ratio of integral scalestM(kukc) ~LES! andtM(k) ~DNS! as a
function of wave numberk. The solid line is a least-squares fit.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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The time derivatives of the Navier–Stokes fields can be
culated from Eq.~22!. For negligible viscosityn and wave
numbersk far from the forcing frequency, we obtain20

C0~k!5Q~k!, ~27!

C1~k!52
i

2
T~k!, ~28!

C2~k!5 1
4Mimn~k,p,q!Mirs~k,p8,q8!

3^um~p!un~q!ur~p8!us~2q8!&. ~29!

Note that

tm~k!25
C0~k!

C2~k!
. ~30!

In Eq. ~29!, the result for time stationary turbulence

^ü~k,t !u~k,t !&52^u̇~k,t !u̇~k,t !& ~31!

is applied.
In a steady state,

iC1~k!5 K dui~k,0!

dt
ui~2k,0!L

5
1

2

d

dt
^ui~k,0!ui~2k,0!&

50. ~32!

In view of Eq. ~28!, this result is equivalent toT(k)50: a
steady state implies zero net transfer into modes outside
production and dissipation ranges.

Similarly, the Taylor coefficients of time correlations
the LES velocity field, defined by analogy with Eq.~26! by

C~kukc ,t!5C0~kukc!1 iC1~kukc!t2C2~kukc!t
2/21¯

~33!

can be obtained from Eq.~24! as

C0~kukc!5Q~kukc!, ~34!

C1~kukc!52
i

2
~T,~kukc!22n t~kukc!k

2Q~kukc!!, ~35!

C2~kukc!5
1

4
Mimn

, ~k,p,q!Mirs
, ~k,p8,q8!

3^um~p!un~q!ur~p8!us~q8!&

2n t~kukc!k
2T,~kukc!

1n t~kukc!
2k4Q~kukc!. ~36!

In an ideal LES calculation, we would have

Q~kukc!5Q~k! for k<kc . ~37!

Again,

tm~kukc!
25

Q~k!

C2~kukc!
. ~38!

In the case of LES, the requirement thatC1(kukc)50 in a
steady state is equivalent to Kraichnan’s definition of
Downloaded 29 Apr 2009 to 159.226.231.80. Redistribution subject to AIP
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spectral eddy viscosity, Eq.~10!. Regardless of the definition
of v t(kukc), energy transfer among the resolved modes
justs itself so thatC1(kukc)50.

Equation ~36! can be simplified using the resu
C1(kukc)50: in view of Eq.~35!,

C2~kukc!5C2
,~kukc!2n t~kukc!

2k4Q~k!, ~39!

where we have introduced the quantity

C2
,~kukc![

1
4Mimn

, ~k,p,q!Mirs
, ~k,p8,q8!

3^um~p!un~q!ur~p8!us~q8!&, ~40!

which represents the effect of interactions among resol
modes alone. Note thatv t always decreasesC2(kukc), hence
it always increases the time microscale.

The quasinormality hypothesis results in

C2
,~kukc!5 1

2Mimn
, ~k,p,q!Mirs

, ~k,p8,q8!

3Pmr~p!Pns~q!Q~p!Q~q!. ~41!

The geometric factor in Eq.~41! is positive,22 consequently

C2
,~kukc!,C2~k!. ~42!

Combining Eqs.~42! and ~39!,

C2~kukc!,C2~k!. ~43!

If the SGS model correctly predicts the energy levels of
resolved scales, we can divide Eq.~43! by Q(k) and con-
clude that

tm~kukc!.tm~k! ~44!

as observed in the simulations. Thus, closure is consis
with the observation that the time microscale in the LES fi
is always larger than the microscale in the DNS field. T
closure result, Eq.~41!, also implies thatC2(kukc) is an in-
creasing function ofkc ; as expected, increasing the resol
tion of the LES must improve the predicted microscale.

Because it is difficult to explore the effects of varyin
simulation parameters through DNS, it is useful to supp
ment the DNS with closure analysis. The most fundamen
property of the integral definingC2(k) is that if it is evalu-
ated on a cutoff Kolmogorov correlation function of the for

Q~k!5H CKe2/3k25/3/~2pk2!, k>k0

Q0~k!, k<k0
, ~45!

whereQ0(k) is an arbitrary function ofk which is bounded
neark50, then under the closure hypothesis of quasinorm
ity, whenq'k0'0 and consequentlyp→k,

C2~k!;e4/3k3Pimn~k!Pirn~k!Pmr~k!k0
23/2k211/3 ~46!

diverges for fixedk ask0→0. Note that

c2~k!5
C2~k!

Q~k!
;e2/3~k/k0!2/3k4/3 ~47!

also diverges in this limit.
This is the well-known divergence property of Euleria

time correlations discovered by Kraichnan.23 It implies that
if k@k0 , we can expect that the integrals defining bo
C2

,(kukc) andC2(k) will be dominated by the behavior ofQ
 license or copyright; see http://pof.aip.org/pof/copyright.jsp



e

r
y
re

ig

e

ar

n

hi
on

e

e
i
e

er,

e
at
er

hat
the
q.

e
ap-
is

ce,
is
e
In

nds
be

by
n

ds
used
e

tly.
s in
e-

acy
w

is
m,
e
ince
ch;
li-

cal-
es
cult
nd

a-

2192 Phys. Fluids, Vol. 14, No. 7, July 2002 He, Rubinstein, and Wang
near the peak of the energy spectrum. If alsok!kc , then
C2(k)'C2

,(kukc). Thus, if k0!k!kc , C2(k) will be rela-
tively unaffected by mode truncation, and should be w
predicted by LES.

In a finite system in whichk0 is fixed, C2(k) is finite,
becauseQ0(q) approaches zero whenq→0. For fixedk0 , if
k'k0 , then Eq.~46! shows that the contribution toC2(k)
from scalesq'0 is of orderk0

2/3. Similarly, Eq.~47! shows
that the contribution toc2(k) from these scales is of orde
k0

4/3. Thus, C2(k) and c2(k) are no longer dominated b
contributions from smallq; instead, these contributions a
small, and the effect of the cutoff atkc can be stronger.

The conclusion of these two arguments is that in h
Reynolds number turbulence withk0!kd , wherekd is the
inverse Kolmogorov scale, the time microscale can be w
predicted by LES for scalesk satisfyingk0!k!kc,kd , but
the effect of mode truncation can be stronger ifk'k0 or if
k'kc , whether the Reynolds number is large or not. In p
ticular, in low Reynolds number turbulence in whichk0

'kd , the effect of the cutoff can always be significant.
To quantify the effect of proximity to the cutoff scales o

time correlations, we evaluated the integral of Eq.~41! nu-
merically for the von Ka´rmán spectrum

Q~k!5Ce2/3k0
25/3~k/k0!4@11~k/k0!2#217/6k22, ~48!

where k0 defines the peak of the energy spectrum. In t
integration, the wave vectors are restricted by the conditi
p, q,kc . The problem has two parametersk0 , kc ; these
cases are considered in Table II.

The results are given in Table III.
The results shown in Table III agree with the abov

given arguments: the cutoff effects are largest whenk0 is
largest and increase ask approachesk0 ; we also note that the
time microscale for scalesk,k0 below the integral scale ar
even more strongly affected by the cutoff. The results
Table III do not include the effect of eddy viscosity: for th

TABLE II. The wave numbersk0 , k, andkc .

k0 k kc

0.1, 1.0, 4.0 8322n for 0<n<8 16, 32, 64, 128

TABLE III. The effects of proximity to the cutoff scales on time correl
tions.

k/k0 C2(ku32)/C2(ku16) C2(ku64)/C2(ku32) C2(ku128)/C2(ku64)

k054.0
2.000 1.107 1.062 1.037
0.500 1.137 1.073 1.041
0.125 1.146 1.075 1.042

k051.0
2.000 1.037 1.022 1.013
0.500 1.041 1.024 1.014
0.125 1.042 1.025 1.016

k050.1
2.5000 1.007 1.004 1.002
1.2500 1.007 1.004 1.003
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Chollet–Lesieur model—Eq.~12!—this effect, which is pro-
portional to the energy spectrum at the cutoff wave numb
is small and is consequently not shown.

None of the ratios in Table III is close to the valu
c2(k)/c2(kukc)'1.8 found in our DNS. The reason is th
the von Kármán spectrum happens not to apply well to eith
the DNS or LES spectrum. Modeling these spectra by

EDNS~k!5H 0 for k<1.0

0.7k21.67 for 1.0<k<15.3

700k24.20 for 15.3<k<60.0

,

~49!

ELES~k!5H 0 for k<1.0

0.7k21.67 for 1.0<k<11.5

5000k25.30 for 11.5<k<30.0

numerical evaluation of the ratioc2(k)/c2(kukc) gave values
in the range 1.6–2.0.

The disparity in the ratiosc2(k)/c2(kukc)'1.0– 1.15
found in Table III andc2(k)/c2(kukc)'1.8 for the numerical
simulations is surprising. However, we should consider t
Table III was constructed by making the idealization that
LES spectrum is simply the cutoff DNS spectrum as in E
~37!. It is therefore likely that the ratios in Table III ar
unrepresentatively low. The numerical simulations have
plied the Chollet–Lesieur spectral eddy viscosity, which
derived theoretically for high Reynolds number turbulen
in a relatively low Reynolds number simulation. The LES
probably far from optimal. It is therefore also likely that th
ratios from the simulations are unrepresentatively high.
any case, our goal is not to predict this ratio, which depe
on the flow and the SGS model, but to show that it can
significantly larger than one.

VI. DISCUSSION

In most previous applications, LES has been judged
its ability to predict single-time flow properties like the mea
velocity profile, turbulent kinetic energy, and Reynol
stresses. SGS model development has therefore been foc
on improving the predictions of these quantities. The tim
statistics of the LES do not enter such comparisons direc
The recent increased attention given to unsteady problem
aerodynamics suggests that LES will be needed for tim
accurate calculations in the future; even if the time accur
required is only statistical, this emphasis will impose ne
requirements on SGS modeling.

A relatively new application of LES to unsteady flow
the computation of turbulent sound sources. In this proble
the Lighthill acoustic analogy24 shows that the sound sourc
depends on the space–time properties of turbulence. S
unsteady information is required, LES is a natural approa
however, investigation of the accuracy of LES in this app
cation has begun only recently.

In a recent assessment of LES-based sound radiation
culations, Seroret al.25 found that SGS modeling suppress
the sound radiated by the unresolved scales. It is not diffi
to use turbulence theory to model the subgrid sou
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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sources26,27 without reformulating the SGS model; howeve
the possible modification of the frequency distribution p
sents a potentially more difficult problem.

The problem thereby arises of constructing SGS mod
which are faithful both to the energetics of turbulence and
its time correlation properties. One way to model the dec
relating effects of the unresolved scales is by adding a
dom force to the SGS model. The introduction of su
Langevin models as SGS models has been suggeste
Bertoglio,12 Leith,13 and Chasnov14 in connection with the
predictability problem for turbulence. The effect of an add
random force is easily understood in the present contex
the large-scale forcingf i in Eq. ~24! is replaced by a random
force which acts at all scales, then a simple calculat
shows that Eq.~39! is replaced by

C2~kukc!5C2
,~kukc!1Mimn

, ~k!^um~p!un~q! f i~2k!&

2n t~kukc!
2k4Q~k!1^ f i~k! f i~2k!&. ~50!

Since the random force increases the inverse microscale,
possible that the force correlation could be adjusted to c
pensate for the effect of filtering and SGS modeling.

VII. CONCLUSIONS

Numerical simulation and closure arguments sugg
that SGS modeling generates LES fields which are more
related than the corresponding DNS fields. This can be
even if the SGS model predicts single-time properties w
The increased time correlation cannot be attributed to fil
ing alone; indeed, filtering alone does not change the t
correlations of velocity Fourier modes. Instead, by modi
ing the phase relations among modes, SGS modeling a
their correlation properties. This is reflected in increas
temporal correlations.

The present paper considers only Eulerian time corr
tions, which are relevant to problems involving wave rad
tion and scattering. In very high Reynolds number turbul
flows, the long wavelength divergence of Eulerian time c
relations implies that the time correlations of scales far fr
both the integral scale and the subgrid cutoff should be w
predicted by LES. Increased correlation will be significant
moderate Reynolds number turbulence and in high Reyn
number LES for scales close to the integral scale or the fi
scale.

A representative application of this effect is in sou
radiation calculations where, by increasing the turbulent ti
scales, it could cause a shift in the computed radiated so
lower frequencies. Adding a random force to the SGS mo
is a possible route to improving the time correlation pred
tions.
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