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A B S T R A C T :  The Mapping Closure Approximation (MCA) approach is developed to describe the 
statistics of both conserved and reactive scalars in random flows. The statistics include Probability 
Density Function (PDF), Conditional Dissipation Rate (CDR)and Conditional Laplacian (CL). The 
statistical quantities are calculated using the MCA and compared with the results of the Direct Nu- 
merical Simulation (DNS). The results obtained from the MCA are in agreement with those from the 
DNS. It is shown that the MCA approach can predict the statistics of reactive scalars in random flows. 

K E Y  W O R D S :  conserved and reactive scalars, MCA, probability density function, conditional dissi- 
pation rate, conditional Laplacian 

1 I N T R O D U C T I O N  

Statistics of a reactive scalar in random flows 

may be found in problems of great practical and 

fundamental importance in many fields of science 

and engineering. The important examples include 

chemical reaction flows in combustion [I] and porous 

medial2]. The reactive scalar is usually governed by 

an advection-diffusion-reaction equation 

D e  _ 0 r  
_ + u .  vr = ~v~r + s(r  (1) 

Dt Ot 
Here, the scalar ~b represents the concentration of 

species. ~ is a molecular diffusivity. The source term 

S represents the chemical reaction rate. The scalar 

is reactive if S 7~ 0 and conserved if S = 0. The ve- 

locity field u(x ,  t) is usually solved from the Navier- 

Stokes equation. For simplicity in the discussion of 

this paper, the velocity is assumed as a known ho- 

mogeneous Gaussian field with a short time correla- 

tion. This assumption is reasonable since 4 is a pas- 

sive scalar. 

The statistical description of reactive scalars is 

usually achieved by moment and PDF approaches. 
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The moments and PDFs are obtained by solving re- 

spective transport equations separately. However, 

both moment and PDF equations suffer from the clo- 

sure problems. In the moment equations [2], the un- 

closed terms are convection and reaction. They are 

modeled by truncated Taylor series expansions with 

respect to variances. The truncated Taylor series ex- 

pansion is only valid for small variances. In the PDF 

equations [I] , the unclosed terms are Conditional Dissi- 

pation Rate (CDR) and Conditional Laplacian (CL). 

They are modeled using the Gaussian assumptions. 

These models are only valid for near-Gaussian distri- 

butions. The closure problems for reactive scalars are 

very similar to the ones in turbulence. Turbulence 

models are based on Kolmogorov's universal theory 

of small scale motions. Unfortunately, such a theory 

does not exist for reactive scalars in random flows. 

Therefore, one has to adopt some assumptions a pri- 

ori. For example, the small variance is assumed in 

the moment approach and the Gaussian closure is as- 

sumed in the PDF approach. The assumptions have 

to be justified. 
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The recently developed mapping  closure [3,4], 

lately named as Mapping Closure Approximation 
(MCA) [5], provides an alternative approach for PDFs  

without  any ad hoc assumption. The main idea of the 

MCA is to keep track of the evolution of an unknown 

random field by using a known reference field and a 

mapping function. The known reference field is usu- 
ally chosen to be a Gaussian random field, because 

we understand the properties of the Gaussian closure. 

The dynamical evolution of the P D F  is described by 

an evolution equation of the mapping function; the 

lat ter  is obtained directly from the original govern- 

ing equation under the Gaussian closure. In map- 

ping equations, the unclosed terms, CDR and CL, 

can be calculated in the successive approximation by 

the mapping function itself and Gaussian closure so 

that  we do not need any ad hoc models. The recent 

work on MCA can be found in Refs.[6~10]. 

The models of CDR and CL have direct appli- 

cations to Large Eddy Simulation (LES) of turbulent 
reacting flows. In the LES based on the PDF [11J and 

conditional moment  closure [12] , the CDR and CL have 

to be modeled. Although there are extensive studies 

on CDR and CL for conserved scalars, there is very 

little work on CDR and CL for reactive scalars [I] . Un- 

like conserved scalars, reactive scalars are related with 

nonlinear reaction, in addition to advection and diffu- 

sion. MCA has been shown to be able to predict the 

CDR and CL for conserved scalars. In this paper  we 
will show that  MCA can predict these quantities for 

reactive scalars. We will use MCA to calculate the 

PDFs,  CDRs and CLs of reactive scalars in random 

flows. This paper  is arranged as follows: in section 

2, the MCA approach is described, followed by cal- 

culations of the PDFs,  CDRs and CLs for both  con- 

served and reactive scalars. The results obtained from 
MCA are tested quanti tat ively against computer  sim- 

ulations in section 3. We summarize and discuss the 

results in section 4. 

Laplacian (CL) or conditional diffusion 

o(r  t) = (a) 

Using the test function method,  we can also 
show 

= ~ [ ( ( V r 1 6 2 1 6 2  t)] (4) (V2ClC)P(r  

Submitt ing Eq.(4) into Eq.(2), we obtain an alterna- 
tive form of the PDF t ransport  equation 

D P ( r  
D T  + [~((VC)21C)P(r t ) ]+ 

t)] = (5) 0 

which includes another unclosed te rm--Condi t iona l  

Dissipation Rate (CDR) 

X(r t) _= ~((Vqi)2M} (6) 

In the PDF transport equation, the effects of 

chemical reactions appear in closed form. This closed 

form constitutes the primary advantage of the PDF 

approach over others. However, the unclosed terms, 

either CDR or CL, still remain to be modelled a pri- 

ori. The MCA approach is introduced to evaluate the 

CDR and CL and calculate the PDF. 

In the MCA approach, an unknown random field 

r t) is represented by a mapping of a known ran- 

dom field 0(x), where 0(x) might be chosen as a ho- 

mogeneous Gaussian field. Namely, it is assumed that 

the representation 

~(*, t) = X(O(=),  t) (7) 

holds true only in the sense of statistics: the un- 

known random field r  has the same statistics, 

such as PDF and conditional moment,  as its surro- 

gate X(0(m), t). The representation (7) implies 

2 THE MCA APPROACH TO PDF, CDR 

AND CL 

The transport equation for the PDF of reactive 

scalar can be derived from the advection-diffusion- 

reaction Eq. (i) 

DP(qb, t) 
D T  + [,~(v:r162162 t )+  

s ( r 1 6 2  t)] = 0 (2) 

Equation (2) includes an unclosed te rm--Condi t iona l  

P ( r  = Po(O)r XCO 
L ,90 J 

(8) 

where P0(0) is the Gaussian PDF of 0. The mapping 

Eq.(7) exists if and only if the spatial-level crossing 

frequency at which the unknown random field passes 
through a given value has a single maximum as a func- 

tion of that  valueI4]. It is also required to be one-to- 

one and monotonic to ensure that  Eq.(8) is correct. 

Differentiating Eq.(8) with respect to t yields 

{9 ~ +  r P ( r  = 0  (9) 
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The comparison of Eq.(9) with Eq.(2) gives the trans- 
port equation of the mapping function X 

OX 
0t - ~<V2r162 + <S(r162 (10) 

The conditional moments in Eq.(10) can be evaluated 
from the mapping function (7) and the Gaussianity for 
the reference field 0 

0(r  t) = ~<v2r162 = ~(V2XlO) 
[ O 0 X  022(] 

= N<(VO)2} <02} O0 ~- 002 J (11) 

(s(r162 = (sEx(o)]lO) = s[x(o)]  (12) 

Then, the transport equation of the mapping function 
(7) is 

OX =t~((VO)2} [ O aX 02wu 
Ot (02} O0 + 002 J + 

s i x ( o ) ]  (13) 

The solution of Eq.(13) can be used to calculate 
the PDF P(O, t) via Eq.(8), the CL O(0, t) via Eq.( l l )  
and the CDR x(O, t) via 

x(r  = ~<(vr162 

= ~<(V0)2> [0)212 (14) 
L00J 

Other statistics, such as mean and variance, can also 
be calculated using the scalar PDFs. The mapping 
Eq.(13) plays a key role in the calculation of the scalar 
statistics. Its numerical algorithms will be discussed 
in the next section. However, for a conserved scalar, 
S = 0, the mapping Eq.(13) is analytically solvable. 
The results for initial Gaussian and double-delta dis- 
tributions are summarized as follows[4'14]: 

(1) The initial double-delta PDF 

where 
0 

0 -  
~r > 

<(VO)2}, (18) 

= ~/exp(27) - 1 

Using the solution (17), we can calculate the CDR, 
CL and PDF 

x(r  t) = ~ <(v~ 1 
<02) 271"e2 ('/-) ' 

exp ( -  2 [erf- l(2r  - 1)] 2) 

= x(O.5, t )exp ( -- 2 [erf-l(2r - 1)] 2) (19) 

/% ( ( V 0 )  2 } 
O(r  ~ ~ [ 1 + r - 2 ( 7 ) ]  �9 

exp ( - 2 [erf -1 (2q~ - 1)] 2)[erf_ 1 (1 -- 2 r  

@1 - exp ( -2 r ) e r f - l (1  - 2(r (20) 

P(r t) = Z ( ~ - ) e x p ( - - [ Z ( r ) e r f - l ( 2 r  1 ) -  

e~-erf-l(2(@ -- 1)] 2 + [erf-l(2r - 1)] 2) (21) 

(2) The initial Gaussian PDF 

1 
P(r  = ~ e x p  \ -  (22) 

The corresponding initial mapping function is 
X(O,O) = 0. The solution of Eq.(13) is X(O,t) = 
0exp ( - r ) .  Therefore, the CDR, CL and PDF are 
calculated as follows 

X(r t) = n<(VX)210> = ~<(V0)2}e -2~ (23) 

O(r =~<V2XI0> = <(V0)2>" (24) -- t% ~ - ~ - - -  2k 

1 X 2 
P ( r  = ~ 2 7 e x p ( - , - ) e x p  ( -  2exp(--2"r)) 

(25) 

A if r  
P ( r  1 - A  if r  

0 if r  
(15) 

where 0 _< A _< 1. The corresponding initial mapping 
function is of the form 

X(O,0) = {01 if if 0>ff0-<ff (16) 

where 7 = ~/-2erf-l( 2A - 1). The exact solution of 
Eq.(13) with the initial condition (16) is solved as 

/ ~9 - -ye ~ 
x ( < t )  = ~ ~ v ~  (17) 

3 C O M P A R A T I V E  A S S E S S M E N T S  OF 

T H E  M C A  

The objective of this section is to evaluate the 
performance of the MCA via comparative assessments 
against the DNS. We performed the DNS for the 
scalar equation (1) in a cyclic square of side 2~r. 
The Eq.(1) i~ discretized spatially, using the fourth- 
order central-finite-difference scheme, with N = 512 
computationM grids. It is integrated in time us- 
ing an Euler scheme for the first time step and 
second-order Adams-Bashforth scheme for all subse- 
quent time steps. The incompressible random veloc- 
ity u(x ,  t) is numerically constructed as an isotropic 
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and homogeneous Oaussian field of zero mean arid 

uni ty  variance, with a specified energy spec t rum 

(k/ko) 4 exp [-(h/ko)2], where k0 = 4. The  velocity 

field is tempora l ly  frozen for the case tha t  the con- 
vect ion t ime scale (@2)-1/3 is much longer t han  the 

diffusion t ime scale (t~k2) -1.  

The  mapp ing  Eq.(13) is solved by numerical in- 

tegrat ion,  using the  same procedure  as used in Eq.(1).  

The  bounda ry  condit ions for the mapp ing  funct ion X 

are obta ined by ext rapola t ion  in the direction of the 

reference field 0. 

The  initial conditions are chosen as the Gaussian 

and  double-del ta  distributions. The  former is sim- 

ula ted for r a n d o m  mixing and the lat ter  for b inary  

mixing. The chemical reactions are modelled by the 

quadrat ic  form of S(4)) = -204)14)[ and the cubic form 
of S(@) = -20(4) 3 - 0.54)), whose combinat ion  repre- 

sents quite general nonlinear reactions. The  molecular 

diffusion n = 0.005 is much smaller t han  the nonlinear 

reaction. The  models from the M C A  are cal ibrated to 

a case where nonlinear  effects are dominan t  and  the 

momen t  approach does not work well. 

In  the figures, the coordinate  axes are re-scaled 

as follows 

e + ( ~ , O  - 4 ) (~ , t )  - (@ 

p+(4) ,  t) = ~ ( t ) .  p ( 4 ) , t )  

o + ( A O -  o(4),t) 
o(t) 

x + ( 4 ) , t ) -  xC4),t) 
s 

(26) 

where 

g?(t) = 02(O, OP@,t)d4) 
O O  

2(0 = [+~ x@,t)P(@d~ 
J - o o  

(27) 
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The renormalizat ion implies t ha t  an external  

t ime scale is used to rescale relaxation t ime of the 

mapping  function. The  t ime scale can be provided by 

the variances of the mapping  function and its deriva- 

tive. 

We first make comparat ive  assessments for ini- 

tial Gaussian scalars. In  Figs.1 and 2, the quanti t ies 

Fig. 1 

(c) Conditional dissipation rate 

Statistics of the reactive scalar of ini- 
tial Gaussian field with reaction S(r = 
-20r Squares, triangles and cir- 
cles are for DNS and solid, dash and 
dash-dotted lines are for MCA at the 
variances ( k / ~  = 1.0, 0.5 and 0.2, 
respectively 
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(a) P D F  

inc luding  P D F ,  CL and  C D R  are shown for the  reac- 

t ive scalars  of the  q u a d r a t i c  and  cubic  nonl inear  re- 

ac t ions  separa te ly .  The  nonl inear  t e rms  d i s to r t  the i r  

shapes:  the  P D F s  d e p a r t  f rom the  in i t i a l  Gauss ian  

d i s t r i b u t i o n  and  become symmet r i c  f l -d i s t r ibu t ion .  

T h e  CLs  look Eke s inusoida l  d i s t r i bu t i ons  due to sig- 

nif icant  d i s to r t ions  of non l inea r  r eac t ion  for large r 

The  C D R s  become pa rabo l i c  in s t ead  of be ing  a con- 

s tan t .  T h e  resul ts  f rom the  M C A  are  in agreement  

wi th  those  from the  DNS,  and  the  non l inear  d is tor-  

t ions  are  well p r ed i c t ed  by  the  MCA.  

We fur the r  make  c o m p a r a t i v e  assessments  for 

in i t ia l  b i n a r y  scalars  in Figs .3  and  4. Even  for t he  
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(c) Conditional dissipation rate 

Fig.2 Statist ics of the reactive scalar of ini- 
t ial  Gaussian field with reaction S(r  = 
- 2 0 ( r  3 - 0.5r Squares, triangles and 
circles are for DNS and solid, dash and 
dash-dot ted lines are for MCA at the 
variances (X/7~ = 1.0, 0.5 and 0.2, 
respectively 
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(b) Conditional diffusion 

Fig.3 Statist ics of the reactive scalar of initial 
double-delta field with reaction S(r  = 
-20r162 I. Squares, triangles and circles 
are for DNS and solid, dash and dash- 
dot ted  lines are for MCA at the variances 
( X / ~ =  1.0, 0.2 and 0.04, respectively 
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Fig.3 

(c) Conditional dissipation rate 

Statistics of the reactive scalar of initial 
double-delta field with reaction S(r  = 
-20r162 I. Squares, triangles and circles are for 
DNS and solid, dash and dash-dot ted lines are 
for MCA at the variances ~ ---- 1.0, 0.2 
and 0.04, respectively (continued) 

(c) Conditional dissipation rate 

Fig.4 Statistics of the reactive scalar of initial 
double-delta field with reaction S(r  = 
- 2 0 ( r  3 - 0.5r Squares, triangles and cir- 
cles are for DNS and solid, dash and dash- 
dot ted  lines are for MCA at the variances 
~ r  = 1.0, 0.2 and 0.04, respectively 
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b i n a r y  in i t ia l  d i s t r ibu t ions ,  the  P D F s  f rom the  M C A  

are  in good  agreement  wi th  those  f rom the  DNS. The  

M C A  also p red ic t s  the  evolu t ion  of the  CLs a l though  

the re  are sl ight  differences in the  tai ls .  T h e  M C A  

pred ic t ions  of the  CDRs  are qua l i t a t i ve ly  correct  bu t  

w i th  some m a g n i t u d e  differences. T h e  m a g n i t u d e  dif- 

ferences are due to  the  fact t h a t  the  cur ren t  m a p p i n g  

is an  a m p l i t u d e  a p p r o x i m a t i o n  in t he  sense of a first- 

o rde r  accuracy,  which is expec ted  to  be  improved  by  

a h igher -o rder  approx ima t ion [  51 . 

The  compara t i ve  assessments  ind ica te  t h a t  the  

M C A  can p red ic t  the  s ta t i s t ics  of the  in i t ia l  Gauss i an  

scalars  wi th  or wi thou t  react ions .  T h e  M C A  predic-  

t ions  of in i t ia l  b ina ry  scalars  on P D F s  and  CLs are 

also in agreement  wi th  those  of the  DNS, bu t  have 

some m a g n i t u d e  differences on C D R s  wi th  those  of 

the  DNS. 

4 C O N C L U S I O N S  A N D  D I S C U S S I O N S  

I t  is d e m o n s t r a t e d  t ha t  the  M C A  can be  used 

to  descr ibe  the  s ta t i s t ics  of reac t ive  scalars  in r a n d o m  

flows. Typical ly ,  the  approach  can p red ic t  the  shapes  

of the  P D F s ,  CDRs  and  CLs for b o t h  conserved and 

reac t ive  scalars.  In  the  M C A  approach ,  the  effects 

of reac t ions  are in closed form. Therefore ,  the  M C A  

can keep t r ack  of nonl inear  d i s to r t ions  fl 'om the  re- 

ac t ion  t e rms  so t h a t  it  cor rec t ly  descr ibes  the  shapes  

of the  s ta t i s t ics .  The  rescal ing t ime  in the  plots  im- 

pl ies an  ex te rna l  t ime  scale. T h e  t ime  scale could 
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be provided by the variances of the mapping and its 

derivative. Therefore, the mapping for the joint PDF 

of scalar and its derivative is a natural choice for this 

purpose. Although the present paper is restricted to 

the quadratic and cubic nonlinear reactions, the MCA 

can be applied to nonlinear reactions of general forms. 

R E F E R E N C E S  

1 Pope SB. PDF methods for turbulent reactive flows. 
Prog Energy Combust Sci, 1985, 11:119~192 

2 Zhang D, Andricevic R, Sun AY, eta[. Solute flux ap- 
proach to transport through spatially non-stationary 
flow in porous Inedia. Water Resource Research, 2000, 
36:2107~2120 

3 Chen H, Chen S, Kraichnan RH. Probability distribu- 
tion of a stochastically advected Scalar field. Phys Rev 
Letters, 1989, 63:2657~2660 

4 Pope SB. Mapping closure for turbulent mixing and 
reaction. Theoret Cornput Fluid Dynamics, 1991, 2: 
255N270 

5 He GW, Rubinstain R. Mapping closure approxima- 
tion to conditional dissipation rate for turbulent scalar 
mixing. ICASE Report No.2000-48, 2000 

6 Valino L, Ros J, Dopazo C. Monte Carlo implementa- 
tion and analytic solution of an inert-scalar turbulent- 

mixing test problem using a mapping closure. Phys 
Fluids A, 1991, 3:2191~2198 

7 Girimaji SS. A mapping closure for turbulent scalar 
mixing using a time-evolving reference field. Phys Flu- 
ids A, 1992, 4:2875~2886 

8 Kimura Y, Kraichnan RH. Statistics of an advected 
passive scalar. Phys Fluids A, 1993, 5:2264~2277 

9 Shivamoggi BK. Probability density function of the 
gradient of a passive scalar diffusing in isotropic tur- 
bulence: mapping-closure model. Phys Rev E, 1995, 
51:4453~4456 

10 Takaoka M. Application of mapping closure to non- 
Gaussian velocity fields. Phys Fluids, 1999, 11: 
2205~2214 

11 Colucci P J, Jaberi FA, Givi P, et al. Filtered density 
function for large eddy simulation of turbulent react- 
ing flows. Phys Fluids, 1998, 10:499~515 

12 Bushe WK, Steiner H. Conditional moment closure for 
large eddy simulation of nonpremixed turbulent react- 
ing flows. Phys Fluids, 1999, 11:1896~1906 

13 Pope SB. Turbulent Flows. Cambridge: Cambridge 
University Press, 2000 

14 Gao F. An analytical solution for the scalar probabil- 
ity density function in homogeneous turbulence. Phys 
Fluids A, 1991, 3:511~513 


