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A Lattice Boltzmann Equation for Waves
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We propose a lattice Boltzmann model for the wave equation. Using a lattice
Boltzmann equation and the Chapman–Enskog expansion, we get 1D and 2D wave
equations with truncation error of order two. The numerical tests show the method
can be used to simulate the wave motions.c© 2000 Academic Press
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1. INTRODUCTION

In recent years, the lattice Boltzmann method (LBM) has attracted attention as an alterna-
tive numerical scheme for simulation of fluid flows [1–3, 10]. Unlike traditional numerical
methods which solve equations for macroscopic variables, LBM is based on the mesoscopic
kinetic equation for particle distribution function. The fundamental idea of the LBM is to
construct a simplified kinetic model that incorporates the essential physics of microscopic or
mesoscopic processes and where the macroscopic variables obey the desired macroscopic
equations. In the general case, time, space, and velocity are discrete on one lattice. Noting
this we choose the equilibrium distribution function to fit the same requirements which can
be obtained with the multiscale technique and the Chapman–Enskog expansion. Recently,
there have been some studies about model equations using the lattice Boltzmann method
[4, 5, 9]. All of the models have a common characteristic: the macroscopic equations have
term ∂u

∂t and convention term∂F(u)
∂x , and the macroscopic quantityu is conservative. In other

words, the macroscopic equation has the same form∂u
∂t + ∂F(u)

∂x . However, the wave equation
has another form

∂2u

∂t2
= C2

s∇2u+ ψ(u),
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whereψ(u) is source term. The equation above has∂2u/∂t2, but does not have the convection
term.

It is known that the second-order wave equation can be transformed into a system of
two first-order equations; thus, consequently, we need two types of particle distribution
functions. This is a multi-composite lattice Boltzmann model, where at least a 10-bit model
needs to be used. In this paper, we propose a new distribution functionfα for the macroscopic
quantity ∂u

∂t . We assumefα satisfies the conservation condition. If we choose∂u
∂t as a

conservation quantity, the model has a 5-bit only. We can see the physical meaning in the
wave equation: the quantity∂u

∂t has an equilibrium distribution function in the mesoscopic
scale from the view of our model, but the quantityu does not. The distribution functionfα
is a change ratio of the number of particles with time, in the mesoscopic scale, not in the
number of particles.

In Ref. [6], Chen and co-workers used three steps of lattice gas automata (LGA) to
simulate a linear wave equation. They introduced a delay for time in LGA; the results
are good enough. In the present paper, we also use a lattice model. Our model has three
advantages over the LGA: (1) We use an exact solution of equilibrium distribution functions
to determine the truncation errors of the scheme; the numerical results are quantity. (2) We
do not need an ensemble average to get the macroscopic quantity; thus the statistical errors
disappear. (3) We use the standard lattice Boltzmann equation that is simpler than the second-
order differential type equation in LGA. The numerical results can show the mentioned
advantages. In addition in this paper we use

ut+1t = ut +1t
∂u

∂t

to findu of the next time step.
It is known that the second-order wave equation can be transformed into a system of two

first-order equations. However, in a general system of two first-order equations, this is not
easy to handle by standard LBM. Therefore, an alternative method for the lattice Boltzmann
model of the second-order wave equation needs to be developed.

2. LATTICE BOLTZMANN MODEL

2.1. The definition of macroscopic quantity.Consider a 1D or 2D model; we make
discrete the velocity of particles intob directions and a lattice with unit spacing is used
where each node hasb nearest neighbors connected byb links. The distribution function
fα is the probability of finding the quantity∂u

∂t at time t , nodex, with velocity eα, here
α= 0, 1, . . . ,b (α= 0 is the rest particle). The particle velocity iseα ={0, c,−c}, b= 2
for a one-dimensional lattice;eα ={(0, 0), (c, 0), (0, c), (−c, 0), (0,−c)}, b= 4 for a two-
dimensional lattice. The macroscopic quantity∂u

∂t is defined by

∂u(x, t)
∂t

=
∑
α

fα(x, t); (1)

the conservation condition is ∑
α

f eq
α (x, t) =

∂u(x, t)
∂t

. (2)
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The distribution function satisfies the lattice Boltzmann equations (LBE)

fα(x+ eα, t + 1)− fα(x, t) = Äα +Ä′α, (3)

whereÄα =− 1
τ
[ fα(x, t)− f eq

α (x, t)], f eq
α is the equilibrium distribution function at time

t , x; Ä′α is the additional term; andτ is the single relaxation time factor.

2.2. A series of lattice Boltzmann equations in different time scales.Usingε as the time
step unit1t =1x/c in the physical unit,ε can play the role of the Knudsen number [8].
The lattice Boltzmann equation (3) in physical units is

fα(x+ εeα, t + ε)− fα(x, t) = Äα +Ä′α. (4)

The use of Taylor expansion gives

fα(x+ εeα, t + ε)− fα(x, t)

= ε
[
∂

∂t
+ eα j

∂

∂xj

]
fα + ε

2

2

[
∂

∂t
+ eα j

∂

∂xj

]2

fα + ε
3

6

[
∂

∂t
+ eα j

∂

∂xj

]3

fα + O(ε4). (5)

Next, the Chapman–Enskog expansion [7] is applied tofα under the assumption that the
mean free path is of the same order ofε. Expandingfα around f (0)α

fα = f (0)α + ε f (1)α + ε2 f (2)α + ε3 f (3)α , . . . , (6)

where f (0)α is f eq
α .

To discuss changes in different time scales, introducet0, . . . , t3 as

t0 = t, t1 = εt, t2 = ε2t, t3 = ε3t (7)

and let

∂

∂t
= ∂

∂t0
+ ε ∂

∂t1
+ ε2 ∂

∂t2
+ ε3 ∂

∂t3
+ O(ε4). (8)

The equations to order ofε is

∂ f (0)α

∂t0
+ eα j

∂ f (0)α

∂xj
= −1

τ
f (1)α . (9)

AssumeÄ′α = ε2φ(u). The equation to order ofε2 is

∂ f (0)α

∂t1
− τ
(

1− 1

2τ

)(
∂

∂t0
+ eα j

∂

∂xj

)2

f (0)α = −
1

τ
f (2)α + φ(u). (10)

The equation to order ofε3 is

∂ f (0)α

∂t2
+ (1− 2τ)

(
∂

∂t0
+ eα j

∂

∂xj

)
∂ f (0)α

∂t1
+
(
τ 2− τ + 1

6

)(
∂

∂t0
+ eα j

∂

∂xj

)3

f (0)α

=−1

τ
f (3)α + (−τ)

(
∂

∂t0
+ eα j

∂

∂xj

)
φ(u). (11)

Equations (9)–(11) are a so-called series of lattice Boltzmann equations in different time
scales [9].
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2.3. The wave equation.Taking (9)+ (10)× ε and summing aboutα, we obtain

∂

∂t

(
∂u

∂t

)
= C2

s

∂2u

∂xi ∂xi
+ ψ(u)+ O(ε2) (12)

if ∑
α

f (0)α eαi = 0, (13)

∑
α

f (0)α eαi eα j = λuδi j , (14)

whereλ=C2
s/ε(τ − 1/2), ψ(u)= ε(b+ 1)φ(u). Equation (12) has the truncation error

R= O(ε2). (15)

To find the structure of the truncation error, we take (9)+ (10)× ε+ (11)× ε2 and get

∂2u

∂t2
= λε

(
τ − 1

2

)
∂2u

∂xi ∂xi
+ εφ(u)(b+ 1)

− 2ε2

(
τ 2− τ + 1

6

)
λ∇2∂u

∂t
− τε2(b+ 1)

∂φ

∂t
+ O(ε3). (16)

From Eq. (16), we get the truncation error as

R= −2ε2

(
τ 2− τ + 1

6

)
λ∇2∂u

∂t
− τε2(b+ 1)

∂φ

∂t
+ O(ε3). (17)

The truncation errorR contains a dissipation term and an unsteady source term. Therefore,
on the second-level (ε2), the term∂u

∂t is dissipative with time.
We can easily get the equilibrium distribution functionf (0)α from Eqs. (2), (13), and (14).

The expression follows

f (0)0 =
∂u

∂t
− λuD

c2
(18)

f (0)α =
λuD

bc2
, α = 1, . . . ,b, (19)

whereD is the dimensional number.
Equations (18) and (19) are a homogenous solution of the system. In the standard LBM,

the square lattices withb= 8 (called an 8-bit) model is used generally. We can use the
b= 4, b= 6, orb= 8 model for the 2D problem. As a simple model, we useb= 4 for the
2D problem to complete simulation in the numerical experiments of Section 3.

3. NUMERICAL EXAMPLE

To test the effect of this method, we choose three numerical experiments for the one-
dimensional model and one numerical experiment for the two-dimensional model.
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We select the lattice sizeM , the mesoscopic speedc= |eα|, the step ofx as1x, the speed
of wavesCs, and the single relaxation time factorτ as parameters. The source termsψ(u)
in the wave equation are a known condition. Thus, the length of the computing region is
l =M1x; the Knudsen numberε=1x/c. The parameterλ in Eqs. (18) and (19) is given
by λ=C2

s/ε(τ − 1/2). The additional termÄ′ in Eq. (3) is given by

Ä′ = εψ

b+ 1
.

The initial conditions of distribution functions are given by Eqs. (18) and (19) from the
macroscopic quantityu at timet = t0. Starting from an initialfα, the macroscopic quantity
∂u
∂t andu can be obtained using definitions. For each time step, the updating of the distribution
function can be given by using the lattice Boltzmann equation (3). The boundary conditions
of fα are given by Eqs. (18) and (19) from the macroscopic quantityu on boundaries.

TestI,

utt = C2
suxx + g0, 0< x <∞, t > 0

u(x, 0) = 0, ut (x, 0) = 0,

andu(0, t)= 0, ux(x, t)→ 0 whenx→∞. The exact solution is

u(x, t) = g0

2

[
t2−

(
t − x

c

)2

H

(
t − x

c

)]
, t > 0, x > 0,

whereH(ξ) is the Heaviside function.
The results of the lattice Boltzmann simulation and theoretical solution are shown in

Fig. 1. The parameters are lattice sizeM = 100,1x= 0.01, c= 5.0, τ = 1.2,Cs= 0.1,
g0= 0.1, ε=1t =1x/c.

TestII,

utt = C2
suxx, 0< x < 1, t > 0

u(x, 0) = 0, ut (x, 0 ) = 0,

u(0, t) = 0, ux(1, t) = g0.

FIG. 1. Comparisons between numerical simulation (circle) and theoretical results (line) of Test I. Parameters:
lattice sizeM = 100,1x= 0.01,c= 5.0, τ = 1.2, Cs= 0.1, g0= 0.1, ε=1t =1x/c.
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FIG. 2. Comparisons between numerical simulation (circle) and theoretical results (line) of Test II. Para-
meters: lattice sizeM = 2000,1x= 0.0005,c= 5.0, τ = 1.2, Cs= 0.01,g0= 0.1, ε=1t =1x/c.

The exact solution is

u(x, t) = Csg0

[(
t − 1− x

Cs

)
H

(
t − 1− x

Cs

)
−
(

t − 1+ x

Cs

)
H

(
t − 1+ x

Cs

)
−
(

t − 3− x

Cs

)
H

(
t − 3− x

Cs

)
+
(

t − 3+ x

Cs

)
H

(
t − 3+ x

Cs

)]
, 0< t <

4

Cs
.

The results of the lattice Boltzmann simulation and theoretical solution are shown in
Fig. 2. The parameters are lattice sizeM = 2000,1x= 0.0005, c= 5.0, τ = 1.2,Cs= 0.01,
g0= 0.1, ε=1t =1x/c.

TestIII,

utt = C2
suxx, t > 0,−∞ < x <∞

u(x, 0) = 0.2

1+ 9x2
, ut (x, 0) = 0.

The exact solution is

u(x, t) = 0.1

1+ 9(x − Cst)2
+ 0.1

1+ 9(x + Cst)2
. (20)

We plot the wave motion at four moments in Figs. 3a–3d. The parameters are lattice size
M = 1000,1x= 0.01, c= 3.0, τ = 1.2,Cs= 0.1, ε=1t =1x/c. We find that the single
wave packet evolves into a right-traveling wave packet and a left-traveling wave packet and
the shapes are preserved at all times. We also plot the errors in Fig. 3e at timeT = 30001t .
We use the functione(x, t)= |(u(x, t)− u∗(x, t))/u∗(x, t)| as the errors, whereu∗(x, t) is
the exact solution in Eq. (20). Comparing similar examples in Ref. [6], we find three aspects
differing from the LGA model: (1) We use an exact solution of equilibrium distribution
functions Eqs. (18), (19) to determine the truncation errors of the scheme; our numerical
results are quantity. (2) We do not need an ensemble average to get the macroscopic quantity;
thus the statistical errors disappear. (3) We use a standard lattice Boltzmann equation that
is simpler than the second-order differential type equation in LGA; especially, our model
can be used to simulate the wave equation with source termψ(u).



FIG. 3. (a)–(d) Comparisons between numerical simulation (circle) and theoretical results (line) of Test III.
Parameters: lattice sizeM = 1000,1x= 0.01, c= 3.0, τ = 1.2, Cs= 0.1, ε=1t =1x/c. (e) The errors curve
verses positionx of Test III at timeT = 30001t . Parameters: lattice sizeM = 1000,1x= 0.01,c= 3.0, τ = 1.2,
Cs= 0.1, ε=1t =1x/c.

FIG. 4. Contours of quantityu at T = 3001t . Lattice size 64× 64; the slits position cell numbersm1= 32,
n1= 25, m2= 32, n2= 41; the slits width1l = 6, 1x= 1/64, c= 3.0, δ= 5.0, τ = 1.2, Cs= 0.1, g0= 0.1,
ε=1t =1x/c.
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FIG. 5. Contours of quantityu at T = 10001t . Lattice size 64× 64; the slits position cell numbersm1= 32,
n1= 25, m2= 32, n2= 41; the slits width1l = 6, 1x= 1/64, c= 3.0, δ= 2.0, τ = 1.2, Cs= 0.1, g0= 0.1,
ε=1t =1x/c.

TestIV. As a 2D experiment, we give the results of double-slit at a given instant [6];
see Figs. 4, 5. We put a plane wave as the initial condition,

u(x, y, 0) = g0 cos(δx).

The boundary conditions on the left, right, top, under, and holes are gradu= 0. On two
sides of the wall, we useu= 0. At 32 cells away from the left boundary we put a wall with
two holes each with width1l , at n1, n2 cells away from under the boundary, so that the
wave can go through the holes in order to go from the left region into the right region (we
put this as empty initially). This results in the interference patterns.

4. CONCLUSION

In this paper, we have presented a lattice Boltzmann model for the linear wave equation.
Some key points are as follows.

(1) The lattice Boltzmann method is available for the linear wave equation. Because
the linear wave equation does not have the convention term, its lattice Boltzmann model
has a feature of

∑
α f eq

α eα = 0. This is different from the standard LBM in Refs. [1–3].
(2) We used three time scales for recovery of the macroscopic equation. If we want to

know a more detailed structure in the coefficient of dissipation and dispersion, more higher
order moments of thef eq

α should be used.
(3) The difference between this model and other lattice Boltzmann models is that∂u

∂t
but notu is the conservation quantity. Test results support the theory.
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